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Notes on unbounded Toeplitz operators

in Segal–Bargmann spaces

by D. Cichoń (Kraków)

Abstract. Relations between different extensions of Toeplitz operators Tϕ are stud-
ied. Additive properties of closed Toeplitz operators are investigated, in particular neces-
sary and sufficient conditions are given and some applications in case of Toeplitz operators
with polynomial symbols are indicated.

1. Introduction. In the present paper we continue investigations of
Toeplitz operators which has been initiated in [1] and [5] and developed in
later works [2], [3] and [4].

Before we present the content of the paper we will introduce some basic
notations and definitions.

A is called a linear operator in a Hilbert space H if its domain D(A) is
a linear subspace in H and A : D(A) → H is a linear mapping. We say that
a space D ⊆ D(A) is a core for A if A = (A|D)−.

Consider L2(µ), the Hilbert space of all complex Borel functions which
are square-integrable on Cn with respect to the measure µ given by the
formula dµ(z) = π−ne−‖z‖2

dV (z), where V is the Lebesgue measure in Cn.
The Segal–Bargmann space Bn is a closed subspace in L2(µ) composed of
all analytic functions belonging to L2(µ). Denote by E the linear span of
the set of functions ea(z) := e〈z,a〉, a, z ∈ Cn, where 〈·, ·〉 is the standard
inner product in Cn. It can be checked that f(z) = (f, ez), f ∈ Bn, z ∈ Cn,
so Bn is a Hilbert space with a reproducing kernel. By P we denote the
space of polynomials in Cn. Both P and E are dense subsets of Bn. The
sequence fk(z) := zk/

√
k!, k ∈ Nn, z ∈ Cn, forms an orthonormal basis for

Bn, where according to the standard multiindex notation zk := zk1

1 . . . zknn ,
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k! := k1! . . . kn! and |k| := |k1|+ . . .+ |kn| for any z = (z1, . . . , zn) ∈ Cn and
k = (k1, . . . , kn) ∈ Nn (N = {0, 1, 2, . . .}).

Let ϕ : Cn → C be a Borel function and Mϕ be the operator of multipli-
cation by ϕ defined in L2(µ), D(Mϕ) := {f ∈ L2(µ) : ϕf ∈ L2(µ)}. Denote
by P the orthogonal projection of L2(µ) onto Bn. The Toeplitz operator with
symbol ϕ defined in Bn is the operator Tϕ such that D(Tϕ) = D(Mϕ) ∩ Bn
and Tϕf = PMϕf .

Recall the definitions of the related Toeplitz operators Πϕ and T̃ϕ. The
domain of Πϕ consists of all f ∈ Bn for which there exists h ∈ Bn such thatT
Cn

(ϕf − h)g dµ = 0 for all g ∈ E ; then we put Πϕf = h. Taking P instead

of E in the preceding definition we obtain the definition of T̃ϕ. It was shown

in [3] that Tϕ ⊆ Πϕ ⊆ T̃ϕ for any Borel ϕ. Considering such extensions of
Toeplitz operators is motivated by the fact that they are often more regular
than Tϕ. The abnormal behaviour of ordinary Toeplitz operators can be
illustrated by the remark that it is possible to find a function ϕ such that
Tϕ is bounded and densely defined but still D(Tϕ)  Bn.

For a given p =
∑

|k|<N akfk ∈ P let us define

p∗ :=
∑

|k|<N

akfk and p(D) :=
∑

|k|<N

ak
∂|k|

∂zk1

1 . . . ∂zknn
.

The following two facts will be useful in the sequel.

Theorem 1.1 ([5]). If p is a polynomial in Cn and f ∈ D(Tp), then

‖pf‖2 =
∑

j∈Nn

1

j!
‖(Djp∗)(D)f‖2.

Theorem 1.2 ([3]). Let ϕ be a Borel function on Cn.

(i) If E ⊆ D(Tϕ), then (Tϕ|E)∗ = Πϕ = T̃ϕ.

(ii) If P ⊆ D(Tϕ), then (Tϕ|P)∗ = T̃ϕ.

Let us describe the content of this paper. The main result of the second
section is the proof of existence of a Borel function ϕ such that P ⊆ D(Tϕ)

and Πϕ  T̃ϕ. The third section is devoted to additive properties of Toeplitz
operators. We give necessary and sufficient conditions for the Borel functions
ϕ and ψ which guarantee that Tϕ+ψ = Tϕ + Tψ. Using these conditions
we investigate additive properties of Toeplitz operators with symbols of
polynomial type.

