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On the increasing solutions of the translation equation

by JANUSZ BRZDEK (Rzeszéw)

Abstract. Let M be a non-empty set endowed with a dense linear order without the
smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely
divisible subgroup. There are given conditions under which every solution F': M xG — M
of the translation equation is of the form F(a,x) = f~1(f(a)+c(z)) fora € M, x € G with
some non-trivial additive function ¢ : G — R and a strictly increasing function f : M — R
such that f(M) + ¢(G) C f(M). In particular, a problem of J. Tabor is solved.

This paper is motivated by the following problem raised by J. Tabor dur-
ing his talk at the Mathematics Department of the Pedagogical University
in Rzeszéw:

Let M be a non-empty set endowed with a dense linear order < without
the smallest and greatest elements and let R stand for the set of all reals.
Find conditions such that a function F' : M x R — M satisfies them and
the translation equation

(1) F(F(a,z),y) = F(a,z +y)

if and only if there exist an additive function ¢ : R — R, a non-empty set
T C R, and a strictly increasing function f mapping M onto the set T+ ¢(R)
such that ¢(R) is dense in R and

(2) F(a,x) = f1(f(a) + (@)
forx e R, a € M.

The problem is connected with some iteration groups. For the details we
refer to [4].

We present a solution of the problem. We also give some results concern-
ing monotonic solutions of equation (1). Such solutions of the translation
equation have already been studied e.g. in [1]-[3]. However, the literature
devoted to them is not very vast.
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Throughout this paper N, Z, Q stand for the sets of all positive integers,
all integers, and rationals, respectively. (G, +) denotes a group (not neces-
sarily commutative) and H is a non-trivial uniquely divisible subgroup of G,
unless explicitly stated otherwise.

Let us start with the following

LEMMA 1. Let 29 € H \ {0} and b € M. Suppose that a function F :
M x G — M satisfies the following two conditions:

(3)  the set {F(b,pxo): p € Q} is dense in M,
(4)  F(b,pxo) < F(b,qxo) for every p,q € Q, p <q.

Then, for each t € R, t > 0 (t < 0 respectively), the function f : M — R
given by

(5) fi(a) =1t lim ¢%  fora € M,

where {q% : n € N} C Q is any strictly increasing sequence such that a =
lim,, 00 F'(b, q%x0) (with respect to the order in M), is strictly increasing
(decreasing resp.).

Proof. Fixt € R, t > 0 (in the case t < 0 the proof is analogous).
First, we prove that f; is well defined.

Fix a € M. Since M is without a greatest element, by (3) there is
p € Q with a < F(b,pzg). Thus, according to (4), there is a real number
s :=sup{q € Q: F(b,qxo) < a} < p. Let {¢? : n € N} C Q be a strictly
increasing sequence with s = lim, . q%. Then {F(b,q%xo) : n € N} is
a strictly increasing sequence in M. Take d € M with d < a. There is
r € Q with d < F(b,rzg) < a. Further, there exists m € N with r < ¢2,.
Consequently, d < F(b,rxo) < F(b,q%x¢) < a for every n € N with n > m.
This means that a = lim,, .o F'(b, ¢%x0).

Next, suppose that {p? : n € N} C Q is also a strictly increasing se-
quence such that a = lim,,_,o, F'(b,p%zp). Then, for every n € N, there are
k,m e N with F(b, q%xz¢) < F(b,pfxo) and F(b,plzo) < F(b,q%xo). Hence
(4) implies lim, o ¢ = lim,,—,o, p%. In this way we have proved that the
definition of f; is correct.

To complete the proof, fix a,d € M, a < d. Let {¢® :n € N}, {¢? :n €
N} € Q be strictly increasing sequences with a = lim,,_,o F'(b, ¢%xo) and
d = lim,, .o, F(b,q%z0). Since a < d, there is ng € N such that

F(b,qtxo) < F(b,qzg)  for every k,n € N, n > ny.

Thus, by (4), ¢¢ < ¢ for every k,n € N, n > ng, which means that
lim,, o q¢ < lim, o ¢?. Hence fi(a) < fi(d). This ends the proof.

