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Slicing of generalized surfaces with curvature measures

and diameter’s estimate

by Silvano Delladio (Povo, Trento)

Abstract. We prove generalizations of Meusnier’s theorem and Fenchel’s inequality
for a class of generalized surfaces with curvature measures. Moreover, we apply them to
obtain a diameter estimate.

1. Introduction. The spaces of generalized Gauss graphs defined in [1]
are natural candidates to be good ambient spaces for setting problems of cal-
culus of variations involving surfaces, for example the problem of minimizing
functionals depending on the area and on the curvatures of the argument
surface.

Taking the point of view of the direct method of the calculus of variations,
one is then interested in estimates for generalized Gauss graphs which may
yield compactness of minimizing sequences.

A related question, which is also of independent interest, is to find ap-
propriate generalizations of classical differential geometric results related to
curvatures. Let us consider an estimate from above of the diameter of a
compact surface by means of the L1-norm of the second fundamental form
(compare [8]). For a regular two-dimensional surface embedded in R

3 a
possible way to get such an estimate rests on a couple of classical geometric
results: Meusnier’s theorem and Fenchel’s inequality. In fact, from these two
results one can deduce an estimate (called a slice estimate) for the slices of
the Gauss graph obtained by slicing with planes orthogonal to a fixed direc-
tion. Then the final estimate easily follows from the Morse–Sard theorem.

In this paper we prove suitable generalizations of Meusnier’s theorem for
two-dimensional generalized Gauss graphs and Fenchel’s inequality for one-
dimensional generalized Gauss graphs. Then we are able to prove a suitable
generalization of the slice estimate. Unfortunately, in the general case, the
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classical Morse–Sard theorem does not hold. Nevertheless, we conclude the
proof of the diameter estimate by means of a suitable transversality result,
implying the “good” behaviour of generalized Gauss graphs with respect to
slicing with planes orthogonal to a fixed direction.

In Section 2 we state some notation and recall from [1] just as much as is
necessary throughout the paper. In Sections 3 and 4 we prove respectively
the Meusnier-type and Fenchel-type results (Theorems 3.4 and 4.1), while,
in Section 5, we prove the slice estimate (Theorem 5.9). The original idea
giving rise to the diameter estimate for classical surfaces is explained in
Remark 5.10 (slice estimate) and Remark 5.12 (diameter estimate). The
proof of the generalized estimate (Theorem 5.19), obtained by means of the
“transversality result” (Proposition 5.13), concludes Section 5.

Acknowledgements. I wish to thank Gabriele Anzellotti (University of
Trento) and Joseph Fu (University of Georgia) for the useful conversations
we had during the preparation of this work.

2. General notation and preliminaries. The standard notation of
geometric measure theory will be adopted. For example, if U is an open
subset of a euclidean space, we let Dn(U) denote the set of smooth n-forms
with compact support in U , equipped with the usual locally convex topology.
The usual mass and the normal mass of currents will be denoted by M and
N respectively. The rectifiable current carried (or supported) by R, oriented
by ξ and with multiplicity θ will be denoted by [[R, ξ, θ]].

Throughout this paper we will deal with a generalized notion of Gauss
graph immersed in the euclidean space R

n+1
x × R

n+1
ey . Let e1, . . . , en+1 and

ẽ1, . . . , ẽn+1 be the standard bases of R
n+1
x and R

n+1
ey respectively and denote

by z̃ ∈ R
n+1
ey the image of z ∈ R

n+1
x through the trivial isomorphism R

n+1
x ∋

ej 7→ ẽj ∈ R
n+1
ey , i.e. z̃ =

∑n+1
j=1 z

j ẽj if z =
∑n+1
j=1 z

j ej . The notation for

the generic point of R
n+1
x × R

n+1
ey will be (x, y) or, indifferently, x+ ỹ. The

one-dimensional linear space generated by a vector u ∈ R
3
x will be denoted

by [u]. Given ξ ∈ Λn(Rn+1
x ×R

n+1
ey ), ξk will denote the kth stratum of ξ, i.e.

ξk =
∑

α∈I(n+1,k)
β∈I(n+1,n−k)

ξαβ eα ∧ ẽβ ,

where I(n+ 1, j) = {(σ1, . . . , σj) | 1 ≤ σ1 < . . . < σj ≤ n+ 1} and

eα = eα1
∧ . . . ∧ eαk

, ẽβ = ẽβ1
∧ . . . ∧ ẽβn−k

, ξαβ = 〈ξ, eα ∧ ẽβ〉.

In order to describe the process of slicing our surfaces orthogonally to a
fixed unit vector v in R

3
x, we introduce the couple of slicing maps f : R

3
x → R
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and f̂ : R
3
x × R

3
ey → R defined by

f(x) = x · v and f̂ = f ◦ p,

where p : R
3
x × R

3
ey → R

3
x is the usual projection. If E is a subset of R

3
x

(resp. R
3
x×R

3
ey) then the slice E ∩ f−1(t) (resp. E ∩ f̂−1(t)) will be denoted

by Et.
Also, we will need the map Υ : R

3
x \ [v] → S2

x defined by

Υ (x) =
x− (x · v)v

|x− (x · v)v|
.

The essential reason which makes this map useful is the following: the push-
forward, by means of Υ , of the slice Gt of a regular two-dimensional Gauss
graph G is the Gauss graph of pGt. We note that range(Υ ) = S2

x ∩ [v]⊥.

