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On the increasing solutions of the translation equation

by Janusz Brzdȩk (Rzeszów)

Abstract. Let M be a non-empty set endowed with a dense linear order without the
smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely
divisible subgroup. There are given conditions under which every solution F :M×G→M
of the translation equation is of the form F (a, x) = f−1(f(a)+c(x)) for a ∈M , x ∈ G with
some non-trivial additive function c : G→ R and a strictly increasing function f :M → R
such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.

This paper is motivated by the following problem raised by J. Tabor dur-
ing his talk at the Mathematics Department of the Pedagogical University
in Rzeszów:

Let M be a non-empty set endowed with a dense linear order ≤ without
the smallest and greatest elements and let R stand for the set of all reals.
Find conditions such that a function F : M × R → M satisfies them and
the translation equation

(1) F (F (a, x), y) = F (a, x + y)

if and only if there exist an additive function c : R → R, a non-empty set
T ⊂ R, and a strictly increasing function f mapping M onto the set T +c(R)
such that c(R) is dense in R and

(2) F (a, x) = f−1(f(a) + c(x))

for x ∈ R, a ∈M .
The problem is connected with some iteration groups. For the details we

refer to [4].
We present a solution of the problem. We also give some results concern-

ing monotonic solutions of equation (1). Such solutions of the translation
equation have already been studied e.g. in [1]–[3]. However, the literature
devoted to them is not very vast.
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Throughout this paper N, Z, Q stand for the sets of all positive integers,
all integers, and rationals, respectively. (G, +) denotes a group (not neces-
sarily commutative) and H is a non-trivial uniquely divisible subgroup of G,
unless explicitly stated otherwise.

Let us start with the following

Lemma 1. Let x0 ∈ H \ {0} and b ∈ M . Suppose that a function F :
M ×G→M satisfies the following two conditions:

(3) the set {F (b, px0) : p ∈ Q} is dense in M,

(4) F (b, px0) < F (b, qx0) for every p, q ∈ Q, p < q.

Then, for each t ∈ R, t > 0 (t < 0 respectively), the function ft : M → R
given by

(5) ft(a) = t lim
n→∞

qa
n for a ∈M,

where {qa
n : n ∈ N} ⊂ Q is any strictly increasing sequence such that a =

limn→∞ F (b, qa
nx0) (with respect to the order in M), is strictly increasing

(decreasing resp.).

P r o o f. Fix t ∈ R, t > 0 (in the case t < 0 the proof is analogous).
First, we prove that ft is well defined.

Fix a ∈ M . Since M is without a greatest element, by (3) there is
p ∈ Q with a < F (b, px0). Thus, according to (4), there is a real number
s := sup{q ∈ Q : F (b, qx0) < a} < p. Let {qa

n : n ∈ N} ⊂ Q be a strictly
increasing sequence with s = limn→∞ qa

n. Then {F (b, qa
nx0) : n ∈ N} is

a strictly increasing sequence in M . Take d ∈ M with d < a. There is
r ∈ Q with d < F (b, rx0) < a. Further, there exists m ∈ N with r < qa

m.
Consequently, d < F (b, rx0) < F (b, qa

nx0) < a for every n ∈ N with n > m.
This means that a = limn→∞ F (b, qa

nx0).
Next, suppose that {pa

n : n ∈ N} ⊂ Q is also a strictly increasing se-
quence such that a = limn→∞ F (b, pa

nx0). Then, for every n ∈ N, there are
k, m ∈ N with F (b, qa

nx0) < F (b, pa
kx0) and F (b, pa

nx0) < F (b, qa
mx0). Hence

(4) implies limn→∞ qa
n = limn→∞ pa

n. In this way we have proved that the
definition of ft is correct.

To complete the proof, fix a, d ∈ M , a < d. Let {qa
n : n ∈ N}, {qd

n : n ∈
N} ⊂ Q be strictly increasing sequences with a = limn→∞ F (b, qa

nx0) and
d = limn→∞ F (b, qd

nx0). Since a < d, there is n0 ∈ N such that

F (b, qa
kx0) < F (b, qd

nx0) for every k, n ∈ N, n > n0.

Thus, by (4), qa
k < qd

n for every k, n ∈ N, n > n0, which means that
limn→∞ qa

n < limn→∞ qd
n. Hence ft(a) < ft(d). This ends the proof.

Lemma 2. Let a, b ∈M and x0 ∈ H \{0}. Suppose that F : M×G→M
is a function and {qa

n : n ∈ N} ⊂ Q is a strictly increasing sequence such
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that a = limn→∞ F (b, qa
nx0), (3) and (4) hold ,

(6) the set {F (d, x) : d ∈M} is dense in M for every x ∈ G,

and

(7) F (d, x) < F (c, x) for every d, c ∈M, d < c, x ∈ G.