LEMMA 2. Let a,b € M and xg € H\{0}. Suppose that F': M x G — M
is a function and {q¢® : n € N} C Q is a strictly increasing sequence such
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that a = lim,, .o F(b, ¢%x¢), (3) and (4) hold,

(6) the set {F(d,x):d € M} is dense in M for every x € G,
and

(7) F(d,z) < F(c,z) foreveryd,ce M, d<c, € QG.
Then F(a,z) = lim, . F(F(b,q%xg),z) for every x € G.

Proof. Fixx € G. Since, according to (3), the set { F'(b,pxo) : p € Q} is
dense in M, so is the set { F/(F'(b, pxo),z) : p € Q} by (6) and (7). Moreover,
by (7), for every p € Q with F(F(b,pxo),x) < F(a,z), there exists m € N
such that

F(F(b,pzo),z) < F(F(b,qpxo),z) < F(a,z) forneN, n>m,

because a = lim, . F(b,q%z¢) and, by (4) and (7), the sequence
{F(F(b,q%x0),x) : n € N} is strictly increasing. This yields the assertion.

LEMMA 3. Letb,d € M, {ay : ke N} C M,z H\{0}, F: M xG —
M and let {p, : n € N}, {g, : n € N} C Q be bounded strictly increasing
sequences such that ap = lim,_ F(b, (qx + pn)xo) for k € N and d =
limy o0 ag. Suppose that condition (4) holds. Then d = lim,, .o F(b, (g, +

Pn)To).
Proof. Fix k € N. Then there exists ng € N, ng > k, with
Gk +Pj < k41 +Pj < Gr1 + M pp < g+ P
< qm +Pm+; for jym €N, m > ng,

because the sequences {p,, : n € N} and {g, : n € N} are strictly increasing
and bounded. Thus, according to (4), ar < agy+1 and

F(b’ (Qk +pn)$0) < F(ba (Qm +Pm)$0) < am forn,meN, m>ng.

In this way we have proved that the sequence {ay : k € N} is increasing
and, for each k € N, there exists m € N with

ar < F(ba (Qm +pm)1:0) < G,
which yields the assertion.

LEMMA 4. Let xg € H\ {0}, z € G, be M and let F : M x G — M be
a function satisfying
(1) F(F(b,x),y) =F(b,x+y) forxz,yeaq,
(8) F(bs+y) = Fby+z) forz,yeG

and conditions (3), (4), (6), (7). Suppose that {qZ : n € N} C Q is a strictly
increasing sequence such that F(b, z) = lim,,_,oc F'(b, qZx0). Then

F(a,z) = lim F(a,q.xo) for every a € M.
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Proof. Fix a € M. Then, by (3) and (4), there is a strictly increasing
bounded sequence {¢% : n € N} C Q such that a = lim, . F(b, ¢%x0).
According to Lemma 2 and conditions (1’) and (8),

F(a,z) = lim F(F(b,qix0),z) = lim F(F(b,z2),q.x0)
= lim (lim F(F(b, qzzo), dnzo))

n—oo k—oo

= lm (lim F(b, (g, +q)z0)) = L

n—o0o

and
lim F(a,qizo) = lim ( lim F(F(b,q o), qix0))

k—o0 k—o00 n—o0
= lim ( lim F(b, (¢2 + qi)xo)) =: Io.
k—o00 n—oo
Since, by Lemma 3, I; = I, we obtain the statement.

LEMMA 5. Let b€ M, xg € H\{0} and let F : M xG — M be a function
satisfying conditions (1'), (3), (4), and (6)—(8). Then, for eacht € R, t >0
(t < 0 resp.), the function ¢; : G — R, ¢i(x) = fi(F(b,x)) for x € G, is
additive, ci(zg) > 0 (ci(zo) < 0 resp.), and
9) F(a,z) = 7 (fila) + ci(x))  forae M, z € G,
where the function f; : M — R is given by (5).