We recall some preliminaries from [1].

Definition 2.1 ([1, Definition 2.7]). Let Ω be an open subset of R
n+1
x .

Moreover, let ϕ and ϕ∗ denote the canonical 1-form and its adjoint, respec-
tively, i.e.

ϕ(x, y) =

n+1∑

j=1

yj dxj and ϕ∗(x, y) = ⋆ϕ(x, y) =

n+1∑

j=1

sign(j, j )yj dxj̄ .

Then we define curvn(Ω) as the set of n-dimensional rectifiable currents
Ξ = [[G, η, ̺]] in R

n+1
x × R

n+1
ey such that:

(i) Ξ is supported inΩ×Sn
ey , i.e. G⊂Ω×Sn

ey , and Ξ(gϕ∗)=
T
G
g|η0|̺ dH

n

for all g ∈ Cc(Ω × R
n+1
ey ),

(ii) ∂Ξ is rectifiable supported in Ω × Sn
ey and ∂Ξ(ϕ ∧ ω) = 0 for all

ω ∈ Dn−2(Ω × R
n+1
ey ).

The next proposition makes clearer, from a geometrical point of view,
the hypothesis (i) in Definition 2.1.

Proposition 2.2 ([1, Remark 2.3]). If Ξ = [[G, η, ̺]] is supported in

Ω × Sn
ey , then the condition

Ξ(gϕ∗) =
\
G

g|η0| ̺ dH
n for all g ∈ Cc(Ω × R

n+1
ey )

is equivalent to

Ξ(ϕ ∧ ω) = 0 for all ω ∈ Dn−1(Ω × R
n+1
ey ) and

Ξ(gϕ∗) ≥ 0 for all g ∈ Cc(Ω × R
n+1
ey ) with g ≥ 0.

The following theorem gives us some information about the structure of
the currents belonging to curvn(Ω).
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Theorem 2.3 ([1, Theorem 2.9]). Let Ξ = [[G, η, ̺]] ∈ curvn(Ω). Then

(i) v · y = 0 for Hn-a.e. (x, y) ∈ G and for all v ∈ T(x,y)G,

(ii) p−1
|G ⊂ {(x, ζ(x)), (x,−ζ(x))} for Hn-a.e. x ∈ M = pG, where

p : R
n+1
x × R

n+1
ey → R

n+1
x is the usual projection and ζ : M → Sn is an

Hn-measurable map such that ζ(x) ∈ (TxM)⊥ Hn-a.e. on M .

3. A Meusnier-type result. If M is an n-dimensional C2 surface em-
bedded in R

n+1
x , oriented by a continuous normal vector field ν : M → Snx ⊂

R
n+1
x , then we will denote by IIx the second fundamental form of M at x,

while Φ will be the Gauss-graph map, i.e.

Φ : M →M × Sney , x 7→ (x, ν(x)).

The graph of ν, Φ(M), will be denoted by G. The tangent planes to G at
(x, y) and to M at x will be denoted by T (x, y) and T0(x, y) respectively
(note that T0(x, y) = p(T (x, y)). Moreover, let

τ(x) = ⋆ν(x) for all x ∈M

and

ξ(x, y) = ΛndΦx(τ(x)) for all (x, y) ∈ G.

Then an orientation of G is given by η = ξ/|ξ|.
Also, let us recall (see, for example, [6]) that, for each x ∈ M , there

exists an orthonormal basis τ1(x), . . . , τn(x) of TxM and a set of numbers
κ1(x), . . . , κn(x), called respectively principal directions of curvature and
principal curvatures of M at x, such that

dΦx(τi(x)) = τi(x) + κi(x)τ̃i(x).

From now on, we will restrict ourselves to the case of two-dimensional
surfaces in R

3
x, although something in what follows could be easily stated

even for higher-dimensional surfaces. Moreover, for brevity, we will often
omit in formulas the obvious arguments x, (x, y) and Φ.

R e m a r k 3.1 (how to recover II from η). As

ξ = (τ1 + κ1τ̃1) ∧ (τ2 + κ2τ̃2) = τ1 ∧ τ2︸ ︷︷ ︸
ξ0

+κ2τ1 ∧ τ̃2 − κ1τ2 ∧ τ̃1︸ ︷︷ ︸
ξ1

+κ1κ2τ̃1τ̃2︸ ︷︷ ︸
ξ2

it is not difficult to verify that, for every tangent vector u,

II(u) = (ξ1, (τ u) ∧ ũ), i.e. |η0|
2II(u) = (η1, (η0 u) ∧ ũ).

R e m a r k 3.2 (Meusnier’s formula in terms of η and Υ ). Let Q0 =
(x0, ν(x0)) ∈ G be a regular point for the slicing function f and let t0 =
f(Q0). Then Gt0 has to be a regular curve, namely of class C2, in a neigh-
bourhood of Q0, and vT0 (i.e. the projection of v on T0) cannot vanish along
this regular arc since vT0 = ∇Mf . It follows that, in a neighbourhood of
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x0, Υ ◦ ν|Mt0
is the Gauss map of Mt0 considered immersed in the plane

Pt0 = (R3
x)t0 . Let

Γ = (Γ0, Γ1) : [−ε, ε] → Gt0
be a C2 parametrization by arc length of a piece of Gt0 such that Γ (0) = Q0

and let us denote by κ and n respectively the scalar curvature and the normal
vector of Mt0 (in a neighbourhood of x0). Recalling that Γ1 = ν ◦ Γ0, we
can easily recover the scalar curvature κ from Υ :

|κ| |Γ̇0| = |d(Υ ◦ ν)(Γ̇0)| = |dΥ (dν(Γ̇0))| = |dΥ (d(ν ◦ Γ0))| = |dΥ (Γ̇1)|.