Then F (a, x) = limn→∞ F (F (b, qa
nx0), x) for every x ∈ G.

P r o o f. Fix x ∈ G. Since, according to (3), the set {F (b, px0) : p ∈ Q} is
dense in M , so is the set {F (F (b, px0), x) : p ∈ Q} by (6) and (7). Moreover,
by (7), for every p ∈ Q with F (F (b, px0), x) < F (a, x), there exists m ∈ N
such that

F (F (b, px0), x) < F (F (b, qa
nx0), x) < F (a, x) for n ∈ N, n > m,

because a = limn→∞ F (b, qa
nx0) and, by (4) and (7), the sequence

{F (F (b, qa
nx0), x) : n ∈ N} is strictly increasing. This yields the assertion.

Lemma 3. Let b, d ∈M , {ak : k ∈ N} ⊂M , x0 ∈ H \ {0}, F : M ×G→
M and let {pn : n ∈ N}, {qn : n ∈ N} ⊂ Q be bounded strictly increasing
sequences such that ak = limn→∞ F (b, (qk + pn)x0) for k ∈ N and d =
limk→∞ ak. Suppose that condition (4) holds. Then d = limn→∞ F (b, (qn +
pn)x0).

P r o o f. Fix k ∈ N. Then there exists n0 ∈ N, n0 > k, with

qk + pj < qk+1 + pj < qk+1 + lim
n→∞

pn < qm + pm

< qm + pm+j for j,m ∈ N, m > n0,

because the sequences {pn : n ∈ N} and {qn : n ∈ N} are strictly increasing
and bounded. Thus, according to (4), ak ≤ ak+1 and

F (b, (qk + pn)x0) < F (b, (qm + pm)x0) < am for n, m ∈ N, m > n0.

In this way we have proved that the sequence {ak : k ∈ N} is increasing
and, for each k ∈ N, there exists m ∈ N with

ak ≤ F (b, (qm + pm)x0) ≤ am,

which yields the assertion.

Lemma 4. Let x0 ∈ H \ {0}, z ∈ G, b ∈ M and let F : M ×G → M be
a function satisfying

F (F (b, x), y) = F (b, x + y) for x, y ∈ G,(1′)
F (b, x + y) = F (b, y + x) for x, y ∈ G(8)

and conditions (3), (4), (6), (7). Suppose that {qz
n : n ∈ N} ⊂ Q is a strictly

increasing sequence such that F (b, z) = limn→∞ F (b, qz
nx0). Then

F (a, z) = lim
n→∞

F (a, qz
nx0) for every a ∈M.
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P r o o f. Fix a ∈ M . Then, by (3) and (4), there is a strictly increasing
bounded sequence {qa

n : n ∈ N} ⊂ Q such that a = limn→∞ F (b, qa
nx0).

According to Lemma 2 and conditions (1′) and (8),

F (a, z) = lim
n→∞

F (F (b, qa
nx0), z) = lim

n→∞
F (F (b, z), qz

nx0)

= lim
n→∞

( lim
k→∞

F (F (b, qz
kx0), qa

nx0))

= lim
n→∞

( lim
k→∞

F (b, (qa
n + qz

k)x0)) =: I1

and
lim

k→∞
F (a, qz

kx0) = lim
k→∞

( lim
n→∞

F (F (b, qa
nx0), qz

kx0))

= lim
k→∞

( lim
n→∞

F (b, (qa
n + qz

k)x0)) =: I2.

Since, by Lemma 3, I1 = I2, we obtain the statement.

Lemma 5. Let b ∈M , x0 ∈ H\{0} and let F : M×G→M be a function
satisfying conditions (1′), (3), (4), and (6)–(8). Then, for each t ∈ R, t > 0
(t < 0 resp.), the function ct : G → R, ct(x) = ft(F (b, x)) for x ∈ G, is
additive, ct(x0) > 0 (ct(x0) < 0 resp.), and

(9) F (a, x) = f−1
t (ft(a) + ct(x)) for a ∈M, x ∈ G,

where the function ft : M → R is given by (5).