Proof. Fixa € M, z,y € G, t € R, t # 0, and strictly increas-
ing bounded sequences {qF : n € N}, {¢¥ : n € N},{¢? : n € N} C Q
with @ = lim,,—,o F(b,q%x0), F(b,x) = lim, .~ F(b,q¢ xp), and F(b,y) =
lim,, oo F(b,q%xp) (we construct these sequences e.g. as in the proof of
Lemma 1). According to Lemmas 2-4 and (1'),

= lim (lim F(F(b, qf0), ¢%o)

n—oo

= lim (lim F(b, (qf +q%)0)) = lim F(b, (g5 +q%)zo).

n—oo k—oo
Thus
ci(z+y) = foF bz +y)) =t lim (g5 +q7)

= [t(F(b,x)) + fi(F(b,y)) = cr(2) + ci(y).

Consequently, ¢; is additive. Further, by Lemmas 24,
F(a,x) = klingo F(a,qjxo) = kllrgo(nlirréo F(F(b,qrz0),qr0))
= lim F(b, (g5 + g5)2o)-
Hence
fi(F(a,2)) =t Tim (g +q) = fi(a) + fi(F(b,2)) = fi(a) + ci().
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Since, in view of Lemma 1, f; is one-to-one, this implies (9).
To complete the proof, note that, by (4), F(b,0) < F(b,z¢). Thus, on
account of Lemma 1, for ¢ > 0,

0=c:(0) = fi(F(b,0)) < fe(F(b,x0)) = (o),
and for ¢ < 0,

0= c:(0) = fe(F(b,0)) > fe(F (b, 20)) = ce(zo).
So, we have proved Lemma 5.

Now, we are in a position to prove the following

THEOREM 1. Assume that (G,+) is a group (not necessarily commuta-
tive) and has a uniquely divisible subgroup H. Let b € M and xo € H \ {0}.
Then a function F : M x G — M satisfies conditions (1), (3), (4), and
(6)—(8) if and only if there exist a non-empty set T C R, an additive func-
tion ¢ : G — R, ¢(zg) > 0 (c(zo) < 0 resp.), and an increasing (decreasing
resp.) bijection f: M — K, where K =T + ¢(G), such that (2) holds for
every x € G and a € M. Furthermore, every function F : M x G — M of
the form (2) is a solution of equation (1).

Proof. Assume that F': M x G — M satisfies conditions (1), (3), (4),
and (6)—(8). Fix t € R, t > 0 (¢t < 0 resp.). Then, according to Lemmas 1
and 5, the function f; : M — R given by (5) is strictly increasing (decreasing
resp.), the function ¢; : G — R, ¢;(2) = fi(F(b,z)) for z € G, is additive,
ct(zg) > 0 (er(mo) < 0 resp.), and (9) holds. Thus it suffices to put T =
£.(01).

Now, assume that F' : M x G — M is of the form (2). It is easy to check
that F' is a solution of equation (1) and satisfies (8). Conditions (4) and (7)
result from the fact that f is increasing (decreasing resp.) and c(zg) > 0
(c(xo) < 0 resp.). Further, since ¢ is additive and H is uniquely divisible,
c(gxo) = qe(xo) for ¢ € Q. Thus the sets ¢(G) and K are dense in R, which
means that s+¢(G) and K +r are dense in K for every s € K and r € ¢(G).
Consequently, by (2), conditions (3) and (6) hold, because f is a monotonic
bijection. This completes the proof.

From Theorem 1 we obtain the following corollary, which gives a solution
of the problem of J. Tabor.

COROLLARY 1. Suppose that G is a uniquely divisible group. Then a
function F' : M x G — M satisfies equation (1) and there exist b € M,
xo € G\ {0} such that conditions (3), (4), and (6)—(8) are valid if and only
if there exist a non-empty set T C R, an additive function ¢ : G — R,
c(G) # {0}, and an increasing bijection f : M — K, where K =T + ¢(G),
such that (2) holds for x € G and a € M.
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Proof. It suffices to note that ¢(G) # {0} iff there is zyp € G with
c(xo) > 0.

Remark 1. The assumption of Theorem 1 that G is a group can be
weakened. Namely, it suffices to suppose that G is a groupoid (i.e. a non-
empty set endowed with a binary operation) and has a subgroupoid H which
is a uniquely divisible group.

The representation (2) of a solution F' : M x G — M of equation (1) is
not unique:

ProposITION 1. Suppose that G is as in Theorem 1, c1,c0 : G — R
are additive functions such that ¢;(H) # {0} fori = 1,2, T1,T5 C R are
non-empty sets, f; : M — K;, where K; = T; + ¢;(G), for i = 1,2 are
monotonic bijections, and

(10) Fi(a,z) = f; *(fi(a) +ci(z))  forz € G, a € M, i=1,2.