By Remark 3.1 and recalling that |vT0 | = |ν ·n|, we can write the Meusnier
formula (see, for example, [2])

|II(Γ̇0)| = |Γ̇0|
2|κ ν · n|

as follows:

|(η1, (η0 Γ̇0) ∧
˜̇Γ 0)| = |dΥ (Γ̇1)| |Γ̇0| |v

T0 | |η0|
2.

Finally, we remark that the transversality condition

vT0 = ∇Mf 6= 0 along Mt

holds for a.e. t ∈ R, as follows from the Morse–Sard theorem (see [4]).

Before stating the Meusnier-type theorem, we give the following simple
lemma.

Lemma 3.3. Let T be a two-dimensional linear subspace of R
3
x×R

3
ey and

T0 = pT . Then

(i) given v ∈ R
3
x, one has vT0 = 0 if and only if vT = 0,

(ii) given w ∈ T , one has w0 · u
T0 = w · uT for all u ∈ R

3
x.

P r o o f. (i) trivially follows from T0 = pT since v · w = v · w0 for every
w ∈ R

3
x × R

3
ey (and thus, in particular, for every w ∈ T ).

As far as (ii) is concerned, we note that w·uT = w·u = w0 ·u. Moreover,
w0 = pw ∈ pT = T0, whence w0 · u = w0 · u

T0 .

Now we are ready to prove the main theorem of this section. As we will
see in Section 3, the hypotheses will be satisfied by a parametrization Γ of
almost every slice of a generalized Gauss graph.

Theorem 3.4 (Meusnier-type). Let Γ = (Γ0, Γ1) : [−ε, ε] → R
3
x × S2 be

a Lipschitz map differentiable at 0 and such that

(i) |Γ̇ (0)| = 1,
(ii) Γ1(0) · Γ̇0(0) = 0.

Moreover , let η and v be respectively a unit simple two-vector in R
3
x×S

2 and

a unit vector in R
3
x such that (with T0 = pT , where T is the two-dimensional

linear subspace determined by η)
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(iii) η0 6= 0,
(iv) vT0 6= 0,
(v) Γ̇ (0) ∧ η = 0,
(vi) Γ1(0) is orthogonal to T0,
(vii) Γ̇0(0) · v

T0 = 0.

Then Γ1(0) 6= ±v and we have the Meusnier formula

|(η1, (η0 Γ̇0(0)) ∧
˜̇Γ 0(0))| = |d(Υ )Γ1(0)(Γ̇1(0))| |Γ̇0(0)| |v

T0 | |η0|
2.

P r o o f. From (iii) and (vi) it immediately follows that

(3.1) vT0 = v − (v · Γ1(0))Γ1(0).

Then (iv) implies that Γ1(0) 6= ±v, whence the right side of the formula is
well defined.

In proving the formula, we can suppose Γ̇0(0) 6= 0 (otherwise the for-
mula holds trivially). Moreover, for brevity we shall write simply dΥ instead
of d(Υ )Γ1(0) and we will omit the argument of Γ (and of its derivative)
understanding that it is 0, while it will be specified in the other cases.

By (i), (v), (vii) and Lemma 3.3(ii) (choosing w = Γ̇ ) one has

(3.2) |vT |η = Γ̇ ∧ vT = (Γ̇0 + ˜̇Γ 1) ∧ (vT0 + vT − vT0 ).

In particular,

|vT |η1 = Γ̇0 ∧ (vT − vT0 ) − vT0 ∧ ˜̇Γ 1

and thus

|vT |(η1, (η0 Γ̇0) ∧
˜̇Γ 0) = (Γ̇0 ∧ (vT − vT0 ), (η0 Γ̇0) ∧

˜̇Γ 0)

− (vT0 ∧ ˜̇Γ 1, (η0 Γ̇0) ∧
˜̇Γ 0)

= (Γ̇0, η0 Γ̇0)︸ ︷︷ ︸
=0

(vT − vT0 ,
˜̇Γ 0)

− (vT0 , η0 Γ̇0)(Γ̇1, Γ̇0).

As |vT |η0 = Γ̇0 ∧ vT0 (by (3.2)), we obtain

|vT |2(η1, (η0 Γ̇0) ∧
˜̇Γ 0) = −(vT0 , |v

T |η0 Γ̇0)(Γ̇1, Γ̇0)

= −(vT0 , (Γ̇0 ∧ vT0 ) Γ̇0)(Γ̇1, Γ̇0)

= −|Γ̇0 ∧ vT0 |
2(Γ̇1, Γ̇0) = −|vT |2|η0|

2(Γ̇1, Γ̇0),

i.e.

(3.3) (η1, (η0 Γ̇0) ∧
˜̇Γ 0) = −|η0|

2(Γ̇1, Γ̇0)

since vT 6= 0 (as vT0 6= 0 and by recalling Lemma 3.3(i)).
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The proof will be complete once we show that the right side in the
Meusnier formula can be reduced to the right side of (3.3).