2. Relations between Πϕ and T̃ϕ. It was proved in [4] that Πϕ = T̃ϕ
in case E ⊆ D(Tϕ). Below we give a constructive example showing that it is
no longer true in general.
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Example 2.1. For any non-zero g ∈ Bn, there exists a Borel function ϕ
such that g ∈ D(T̃ϕ) \ D(Πϕ).

P r o o f. For z ∈ Cn define

(2.1) ϕ(z) :=





exp(‖z‖2 − |z1| − . . .− |zn|)
g(z)

, g(z) 6= 0,

0, g(z) = 0.

One can easily check that ϕgp ∈ L1(µ) for all polynomials p. Moreover,\
Cn

ϕ(z)g(z)zk dµ(z)

=
1

πn

\
Cn

zke−|z1|−...−|zn| dV (z)

=
1

πn

n∏

j=1

∞\
0

2π\
0

e−ikjtj dtj e
−rjrj drj = 0, k 6= (0, . . . , 0),

thus g ∈ D(T̃ϕ). Since
T
Cn

|ϕge(1,...,1)| dµ = ∞ we conclude that g 6∈
D(Πϕ).

R e m a r k. Taking g identically equal to 1 and defining ϕ as in (2.1)
we obtain an example of a polyradially symmetric symbol (i.e. ϕ(z) =

ϕ(|z1|, . . . , |zn|) for almost every z ∈ Cn) for which Πϕ  T̃ϕ. This means
that the assumption P ⊆ D(Tϕ) in Theorem 4.1 of [4] cannot be omitted.

Example 2.1 cannot be improved easily to get ϕ such that P ⊆ D(Tϕ).
The next theorem insures that such a ϕ exists, but the proof is not con-
structive.

Theorem 2.2. There exists a Borel function ϕ : Cn → C such that

(i) P ⊆ D(Tϕ),

(ii) Πϕ  T̃ϕ.

P r o o f. Assume n = 1. First we show that the set

(2.2)
( ∞⋂

k=0

D(Tzk)
) ∖

D(Tew )

is not empty in case w 6= 0. Suppose that it is empty for some w 6= 0. The
space

⋂∞
k=0 D(Tzk) equipped with the distance

d(f, g) :=

∞∑

k=0

pk(f − g)

2k(pk(f − g) + 1)
, where pk(f) := ‖f‖ + ‖Tzkf‖,

is a metric linear space which is complete because of the completeness of
D(Tzk) with the norm pk for every k in N. Also D(Tew ) with the graph norm
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‖f‖Tew = ‖f‖ + ‖Tewf‖ is complete. Therefore the linear mapping

∞⋂

k=0

D(Tzk) ∋ f → f ∈ D(Tew)

is closed between complete metric linear spaces. By the closed graph theorem
it is continuous, which means that there exist M > 0 and s ∈ N such that

(2.3) ‖f‖ + ‖Tewf‖ ≤M(p0(f) + . . .+ ps(f))

for every f ∈ ⋂∞
k=0 D(Tzk). Consider f = ez, z ∈ C. Then we have ‖f‖=

e|z|
2/2, ‖Tewf‖ = e|w+z|2/2 and pj(f) = (

√
qj(|z|) + 1)e|z|

2/2 (j = 0, . . . , s),
where qj are some polynomials with nonnegative coefficients, given by The-
orem 1.1. Then it follows from (2.3) that

e(|z+w|2−|z|2)/2 ≤M
(
s+ 1 +

s∑

j=0

√
qj(|z|)

)

for every z ∈ C, which is impossible if w 6= 0. This contradiction proves
that (2.2) is not empty for w 6= 0.

Assume f ∈ ⋂∞
k=0 D(Tzk) \ D(Tew ) (w 6= 0). Then the function

ϕ(z) =

{
f2(z)/f(z), f(z) 6= 0,
0, f(z) = 0,

satisfies conditions (i) and (ii). Indeed, since |ϕ(z)| = |f(z)| for almost every
z ∈ C (with respect to µ) we easily deduce that P ⊆ D(Tϕ). For the same
reason ϕfe2w 6∈ L1(µ) and consequently f 6∈ D(Πϕ). It remains to show

that f ∈ D(T̃ϕ). For j ≥ 1 we have\
C

ϕ(z) f(z) zj dµ(z) =
\
C

f2(z) zj dµ(z) = lim
R→∞

\
∆R

f2(z) zj dµ(z) = 0,

where ∆R := {z ∈ C : |z| < R}. It follows easily that f ∈ D(T̃ϕ).
Now we consider the case of n > 1. Let f, ϕ be as in the one-dimensional

case. Define g(z) := f(z1) and ψ(z) := ϕ(z1) for all z ∈ Cn. Using the

Fubini theorem we get P ⊆ D(Tψ) and g ∈ D(T̃ψ) \ D(Πψ). The proof is
complete.