Then Fy = Fy iff there exist u,v € R, u # 0, such that fi(a) = ufs(a) +v
fora e M and c¢1(x) = uce(x) for z € G.

Proof. First suppose that there are u,v € R, uw # 0, with f; = ufs + v
and ¢; = uce. Then, for every a € M and x € G,

Fi(a,2) = fi ' (fila) + e1(@)) = fi ' (u(fa(a) + c2(2)) +v)
= fi ' (ufo(Fa(a, 7)) +v) = Fp(a,z).

Now, assume that F; = F». Fixt e R, t >0, b€ M, and zg € H \ {0}
with ¢1(zo) > 0. Then, by (10), we also have ca(xg) # 0. Put F' = F}.
According to Theorem 1, (3) and (4) hold. Thus, by Lemma 1, the function
ft : M — R given by (5) is well defined.

Fix i € {1,2} and a € M. Let {¢% : n € N} C Q be a strictly increasing
sequence with a = lim,,_,~ F'(b, ¢%xo). Note that f;(F(b,x)) = fi(b) + ci(x)
for z € G. Thus the set {fi(F(b,pzo)) : p € Q} is dense in R and the
sequence {f;(F(b,q%x0)) : n € N} is strictly monotonic. Moreover, by (4),
for each p € Q with F(b, pzo) < a, there is ng € N such that F(b, pxo) <

F(b,q%z9) < a for n € N, n > ng. Consequently, since f; is monotonic,
fila) =lim, o fi(F(b,q%x0)). Hence, for each a € M,

fila) = nh_{f)lo(fi(b) + ci(gnro)) = fi(b) + ci(zo) nh_{]go Iy
= fi(b) +t"'ei(zo) fi(a)

and, for each z € G,

fi(0) + ci(2) = fi(F(b,2)) = fi(b) + ™ ciwo) fe(F (b, 2))-

So, we have proved that there are uy,ug,v1,v2 € R, ujus # 0, with fi(a) =
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u; fi(a) +v; and fi(F(b, z)) = uici(z) for a € M, z € G, i = 1,2. Hence it
suffices to put u = ugul_l and v = Ul_l(’l)g —wv1). This ends the proof.

Remark 2. Let 29 € H\ {0} and b € M. A function F: M x G — M
satisfies equation (1) and condition (4) iff the function Fy : M x G — M,
Fy(a,z) = F(a,—x) for a € M, x € G, satisfies (1) and

(4") Fo(b, pxo) > Fo(b,qzg) for p,q € Q, p <q.

Thus, from Theorem 1 we can also get a description of solutions of (1)
satisfying conditions (3), (6), (7), and (4).

Remark 3. Suppose that xg € H \ {0}, b € M, and a function F :
M x G — M satisfies (4), equation (1), and the condition

(7) F(a,z) < F(c,z) fora,ce M, a>c, z€G.

Fix p,q € Q with p < q. Then, by (4), F(b,pzo) < F(b,qzp). Thus, on
account of (77),

F(b,(p+ 1)xg) = F(F(b,pxo),zg) > F(F(b,qxg),z0) = F(b, (¢ + 1)x0),

which, in view of (4), means that p+ 1 > ¢+ 1. This gives a contradiction.
Consequently, there are no solutions of (1) satisfying conditions (4) and (7'),
and similarly for (4') and (7’) according to Remark 2.

Remark 4. Suppose that H is endowed with a linear order such that,
for every z,y,z € H,

r<y it z+z<z4+yandar+z<y+z.

Let g € H, 9 > 0, and b € M. Then every function F' : M x G — M such
that F'(b,z) < F(b,y) for every z,y € H, z < y, also satisfies (4).

In fact, let p,q € Q, p < q. Then there are j,k,m,n € Z, k > 0, n > 0,
with p = jk~! and ¢ = mn~!. Note that jn < km. Thus knpzo = njzg <
kmxo = knqzo, whence pro < qxo. Hence F (b, pzo) < F(b, qxo).
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