Let us start by computing dΥ (Γ̇1). Recalling (3.1) and (iv) again, it is
easy to check that

dΥ (Γ̇1) =
d

ds

∣∣∣∣
s=0

Υ ◦ Γ1(s)

=
Γ̇1 − (Γ̇1 · v)v

(1 − (Γ1 · v)2)1/2
+

(Γ1 · v)(Γ̇1 · v)(Γ1 − (Γ1 · v)v)

(1 − (Γ1 · v)2)3/2
,

whence

|dΥ (Γ̇1)|
2 =

|Γ̇1|
2 − (Γ̇1 · v)2

1 − (Γ1 · v)2
+

(Γ1 · v)2(Γ̇1 · v)2

(1 − (Γ1 · v)2)2

+ 2
(Γ1 · v)(Γ̇1 · v)(Γ1 · Γ̇1 − (Γ1 · v)(Γ̇1 · v))

(1 − (Γ1 · v)2)2

=
|Γ̇1|

2 − |Γ̇1|
2(Γ1 · v)2 − (Γ̇1 · v)2

(1 − (Γ1 · v)2)2

since Γ1 · Γ̇1 = 0 (as Γ1(s) · Γ1(s) = 1 for all s), i.e.

|vT0 |4 |dΥ (Γ̇1)|
2 = |Γ̇1|

2|vT0 |2 − (Γ̇1 · v)2.

We now have to prove the following formula:

(3.4) |Γ̇0|
2(|Γ̇1|

2 |vT0 |2 − (Γ̇1 · v)2) = (Γ̇1 · Γ̇0)
2|vT0 |2.

We can suppose Γ̇1 6= 0, since otherwise (3.4) is trivial. Let β be the
angle between Γ̇0 and Γ̇1 and let ε be a vector chosen in such a way that
ε, Γ̇0/|Γ̇0| and v form an orthonormal basis of R

3
x (this is possible since, by

(v) and (vii), one has Γ̇0 · v = Γ̇0 · (v − vT0) + Γ̇0 · v
T0 = Γ̇0 · v

T0 = 0).

Then, again from (ii), it follows that Γ1 = (Γ1 · ε)ε + (Γ1 · v)v, whence
there must exist α such that

Γ1 · ε = cosα and Γ1 · v = sinα.

Moreover, we note that:

(a) |vT0 |2 = cos2 α, because of (3.1);

(b) the vector

u = Γ̇1 −

(
Γ̇1 ·

Γ̇0

|Γ̇0|

)
Γ̇0

|Γ̇0|

belongs to the plane spanned by ε, v and it is orthogonal to Γ1. In particular,
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|u · v| = |u| |Γ1 · ε| = |u| |cosα|, so that

(Γ̇1 · v)2 = |u · v|2 = |u|2 cos2 α =

{
|Γ̇1|

2 −

(
Γ̇1 ·

Γ̇0

|Γ̇0|

)2}
cos2 α

= |Γ̇1|
2 sin2 β cos2 α.

Now it is trivial to check (3.4).

4. A Fenchel-type result

Theorem 4.1 (Fenchel-type). Let Σ ∈ curv1(R
2
x) be such that Σ 6= 0

and ∂Σ = 0. Then M(Σ1) ≥ 2π.

P r o o f. Because it is always possible to find an indecomposable non-
trivial component Σ∗ of Σ without boundary and as M(Σ1) ≥ M((Σ∗)1),
we can assume, without loss of generality, that Σ itself is indecomposable.
Then, by [3; 4.2.25], there exists an injective Lipschitz map Λ = (Λ0, Λ̃1) :
[0,M(Σ)] → R

2
x × S1 such that Λ#[0,M(Σ)] = Σ and |Λ̇| = 1 a.e. in

[0,M(Σ)].

In particular (for Σ = [[R, υ, θ]]) it follows that R = Λ([0,M(Σ)]), and

(4.1) Λ̇ = υ ◦ Λ a.e. in [0,M(Σ)].

We note that the statement trivially follows whenever Λ̇0 ≡ 0. Indeed, we
then have Λ0 = constant = x and so R = {x} × S1, whence M(Σ1) =
H1(S1) = 2π.

Thus, from now on, we can assume that

(4.2) Λ̇0 6≡ 0.

We need the following lemma that we shall prove later.

Lemma 4.2. Let γ : [0, l] → R
2 be an integrable map such that

(i)
Tl
0
γ(s) ds = 0,

(ii) image(γ) ⊂ Sα = {(̺ cos θ, ̺ sin θ) | ̺ ≥ 0, θ ∈ [α,α + π)} for some

α ∈ [0, 2π).

Then γ is identically zero.

Now we apply the lemma with γ = Λ̇0 and l = M(Σ) to conclude
(by (4.2)) that there is no α in [0, 2π) such that Λ̇0(s) ∈ Sα for every s in
[0,M(Σ)].

But Λ̇0(s) = |Λ̇0| ⋆ Λ1(s) for a.e. s, just by definition of curv1(R
2
x), so

that the previous statement is equivalent to the following:

(4.3) there is no α in [0, 2π) such that Λ1(s) ∈ Sα for all s in [0,M(Σ)].



