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Some sufficient conditions for solvability

of the Dirichlet problem

for the complex Monge–Ampère operator

by S lawomir Ko lodziej (Kraków)

Abstract. We find a bounded solution of the non-homogeneous Monge–Ampère equa-
tion under very weak assumptions on its right hand side.

Introduction. In this paper we are interested in solving, under possibly
weak assumptions on the measure dµ, the following Dirichlet problem for the
complex Monge–Ampère equation in a given strictly pseudoconvex domain
Ω ⊂ C

n:

(∗)

u ∈ PSH ∩ L∞(Ω),

(ddcu)n = dµ,

lim
z′→z

u(z′) = φ(z), z ∈ ∂Ω, φ ∈ C(∂Ω),

where d = ∂ + ∂, dc = i(∂ − ∂) and so ddc = 2πi∂∂. It has been shown
by E. Bedford and B. A. Taylor [BT1] that the wedge product (ddcu)n =
ddcu∧ . . .∧ddcu is well defined for plurisubharmonic (psh), locally bounded
functions u, and that (∗) is solvable for measures having continuous densities
with respect to the Lebesgue measure (here denoted by dλ). The equation
has attracted attention of a number of authors; we refer to [B] for a more
detailed account. In particular, it is known that continuous solutions exist
if dµ = f dλ, where f ∈L2(Ω, dλ) (U. Cegrell–L. Persson [CP]), but for f ∈
L1(Ω, dλ) this is not necessarily true [CS]. In Theorem 3 below we show that
if f ∈ Lp(Ω, dλ), p > 1, then there exists a continuous solution of (∗). This
is the answer to the question posed in [CS] and [P] (see also [B], [BL]). For
the case of rotation invariant measures in a ball a solution was given in [P].
The result can be extended from Lp, p > 1, to some Orlicz spaces as shown
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in Theorem 4. To prove it we use an a priori estimate for the ‖u‖L∞ norm
of a solution of (∗) if dµ satisfies a certain integral condition (Theorem 1).
E. Bedford [B] conjectured that some such estimate is possible. It is shown
that the integral condition cannot be substantially weakened. Combining
Theorem 1 with the results of [KO] we solve the Dirichlet problem (∗) for a
large family of measures dµ.

I am indebted to my colleagues Z. B locki and G. Lewicki for valuable
suggestions and U. Cegrell (Ume̊a University) for pointing out an error in a
previous version of the paper. The referee’s remarks simplified the proof of
Theorem 1.

Preliminaries. Here we present some notions and results which are used
in the paper. The background material can be found in [B], [K], [S]. Ω will
denote throughout a strictly pseudoconvex domain in C

n. For a compact
subset K ⊂ Ω we define the relative extremal function and the relative

capacity [BT2] (see also [B], [K]) by the formulas

uK(z) = sup{u(z) : u ∈ PSH ∩ L∞, u < 0 in Ω, u ≤ −1 on K},

cap(K,Ω) = sup
{ \

K

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u < 0
}

.

By [BT2],

cap(K,Ω) =
\
K

(ddcu∗
K)n =

\
Ω

(ddcu∗
K)n,

where u∗
K := limz′→zuK(z). If u∗

K = uK we say that K is regular. For an
open subset U ⊂ Ω the relative capacity is defined by

cap(U,Ω) = sup{cap(K,Ω) : K ⊂ U, K compact}.

Another extremal function (of logarithmic growth) and an associated capac-
ity were introduced by J. Siciak (see [S], [AT], [B], [K]):

LK(z) = sup{u(z) : u ∈ PSH(Cn),

u(z) < log(1 + |z|) + O(1), u ≤ 0 on K},

TR(K) := exp(− sup{L∗
K(z) : |z| ≤ R})

for a compact set K ⊂ C
n and a given R > 0. We extend the definition of

TR to open sets in the same way as the definition of cap above.
Important inequalities between cap and T were proved by H. Alexander

and B. A. Taylor [AT]. If B := B(0, R) and K ⊂ B(0, r), r < R, is compact,
then

exp(−A(r)(cap(K,B))−1) ≤ TR(K) ≤ exp(−2π(cap(K,B))−1/n).

The main tool in pluripotential theory is the following Comparison Prin-
ciple of Bedford and Taylor [BT2]:
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Comparison Principle. If u, v ∈ PSH∩L∞(Ω) and lim infz→∂Ω(u(z)
− v(z)) ≥ 0, then \

{u<v}

(ddcv)n ≤
\

{u<v}

(ddcu)n.