P r o o f. Fix a ∈ M , x, y ∈ G, t ∈ R, t 6= 0, and strictly increas-
ing bounded sequences {qx

n : n ∈ N}, {qy
n : n ∈ N}, {qa

n : n ∈ N} ⊂ Q
with a = limn→∞ F (b, qa

nx0), F (b, x) = limn→∞ F (b, qx
nx0), and F (b, y) =

limn→∞ F (b, qy
nx0) (we construct these sequences e.g. as in the proof of

Lemma 1). According to Lemmas 2–4 and (1′),

F (b, x + y) = F (F (b, x), y) = lim
n→∞

F (F (b, x), qy
nx0)

= lim
n→∞

( lim
k→∞

F (F (b, qx
kx0), qy

nx0)

= lim
n→∞

( lim
k→∞

F (b, (qx
k + qy

n)x0)) = lim
n→∞

F (b, (qx
n + qy

n)x0).

Thus
ct(x + y) = ft(F (b, x + y)) = t lim

n→∞
(qx

n + qy
n)

= ft(F (b, x)) + ft(F (b, y)) = ct(x) + ct(y).
Consequently, ct is additive. Further, by Lemmas 2–4,

F (a, x) = lim
k→∞

F (a, qx
kx0) = lim

k→∞
( lim
n→∞

F (F (b, qa
nx0), qx

kx0))

= lim
n→∞

F (b, (qa
n + qx

n)x0).

Hence

ft(F (a, x)) = t lim
n→∞

(qa
n + qx

n) = ft(a) + ft(F (b, x)) = ft(a) + ct(x).
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Since, in view of Lemma 1, ft is one-to-one, this implies (9).
To complete the proof, note that, by (4), F (b, 0) < F (b, x0). Thus, on

account of Lemma 1, for t > 0,

0 = ct(0) = ft(F (b, 0)) < ft(F (b, x0)) = ct(x0),

and for t < 0,

0 = ct(0) = ft(F (b, 0)) > ft(F (b, x0)) = ct(x0).

So, we have proved Lemma 5.

Now, we are in a position to prove the following

Theorem 1. Assume that (G, +) is a group (not necessarily commuta-
tive) and has a uniquely divisible subgroup H. Let b ∈M and x0 ∈ H \ {0}.
Then a function F : M × G → M satisfies conditions (1′), (3), (4), and
(6)–(8) if and only if there exist a non-empty set T ⊂ R, an additive func-
tion c : G → R, c(x0) > 0 (c(x0) < 0 resp.), and an increasing (decreasing
resp.) bijection f : M → K, where K = T + c(G), such that (2) holds for
every x ∈ G and a ∈ M . Furthermore, every function F : M ×G → M of
the form (2) is a solution of equation (1).

P r o o f. Assume that F : M ×G→M satisfies conditions (1′), (3), (4),
and (6)–(8). Fix t ∈ R, t > 0 (t < 0 resp.). Then, according to Lemmas 1
and 5, the function ft : M → R given by (5) is strictly increasing (decreasing
resp.), the function ct : G → R, ct(z) = ft(F (b, z)) for z ∈ G, is additive,
ct(x0) > 0 (ct(x0) < 0 resp.), and (9) holds. Thus it suffices to put T =
ft(M).

Now, assume that F : M ×G→M is of the form (2). It is easy to check
that F is a solution of equation (1) and satisfies (8). Conditions (4) and (7)
result from the fact that f is increasing (decreasing resp.) and c(x0) > 0
(c(x0) < 0 resp.). Further, since c is additive and H is uniquely divisible,
c(qx0) = qc(x0) for q ∈ Q. Thus the sets c(G) and K are dense in R, which
means that s+c(G) and K +r are dense in K for every s ∈ K and r ∈ c(G).
Consequently, by (2), conditions (3) and (6) hold, because f is a monotonic
bijection. This completes the proof.

From Theorem 1 we obtain the following corollary, which gives a solution
of the problem of J. Tabor.

Corollary 1. Suppose that G is a uniquely divisible group. Then a
function F : M × G → M satisfies equation (1) and there exist b ∈ M ,
x0 ∈ G \ {0} such that conditions (3), (4), and (6)–(8) are valid if and only
if there exist a non-empty set T ⊂ R, an additive function c : G → R,
c(G) 6= {0}, and an increasing bijection f : M → K, where K = T + c(G),
such that (2) holds for x ∈ G and a ∈M .
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P r o o f. It suffices to note that c(G) 6= {0} iff there is x0 ∈ G with
c(x0) > 0.

R e m a r k 1. The assumption of Theorem 1 that G is a group can be
weakened. Namely, it suffices to suppose that G is a groupoid (i.e. a non-
empty set endowed with a binary operation) and has a subgroupoid H which
is a uniquely divisible group.