Slicing of generalized surfaces 275

By (4.3) together with the compactness and connectedness of Λ1([0,M(Σ)])
implied by the continuity of Λ1, we obtain

H1(Λ1([0,M(Σ)])) ≥ π.

Then we can find s1, s2 in [0,M(Σ)] (with s1 < s2) such that Λ1(s1) =
−Λ1(s2). It follows that

s2\
s1

|Λ̇1(s)| ds ≥ π

and, since Λ1(0) = Λ1(M(Σ)), also that

M(Σ)\
s2

|Λ̇1(s)| ds+

s1\
0

|Λ̇1(s)| ds ≥ π.

Now the conclusion immediately follows by recalling that

M(Σ1) =

M(Σ)\
0

|Λ̇1(s)| ds

by (4.1).

P r o o f o f L em m a 4.2. It is enough to prove the assertion for α = 0.

In this case γ2 ≥ 0 and as
Tl
0
γ2(s) ds = 0 it follows that γ2 is identically

zero. Then

image(γ) ⊂ S0 ∩ Rx × 0 = {(x, 0) | x ≥ 0},

i.e. γ1 ≥ 0 and then, as
Tl
0
γ1(s) ds = 0, also γ1 has to be identically zero.

5. Estimating the diameter

Lemma 5.1. Let η, y be respectively a simple two-vector in R
3
x ×R

3
ey and

a unit vector in R
3
x such that

(⋆y, η0) = |η0|,

where ⋆ is the Hodge operator in R
3
x with respect to the canonical basis e1,

e2, e3. Then, for any unit vector v in R
3
x, one has

(η vT )0 = η0 vT0 = −|η0| |y − (y · v)v| • Υ (y),

where T is the two-dimensional linear space related to η, T0 = pT and •
denotes the Hodge operator in [v]⊥ ∼= R

2 with respect to an ordered or-

thonormal basis e′1, e
′
2 such that e′1, e

′
2, v is canonically oriented.

P r o o f. Without loss of generality, we can assume v = e3 and e′1 = e1,
e′2 = e2.

As e3 − eT0

3 is orthogonal to the linear space oriented by η0, one has
η0 eT0

3 = η0 e3. Analogously, η eT3 = η e3 and then also (η eT3 )0 =
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(η e3)0 = η0 e3. Moreover, by hypothesis, η0 = |η0| ⋆ y. It follows that

(η eT3 )0 = η0 eT0

3 = η0 e3 = |η0|(⋆y) e3

= |η0|(−y1e2 + y2e1) = −|η0|(y
2
1 + y2

2)1/2 • Υ (y).

Lemma 5.2. Let v and X be respectively a unit vector and a linear sub-

space of R
3
x such that X⊥ ∩ S2 \ {±v} is not empty. Then Υ|X⊥∩S2\{±v} is

injective if and only if one of the following conditions holds:

(i) dimX = 2,

(ii) dimX = 1 and vX 6= 0.

P r o o f. Let w be any vector in S2∩[v]⊥ and consider the open half-plane

Hw = {sv + tw | s, t ∈ R and t > 0}.

Then the assertion is a straightforward consequence of the following easy
statement:

Υ|Hw∩S2 = constant = w.

Let Ξ = [[G, η, ̺]] ∈ curv2(R
3
x) be such that ∂Ξ = 0 and consider the

function f̂ : R
3
x × R

3
ey → R defined as in Section 2: f̂(x, y) = x · v. The

following remarks will be useful to prove the next theorem.

R e m a r k 5.3. From the general slicing theory (see [3], [5], [7]), we know

that Ξt = 〈Ξ, f̂ , t〉 is a null-boundary one-dimensional rectifiable current for
a.e. t ∈ R. More precisely,

(5.1) the tangent plane T to G exists and vT 6= 0 H1-a.e. along Gt =

f̂−1(t) ∩G

for a.e. t ∈ R, and Ξt = [[Gt, υt, θt]], where υt = η (vT /|vT |) and θt = ̺|Gt
.

It follows that

(5.2) |vT |η = υt ∧ vT H1-a.e. along Gt for a.e. t ∈ R.

R e m a r k 5.4. As vT = 0 whenever η = η2, (5.1) implies that η 6= η2
H1-a.e. along Gt. In particular, if (5.1) holds true, then also

(5.3) η1 6= 0 H1-a.e. along Gt ∩ {η0 = 0}.

R e m a r k 5.5. Let wi = ui + ṽi (i = 1, 2) be a couple of H2 G-
measurable orthonormal vector fields such that η = w1 ∧ w2 H2 G-a.e.,
i.e.

(5.4) η0 = u1∧u2, η1 = u1∧ṽ2−u2∧ṽ1 and η2 = ṽ1∧ṽ2 H2 G-a.e.

It follows that

(5.5) (5.4) holds H1-a.e. along Gt for a.e. t ∈ R.



Slicing of generalized surfaces 277

R e m a r k 5.6. Let ⋆ denote the Hodge operator in R
3
x with respect to

the canonical basis e1, e2, e3. Then

(5.6) (⋆y, η0) = |η0| H1-a.e. along Gt for a.e. t ∈ R,

since (⋆y, η0) = |η0| H
2 G-a.e. (by Definition 2.1).