The preceding theorem is related to Theorem 1.3(i) of [4] which states

that T̃ϕ = Πϕ for every ϕ satisfying E ⊆ D(Tϕ). Thus we have shown that
the last condition cannot be replaced by P ⊆ D(Tϕ).

3. Additive properties of Toeplitz operators. In this section we
consider conditions on Borel functions ϕ and ψ which guarantee that Tϕ +
Tψ = Tϕ+ψ. Now we give a criterion which will be applied several times in
the sequel.
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Proposition 3.1. Let ϕ, ψ be Borel functions defined on Cn. Suppose

that Tϕ, Tψ and Tϕ+ψ are closed. Then the following conditions are equiv-

alent :

(i) Tϕ + Tψ = Tϕ+ψ.

(ii) D(Tϕ)∩D(Tψ) is dense in D(Tϕ+ψ) with respect to the graph norm

and there exists a constant C > 0 such that

(3.1) ‖Tϕf‖2 + ‖Tψf‖2 ≤ C(‖f‖2 + ‖Tϕ+ψf‖2), f ∈ D(Tϕ) ∩ D(Tψ).

(iii) D(Tϕ)∩D(Tψ) is dense in D(Tϕ+ψ) with respect to the graph norm

and there exists a constant C > 0 such that

(3.2) ‖ϕf‖2 + ‖ψf‖2 ≤ C(‖f‖2 + ‖(ϕ + ψ)f‖2), f ∈ D(Tϕ) ∩ D(Tψ).

P r o o f. Assume that (i) is true. Then D(Tϕ) ∩ D(Tψ) = D(Tϕ+ψ) and
the mapping

(3.3) D(Tϕ+ψ) ∋ f → f ∈ D(Tϕ) ∩ D(Tψ)

is a well defined linear operator acting between complete normed spaces; the
norm in D(Tϕ) ∩ D(Tψ) is given by the formula ‖f‖2

1 = ‖f‖2 + ‖Tϕf‖2 +
‖Tψf‖2, while the topology in D(Tϕ+ψ) is given by the graph norm. The
mapping (3.3) is closed and by the closed graph theorem we deduce (3.1).
We have proved that (ii) holds.

Now assume (ii). Then the mapping

(3.4) D1 ∋ f → f ∈ D2

is continuous, where D1 = D(Tϕ)∩D(Tψ) with the graph norm induced from
D(Tϕ+ψ), and D2 = D(Tϕ)∩D(Tψ) but with the norm ‖ · ‖1 defined above.
Since D1 is dense in D(Tϕ+ψ) it is possible to extend the mapping (3.4) to the
whole space D(Tϕ+ψ). This implies the inclusion D(Tϕ+ψ) ⊆ D(Tϕ)∩D(Tψ).

The equivalence of (ii) and (iii) is an immediate consequence of Propo-
sition 2.3 of [4].

Although the assumption of the closedness of Toeplitz operators may
seem to be restrictive, the preceding proposition may be used in many cases,
for instance when ϕ and ψ are analytic. The following proposition shows that
in the multidimensional case Toeplitz operators do not have good additive
properties even for the very simple choice of ϕ and ψ.

In what follows (p ⊗ 1)(z,w) = p(z) and (1 ⊗ q)(z,w) = q(w), where
z ∈ Cn, w ∈ Cm.

Proposition 3.2. Let p, q be nonconstant polynomials in Cn and Cm

respectively. Then

(3.5) Tp⊗1 + T1⊗q  Tp⊗1+1⊗q .
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P r o o f. Assume that Tp⊗1 +T1⊗q=Tp⊗1+1⊗q. Applying Proposition 3.1
we conclude that there exists a constant C > 0 such that

(3.6) ‖(p ⊗ 1)f‖2 + ‖(1 ⊗ q)f‖2 ≤ C(‖f‖2 + ‖(p⊗ 1 + 1 ⊗ q)f‖2),

f ∈ D(Tp⊗1) ∩ D(T1⊗q).