The representation (2) of a solution F : M ×G→ M of equation (1) is
not unique:

Proposition 1. Suppose that G is as in Theorem 1, c1, c2 : G → R
are additive functions such that ci(H) 6= {0} for i = 1, 2, T1, T2 ⊂ R are
non-empty sets, fi : M → Ki, where Ki = Ti + ci(G), for i = 1, 2 are
monotonic bijections, and

(10) Fi(a, x) = f−1
i (fi(a) + ci(x)) for x ∈ G, a ∈M, i = 1, 2.

Then F1 = F2 iff there exist u, v ∈ R, u 6= 0, such that f1(a) = uf2(a) + v
for a ∈M and c1(x) = uc2(x) for x ∈ G.

P r o o f. First suppose that there are u, v ∈ R, u 6= 0, with f1 = uf2 + v
and c1 = uc2. Then, for every a ∈M and x ∈ G,

F1(a, x) = f−1
1 (f1(a) + c1(x)) = f−1

1 (u(f2(a) + c2(x)) + v)

= f−1
1 (uf2(F2(a, x)) + v) = F2(a, x).

Now, assume that F1 = F2. Fix t ∈ R, t > 0, b ∈ M , and x0 ∈ H \ {0}
with c1(x0) > 0. Then, by (10), we also have c2(x0) 6= 0. Put F = F1.
According to Theorem 1, (3) and (4) hold. Thus, by Lemma 1, the function
ft : M → R given by (5) is well defined.

Fix i ∈ {1, 2} and a ∈M . Let {qa
n : n ∈ N} ⊂ Q be a strictly increasing

sequence with a = limn→∞ F (b, qa
nx0). Note that fi(F (b, x)) = fi(b) + ci(x)

for x ∈ G. Thus the set {fi(F (b, px0)) : p ∈ Q} is dense in R and the
sequence {fi(F (b, qa

nx0)) : n ∈ N} is strictly monotonic. Moreover, by (4),
for each p ∈ Q with F (b, px0) < a, there is n0 ∈ N such that F (b, px0) <
F (b, qa

nx0) < a for n ∈ N, n > n0. Consequently, since fi is monotonic,
fi(a) = limn→∞ fi(F (b, qa

nx0)). Hence, for each a ∈M ,

fi(a) = lim
n→∞

(fi(b) + ci(qa
nx0)) = fi(b) + ci(x0) lim

n→∞
qa
n

= fi(b) + t−1ci(x0)ft(a)

and, for each z ∈ G,

fi(b) + ci(z) = fi(F (b, z)) = fi(b) + t−1ci(x0)ft(F (b, z)).

So, we have proved that there are u1, u2, v1, v2 ∈ R, u1u2 6= 0, with ft(a) =
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uifi(a) + vi and ft(F (b, z)) = uici(z) for a ∈ M , z ∈ G, i = 1, 2. Hence it
suffices to put u = u2u

−1
1 and v = u−1

1 (v2 − v1). This ends the proof.

R e m a r k 2. Let x0 ∈ H \ {0} and b ∈M . A function F : M ×G→M
satisfies equation (1) and condition (4) iff the function F0 : M × G → M ,
F0(a, x) = F (a,−x) for a ∈M , x ∈ G, satisfies (1) and

(4′) F0(b, px0) > F0(b, qx0) for p, q ∈ Q, p < q.

Thus, from Theorem 1 we can also get a description of solutions of (1)
satisfying conditions (3), (6), (7), and (4′).

R e m a r k 3. Suppose that x0 ∈ H \ {0}, b ∈ M , and a function F :
M ×G→M satisfies (4), equation (1), and the condition

(7′) F (a, x) < F (c, x) for a, c ∈M, a > c, x ∈ G.

Fix p, q ∈ Q with p < q. Then, by (4), F (b, px0) < F (b, qx0). Thus, on
account of (7′),

F (b, (p + 1)x0) = F (F (b, px0), x0) > F (F (b, qx0), x0) = F (b, (q + 1)x0),

which, in view of (4), means that p + 1 > q + 1. This gives a contradiction.
Consequently, there are no solutions of (1) satisfying conditions (4) and (7′),
and similarly for (4′) and (7′) according to Remark 2.

R e m a r k 4. Suppose that H is endowed with a linear order such that,
for every x, y, z ∈ H,

x < y iff z + x < z + y and x + z < y + z.

Let x0 ∈ H, x0 > 0, and b ∈M . Then every function F : M ×G→M such
that F (b, x) < F (b, y) for every x, y ∈ H, x < y, also satisfies (4).

In fact, let p, q ∈ Q, p < q. Then there are j, k,m, n ∈ Z, k > 0, n > 0,
with p = jk−1 and q = mn−1. Note that jn < km. Thus knpx0 = njx0 <
kmx0 = knqx0, whence px0 < qx0. Hence F (b, px0) < F (b, qx0).
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