R e m a r k 5.7. One can always find two disjoint rectifiable sets G1 and
G2 such that G1 ∪ G2 = G and pi = p|Gi is injective (i = 1, 2) (see Theo-
rem 2.3(ii)). From H2(p{η0 = 0}) = 0 it follows that\

Gi∩{η0 6=0}

|η1| dH
2 =

\
pGi

|η1 ◦ p
−1
i |

|η0 ◦ p
−1
i |

dH2

and

η0 ◦ p
−1
i 6= 0 H1-a.e. along (pGi)t for a.e. t ∈ R.

By Remark 5.3 and Lemma 3.3(i), these easily imply that

(5.7)
\

Gi

t
∩{η0 6=0}

|η1|

|vT |
dH1 =

\
pGi

t

|η1 ◦ p
−1
i |

|η0 ◦ p
−1
i ||vT0 ◦ p−1

i |
dH1 for a.e. t ∈ R,

where Git = Gt ∩G
i.

R e m a r k 5.8. For a.e. t ∈ R one can find an indecomposable null-
boundary component of Ξt which will be denoted by Ξ∗

t = [[G∗
t , υ

∗
t , θ

∗
t ]] (let

us note that υ∗t = υt|G∗

t
and θ∗t = θt|G∗

t
= ̺|G∗

t
). We stress the obvious

statement that Ξ∗
t can be chosen to be non-trivial if Ξt is. By [3; 4.2.25],

there exists a map Γ ∗
t = ((Γ ∗

t )0, (Γ̃
∗
t )1) : [0,H1(G∗

t )] → R
3
x × S2 such that

(5.8) Γ ∗
t is a Lipschitz parametrization of G∗

t and |Γ̇ ∗
t | = 1 a.e.

Recalling Theorem 2.3(i), we find immediately that (omitting for simplicity
the symbols t and ∗)

(5.9) T0 ⊂ [Γ1]
⊥ a.e. in [0,H1(G∗

t )] for a.e. t ∈ R

and, moreover, we can easily apply Theorem 3.4 to find that

(5.10) |(η1 ◦ Γ, ((η0 ◦ Γ ) Γ̇0) ∧
˜̇Γ0)|

= |dΥ (Γ̇1)||Γ̇0||v
T0 ◦ Γ ||η0 ◦ Γ |

2 a.e. in [0,H1(G∗
t )] for a.e. t ∈ R.

Now, let us denote by J the null-measure subset of R outside of which
all the properties pointed out by the foregoing remarks hold. Moreover, let
ψ : R

3
x × (R3

ey \ [ṽ]) → R
3
x × [ṽ]⊥ be defined by ψ = 1 ⊕ Υ , i.e. ψ(x, y) =

(x, Υ (y)).

Theorem 5.9. Let t ∈ R \ J by such that

(i) Ξt is non-trivial ,
(ii) v 6∈ image(Γ1).
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Then \
G∗

t

|η1|

|vT |
dH1 ≥ ‖(ψ#Ξ

∗
t )1‖ ≥ 2π.

P r o o f. Without loss of generality we can suppose Ξt to be indecompos-
able, i.e. Ξ∗

t = Ξt. By (ii), Σ = −ψ#Ξt is a well defined rectifiable current.
We first show that

(5.11) ∂Σ = 0 and Σ ∈ curv1([v]⊥).

The first equality immediately follows from ∂Ξt = 0 taking into account (ii).
The second is proved as follows.

Lemma 5.1 and (5.6) imply that

(•Υ (y), (η vT )0) = −|(η vT )0| H1-a.e. along Gt.

By the transversality condition (5.1), we can restate this as

(5.12) (•Υ (y), (υt)0) = −|(υt)0| H1-a.e. along Gt.

Taking into account (5.1) together with Lemma 3.3(i) and using then Lem-
ma 5.2 (with X=T0), we can assume that ψ|Gt

is injective. It follows that

H1(ψ{(x, y) ∈ Gt | dψ(υt(x, y)) = 0}) = 0

and

Σ =

[[
ψ(Gt),−

dψ(υt ◦ ψ
−1)

|dψ(υt ◦ ψ−1)|
, 1

]]
.

Then, if g is any function with compact support and ϕ• denotes the Hodge
transform of the canonical one-form in [v]⊥, one has

Σ(gϕ•) = −
\

ψ(Gt)

g

〈
dψ(υt ◦ ψ

−1)

|dψ(υt ◦ ψ−1)|
, ϕ•

〉
dH1

and therefore, since 〈dψ(υt ◦ ψ
−1), ϕ•〉 = 〈(υt ◦ ψ

−1)0, ϕ
•〉 = −|(υt ◦ ψ

−1)0|
by (5.12), we obtain

Σ(gϕ•) =
\

ψ(Gt)

g
|(υt ◦ ψ

−1)0|

|dψ(υt ◦ ψ−1)|
dH1 =

\
ψ(Gt)

g

∣∣∣∣
(
dψ(υt ◦ ψ

−1)

|dψ(υt ◦ ψ−1)|

)

0

∣∣∣∣ dH
1,

which is just the integral condition in the definition of curv1([v]⊥). This
concludes the proof of (5.11).