Consider f = ea for a = (a1, a2), a1 ∈ Cn, a2 ∈ Cm. Theorem 1.1 implies
that

‖(p ⊗ 1)ea‖2 =
∑

j∈Nn

1

j!
|(Djp)(a1)|2e‖a‖

2

,

‖(1 ⊗ q)ea‖2 =
∑

j∈Nm

1

j!
|(Djq)(a2)|2e‖a‖

2

,

‖(p ⊗ 1 + 1 ⊗ q)ea‖2 = |p(a1) + q(a2)|2e‖a‖
2

+
∑

j∈Nn\{0}

1

j!
|(Djp)(a1)|2e‖a‖

2

+
∑

j∈Nm\{0}

1

j!
|(Djq)(a2)|2e‖a‖

2

.

Now inequality (3.6) can be rewritten as follows:

|p(a1)|2 + |q(a2)|2 + r(a1, a2) ≤ C(1 + r(a1, a2) + |p(a1) + q(a2)|2),
a1 ∈ Cn, a2 ∈ Cm,

where

r(a1, a2) :=
∑

j∈Nn\{0}

1

j!
|(Djp)(a1)|2 +

∑

j∈Nm\{0}

1

j!
|(Djq)(a2)|2.

It is possible to choose a1 ∈ Cn and a2 ∈ Cm such that the polynomial
p̃(x) := p(xa1), x ∈ C, (resp. q̃(y) := q(ya2), y ∈ C) has the same degree as
p (resp. q). Define also r̃(x, y) := r(xa1, ya2) for x, y ∈ C. Then

(3.7) |p̃(x)|2 + |q̃(y)|2 + r̃(x, y)

≤ C(1 + r̃(x, y) + |p̃(x) + q̃(y)|2), x, y ∈ C.
Using the fact that

r̃(x, y)

|x|2 deg p + |y|2 deg q
→ 0, |x| → ∞, |y| → ∞,

we deduce that (3.7) is impossible since one can find two sequences {xk}
and {yk} tending to infinity such that |p̃(xk) + q̃(yk)| = 0.

Now we consider the one-dimensional case. The next proposition will
be helpful in order to obtain examples of symbols for which the additive
property of Toeplitz operators holds and which are different from those
included in [4, Theorem 3.3].
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Proposition 3.3. If p and q are polynomials in C such that

|(dNp/dzN )(1)| 6= |(dN q/dzN )(1)|, where N := max{deg p,deg q}, then P
is a core for Tp+q and T ∗

p+q = T̃p+q = Πp+q.

It turns out that the assumption |(dNp/dzN )(1)| 6= |(dN q/dzN )(1)| is
superfluous [6], nevertheless we will use it in the proof of our main result
(Theorem 3.4).

P r o o f. The main step of the proof is to show that D(Tψ) = D(Tp+q) for
ψ(z) := max|λ|=1 |p(λz) + q(λz)|, z ∈ C. Obviously D(Tψ) ⊆ D(Tp+q). For
the opposite inclusion it suffices to prove that there are constants R, c, d > 0
such that

(3.8) ψ(z) ≤ c+ d|p(z) + q(z)|
for every z ∈ C satisfying |z| > R. But (3.8) follows from the inequalities

|p(z) + q(z)| ≥ 1

2N !

∣∣∣∣
∣∣∣∣
dNp

dzN
(1)

∣∣∣∣ −
∣∣∣∣
dNq

dzN
(1)

∣∣∣∣
∣∣∣∣ · |z

N |,

ψ(z) ≤
(

1

N !

∣∣∣∣
dNp

dzN
(1)

∣∣∣∣ +
1

N !

∣∣∣∣
dNq

dzN
(1)

∣∣∣∣ + 1

)
|zN |,

which are valid for |z| sufficiently large. We have proved that D(Tψ) =
D(Tp+q). In fact, we obtained the following property for the function p+ q:
there are constants R, c, d > 0 such that |p(eitz)+q(eitz)| ≤ c+d|p(z)+q(z)|
for |z| > R and t ∈ R. This enables us to apply Theorem 1.3. of [4] to get
(Tp+q |P)− = T p+q. The proof of this theorem is based on a theorem of
Berezin [1] on weighted polynomial approximation.