Now, consider the decomposition

(5.13)
\
Gt

|η1|

|vT |
dH1 =

\
Gt∩{η0 6=0}

|η1|

|vT |
dH1

︸ ︷︷ ︸
I1

+
\

Gt∩{η0=0}

|η1|

|vT |
dH1

︸ ︷︷ ︸
I2

.
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For the first integral, we note that, by (5.7),

I1 =
\

G1

t
∩{η0 6=0}

|η1|

|vT |
dH1 +

\
G2

t
∩{η0 6=0}

|η1|

|vT |
dH1

=
\

pG1

t

|η1 ◦ p
−1
1 |

|η0 ◦ p
−1
1 ||vT0 |

dH1 +
\

pG2

t

|η1 ◦ p
−1
2 |

|η0 ◦ p
−1
2 ||vT0 |

dH1

=
\

[0,H1(Gt)]

|η1 ◦ Γ ||Γ̇0|

|η0 ◦ Γ ||vT0 ◦ Γ |
ds.

Hence, by (5.10), we obtain

(5.14) I1 ≥
\

[0,H1(Gt)]\{Γ̇0=0}

|dΥ (Γ̇1)| ds.

Now we have to tackle I2. As

(5.15) I2 =
\

Gt∩{η0=0}

|η1|

|vT |
dH1 ≥

\
{Γ̇0=0}

|η1 ◦ Γ |

|vT ◦ Γ |
ds

the conclusion will easily follow by the Fenchel-type theorem, once we prove
that

(5.16)
\

{Γ̇0=0}

|η1 ◦ Γ |

|vT ◦ Γ |
ds ≥

\
{Γ̇0=0}

|dΥ (Γ̇1)| ds.

Indeed, (5.14)–(5.16) imply that\
Gt

|η1|

|vT |
dH2 = I1 + I2 ≥

\
[0,H1(Gt)]

|dΥ (Γ̇1)| ds

and the right hand integral is not less than 2π by Theorem 4.1, taking into
account (i).

To prove (5.16) we note that, by (5.8), |Γ̇1| = |Γ̇ | = 1 almost everywhere
in {Γ̇0 = 0}. Then, also by recalling (5.2), we obtain\

{Γ̇0=0}

|η1 ◦ Γ |

|vT ◦ Γ |
ds =

\
{Γ̇0=0}

| ˜̇Γ 1 ∧ (vT0 ◦ Γ )|

|vT ◦ Γ |2
ds =

\
{Γ̇0=0}

|vT0 ◦ Γ |

|vT ◦ Γ |2
ds,

whence the assertion will follow by showing that

(5.17) |vT0 ◦ Γ | ≥ |vT ◦ Γ |2|dΥ (Γ̇1)| a.e. in {Γ̇0 = 0}.

Recalling (5.1), Remark (5.4) and (5.5) we can assume that

(5.18) u1 6= 0 and u2 = cu1 a.e. along Zt := Γ ({Γ̇0 = 0})
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(by renaming the vector fields if need be), where c is an H1 Zt-measurable
function. Then the equations

(5.19) vT = (v · w1)w1 + (v · w2)w2 = (v · u1)((1 + c2)u1 + ṽ1 + cṽ2)

and

|vi|
2 = 1 − |ui|

2 for i = 1, 2,

v1 · v2 = −c|u1|
2 (since w1 ·w2 = 0)

hold a.e. along Zt, whence, with a short computation, it follows that

(5.20) |vT |2 = (1 + c2)(v · u1)
2 a.e. along Zt.

By (5.20), (5.19) and recalling that |vT0 | = |v · u1|/|u1|, we can restate
(5.17) as follows:

(5.21) |dΥ (Γ̇1)| ≤
1

|vT0 ◦ Γ0|
, a.e. in {Γ̇0 = 0}.

To prove (5.21), we use the formula

(5.22) |dΥ (Γ̇1)|
2 =

1 − (Γ1 · v)2 − (Γ̇1 · v)2

(1 − (Γ1 · v)2)2
a.e. in {Γ̇0 = 0},

which one can get by the same calculation made in proving Theorem 3.4
(here we recall again that Υ and dΥ are well defined because of hypothesis
(ii) and take into account (5.8)). Then

|dΥ (Γ̇1)| ≤
1

(1 − (Γ1 · v)2)1/2
a.e. in {Γ̇0 = 0},

whence (5.21) immediately follows upon noting that, by (5.9),

|vT0 ◦ Γ0| ≤ |v[Γ1]⊥ ◦ Γ0| = (1 − (Γ1 · v)2)1/2.

R e m a r k 5.10. If G is the Gauss graph of a compact C2 surface M
embedded in R

3
x, then the proof of the statement becomes easier (and it

has been that case which provided us with the path followed to prove the
general case). Indeed, under this assumption, η0 6= 0 on G and hence\
Gt

|η1|

|vT |
dH1 = I1 =

\
[0,H1(Gt)]

|η1 ◦ Γ ||Γ̇0|

|η0 ◦ Γ ||vT0 ◦ Γ |
ds =

\
[0,H1(Gt)]

‖IIΓ0
‖ |Γ̇0|

|vT0 ◦ Γ |
ds

≥
\

[0,H1(Gt)]

|IIΓ0
(Γ̇0/|Γ̇0|)||Γ̇0|

|vT0 ◦ Γ |
ds.

As |vT0 | = |ν · n|, where ν is the unit normal vector to M in R
3
x and n is

the unit normal vector to Mt in the slicing plane f−1(t), from Meusnier’s
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theorem we deduce that\
Gt

|η1|

|vT |
dH1 =

\
[0,H1(Gt)]

|κ ◦ Γ0| |Γ̇0| ds,

where κ denotes the scalar curvature of Mt. Hence the assertion follows
from Fenchel’s theorem.