However, it is possible to find a direct argument, which is presented be-
low. Since the graph norm induced by Tp+q is dominated by the graph norm
of the operator Mψ|D(Tψ) it remains to check that the space of polynomi-
als is dense in D(Tψ) with respect to the norm ‖ · ‖1 given by the formula
‖h‖2

1 = ‖h‖2 + ‖Mψh‖2, h ∈ D(Tψ). Suppose that f =
∑∞
k=0 akfk ∈ D(Tψ)

is orthogonal to P with respect to the inner product which induces the norm
‖ · ‖1. We have

0 = (f, fs) + (ψf, ψfs) =
\
C

ff s(1 + ψ2) dµ

=
1

π
√
s!

∞\
0

2π\
0

f(reit)e−ist dt rs+1(1 + ψ2(r))e−r
2

dr

=
2as
s!

∞\
0

r2s+1(1 + ψ2(r))e−r
2

dr

for any s ∈ N, hence as = 0 for all s ∈ N and f = 0. The equalities
T ∗
p+q = T̃p+q = Πp+q follow from Theorem 1.2.
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The next theorem gives examples of Toeplitz operators having the addi-
tivity property.

Theorem 3.4. If α ∈ C, |α| > 1, and p is a polynomial in C, then

(Tαp+p|P)− = Tαp+p and Tαp+p = αTp + Tp.

P r o o f. To prove the first equality it suffices to check the closedness of
the operator Tαp+p and apply Proposition 3.3. According to the criterion of
closedness of Toeplitz operators proved in [4, Proposition 2.3] for a given α
we will find a constant C > 0 such that

‖(αp + p)r‖2 ≤ C(‖r‖2 + ‖Tαp+pr‖2), r ∈ P.
From the identities

‖(αp + p)r‖2 = (|α|2 + 1)‖pr‖2 + 2Re(αpr, pr),

‖Tαp+pr‖2 = |α|2‖pr‖2 + ‖P (pr)‖2 + 2Re(αpr, pr)

one can deduce that it suffices to show that for any |α| > 1 there exists
C > 0 such that

(3.9) (C|α|2 − |α|2 − 1)‖pr‖2

−|2 − 2C| · |α| · ‖pr‖ · ‖P (pr)‖ + C‖P (pr)‖2 ≥ 0, r ∈ P.
This in turn follows from the fact that for every |α| > 1 one can find C > 1
such that the function

(3.10) G(x, y) = (C|α|2 − |α|2 − 1)x2 + (2 − 2C)|α|xy + Cy2

is nonnegative for x, y ∈ R, x ≥ y ≥ 0. The proof of (3.10) is left to the
reader. Hence we have proved that Tαp+p is closed.

In order to prove that Tαp+p = αTp+Tp we will use Proposition 3.1. The
space D(Tp) ∩ D(Tp) is dense in D(Tαp+p) because the polynomials form a
core for Tαp+p. The inequality

| |α| − 1| · ‖ph‖ ≤ ‖(αp + p)h‖, h ∈ D(Tp),

implies (3.2) of Proposition 3.1(iii), and this completes the proof.

R e m a r k. It is necessary to assume |α| 6= 1 in Theorem 3.4 because
Tp+p is not always closed (cf. [4, Example 6.2]).

The last proposition is strictly related to [4, Theorem 3.3]. It is shown
that in general it suffices to take polynomials of different degrees to obtain
another example of Toeplitz operators with the additivity property.

Proposition 3.5. If p and q are polynomials in one complex variable

such that deg p 6= deg q, then (Tp+q |P)− = T p+q and Tp+q = Tp + Tq.

P r o o f. The following fact was proved in [4, Theorem 3.3]: if p and q

are polynomials in C such that deg p < deg q = N , then D(T̃p+q) ⊆ D(TzN ).
From this one can easily deduce that D(Tp+q) ⊆ D(TzN ), where p and q
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are polynomials of different degrees and N = max{deg p,deg q}. Therefore
D(Tp+q) = D(Tp) ∩ D(Tq) = D(TzN ), which implies the second equality.

Proposition 3.3 implies that P is a core for Tp+q , but we give an alterna-

tive proof based on the fact mentioned above. Suppose that p =
∑N
j=0 pjfj

and q =
∑M
j=0 qjfj , deg p 6= deg q. Then it follows that

Tp+q =
N∑

j=0

pjTfj +
M∑

j=0

qjTf̄j .

Given g =
∑∞
k=0 akfk ∈ D(Tp+q), set g(N) :=

∑N
k=0 akfk. Since g(N) → g,

Tfjg
(N) → Tfjg and Tf̄jg

(N) → Tf̄jg, j ∈ N, we deduce that P is a core for
Tp+q . The proof is complete.
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