Now we state a corollary of Theorem 5.9. Let

R := {t ∈ R \ J | Ξt is non-trivial and v 6∈ image(Γ1)}

and note that R \ f(G) is a null-measure set.

Corollary 5.11. We have

m(R) ≤
1

2π

\
G

|η1| dH
2,

where m denotes the Lebesgue measure in R.

P r o o f. Indeed, from the slicing theorem (see [3], [5], [7]), one obtains\
G

|η1| dH
2 =

\
f(G)

( \
Gt

|η1|

|vT |
dH1

)
dt ≥

\
f(G)

( \
G∗

t

|η1|

|vT |
dH1

)
dt

≥
\
R

( \
G∗

t

|η1|

|vT |
dH1

)
dt.

The conclusion follows from Theorem 5.9.

R e m a r k 5.12. LetG be still as in Remark 5.10. Then, by Morse–Sard’s
theorem (see [4]), the set of critical values of f|G is a null-measure subset of
R. In other words, Gt is a regular level surface (of class C2) for a.e. t ∈ R.
It follows that m(f(G)) = m(R). Then Corollary 5.11 implies that

m(f(G)) ≤
1

2π

\
G

|η1| dH
2.

In particular, if G is connected one also has (by the arbitrariness of v)

diam(pG) ≤
1

2π

\
G

|η1| dH
2.

We conclude this section by proving the diameter estimate in the non-
regular case. First, we state a simple transversality result which will play
the same role as the Morse–Sard theorem in Remark 5.12. Then we make
some remarks and definitions useful to end the proof of the estimate.

Proposition 5.13. Let Ξ have a finite mass. Then there exists a set Q
of full measure in S2

x such that if v ∈ Q then

v 6∈ image(Γ1) for a.e. t ∈ R.
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P r o o f. If v ∈ S2
x, let Av = q−1(ṽ) ∩G. Then the area formula implies

that #Av <∞ for a.e. v ∈ S2
x. The conclusion follows since v 6∈ image(Γ1)

provided Ξt is defined and t 6∈ f̂(Av).

Now we recall that, if v ∈ S2
x, then the one-dimensional linear subspace

of R
3
x generated by v is denoted by [v]. Also, let us introduce the set

σv = {x ∈ [v] | Ξx·v 6= 0}.

R e m a r k 5.14. Without loss of generality, the set σv can be assumed
to be equivalent to the set πv obtained by projecting pG orthogonally on
[v] , i.e.

H1(πv △ σv) = 0.

Also, observe that the map d : S2
x → R defined by

d(v) = H1(σv) = H1(πv)

is continuous.

Definition 5.15. Ξ is said to be segment-projecting at v ∈ S2
x if σv

is equivalent to a segment, i.e. if there exists a connected set Iv ⊂ [v]
such that H1(Iv △ σv) = 0. We say that Ξ is segment-projecting if it is
segment-projecting at every v ∈ S2

x.

Example 5.16. If Ξ is indecomposable, then it is segment-projecting.
Indeed, let v be given in S2

x; then, by [7; Lemma 28.5], there exists a measure
zero set Z ⊂ R such that

(5.23) 〈Ξ, f̂ , t〉 = ∂[Ξ {f̂ < t}] for every t ∈ R \ Z.

Let t1 and t2 be any elements in I = {t ∈ R | 〈Ξ, f̂ , t〉 6= 0} = f(σv). Then
it is enough to prove that

(t1, t2) \ Z ⊂ I.

Otherwise there would exist t∗ ∈ (t1, t2)\Z such that 〈Ξ, f̂ , t∗〉 = 0. Hence,
recalling that ∂Ξ = 0 and (5.23) holds, we would have

∂[Ξ {f̂ < t∗}] = ∂[Ξ {f̂ ≥ t∗}] = 0.

Then Ξ would admit the non-trivial decomposition

Ξ = Ξ {f̂ < t∗} + Ξ {f̂ ≥ t∗}

with N(Ξ) = N(Ξ {f̂ < t∗})+N(Ξ {f̂ ≥ t∗}), but this is absurd because
Ξ is indecomposable. The conclusion follows by the arbitrariness of v.

Definition 5.17. Let Ξ be segment-projecting. Then we define the
x-diameter of Ξ as

x-diam Ξ = sup
v∈S2

x

d(v).
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R e m a r k 5.18. By of the continuity of d, we have

x-diam Ξ = sup
v∈Q

d(v)

whenever Q is a dense subset of S2
x. In particular, that is true if Q is

H2-measurable and H2(Q) = 4π.

Finally, we are able to prove the generalized diameter estimate.

Theorem 5.19. Let Ξ = [[G, η, ̺]] ∈ curv2(R
3
x) be of finite mass, without

boundary and segment-projecting almost everywhere. Then

x-diam Ξ ≤
1

2π

\
G

|η1| dH
2.

P r o o f. Corollary 5.11 and Proposition 5.13 imply that

d(v) = H1(σv) ≤
1

2π

\
G

|η1| dH
2

for all v in a full measure set Q ⊂ S2
x. The conclusion follows from Re-

mark 5.18.
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Università di Trento
38050 Povo (Trento), Italy
E-mail: delladio@science.unitn.it
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