Due to the same authors and presented here in a simplified version,
sufficient for our applications, is

Convergence Theorem [BT2]. If uj ∈ PSH ∩ L∞(Ω), j = 1, 2, . . . ,
and uj↑u a.e. in Ω or uj↓u with u ∈ PSH ∩ L∞

loc(Ω) then

(ddcuj)n → (ddcu)n

in the sense of currents.

An a priori estimate. We begin with proving an a priori estimate for
the L∞ norm of a solution to the Dirichlet problem (∗) when dµ is assumed
to satisfy a certain integral condition.

Theorem 1. Let Ω be a strictly pseudoconvex domain in C
n and let µ be

a Borel measure in Ω such that
T
Ω

dµ ≤ 1. Consider an increasing function

h : R → (1,∞) satisfying

∞\
1

(yh1/n(y))−1 dy < ∞.

If µ satisfies the integral condition

(∗∗)
\
Ω

|v|nh(|v|) dµ ≤ A

whenever

v ∈ PSH(Ω) ∩ C(Ω), v = 0 on ∂Ω,
\
Ω

(ddcv)n ≤ 1,

then the norm ‖u‖L∞ of a solution of the Dirichlet problem (∗) is bounded

by a constant B = B(h,A) which does not depend on µ.

P r o o f. It is no restriction to assume that φ = 0 in (∗): the general case
will follow by the Comparison Principle [BT2]. Let u be a solution of (∗).
For s < 0 denote by Us the open set {u < s} and put

a(s) := cap(Us, Ω) = cap(Us), b(s) := µ(Us).

Our proof rests on the following two propositions.

Proposition 1. b(s) ≤ Aa(s)h−1([a(s)]−1/n).

Proposition 2. tna(s) ≤ b(s + t) if t > 0 and s + t < 0.
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P r o o f o f P r o p o s i t i o n 1. Consider v = (ra(s))−1/nuK , where
K ⊂ Us is a compact regular set with cap(K) = ra(s) (r < 1). ThenT

(ddcv)n = 1 and so the integral condition (∗∗) applies, giving

A ≥
\
Ω

|v|nh(|v|) dµ ≥
\
K

|v|nh(|v|) dµ = (ra(s))−1h([ra(s)]−1/n)µ(K),

which is just the desired estimate as r → 1 (and so µ(K) → b(s)).

P r o o f o f P r o p o s i t i o n 2. We apply the Comparison Principle
[BT2] to the pair of functions uK and v := (rt)−1(u− s− t), where K, r are
defined as above. Note that K ⊂ {v < uK} ⊂ Us+t. Hence

ra(s) =
\

{v<uK}

(ddcuK)n ≤ (rt)−n
\

{v<uK}

(ddcu)n

≤ (rt)−nµ(Us+t) = (rt)−nb(s + t).

The proposition follows if we let r → 1.

E n d o f t h e p r o o f o f T h e o r e m 1. Fix s0 so that a = a(s0) 6= 0.
We need to find a lower bound for s0. To this end we first define an increasing
sequence s0, s1, . . . , sN by

sj := sup{s : a(s) ≤ lim
t→sj−1+

ea(t)}.

Then

lim
t→sj−

a(t) ≤ lim
t→sj−1+

ea(t) and a(sj) ≥ ea(sj−2).

We continue this process till

(1) 1 ≤ a(sN ).

For fixed s and s′ such that a(s) ≤ ea(s′) and t := s − s′ we have by the
above two propositions

a(s′) ≤ t−nb(s) ≤ At−na(s)h−1([a(s)]−1/n)

= Aet−na(s′)h−1([a(s)]−1/n).

Hence

t ≤ (Ae)1/nh1(a(s))

where h1(x) := h−1/n(x−1/n). Letting s → sj+1− and s′ → sj+ we thus get

tj := sj+1 − sj ≤ (Ae)1/nh1(a(sj+1)).

Since the function h2(x) := h1(ex) = h−1/n(e−x/n) is increasing we can
further estimate
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N−1
∑

j=0

tj ≤ (Ae)1/n
N−1
∑

j=0

h2(log a(sj+1))(2)

≤ (Ae)1/n
(

N−2
∑

j=0

log a(sj+2)\
log a(sj )

h2(x) dx + 2h2(log a(sN ))
)

≤ 2(Ae)1/n
(

0\
−∞

h2(x) dx + h2(∞)
)

.

By our hypothesis on h, we have h2(∞) ≤ 1 and

0\
−∞

h2(x) dx =

0\
−∞

h−1/n(e−x/n) dx

= n

∞\
1

h−1/n(y)y−1 dy =: nc(h) < ∞.

These remarks combined with (2) give

sN − s0 =

N−1
∑

j=0

tj ≤ 2(Ae)1/n(nc(h) + 1) =: c.

This means that for s′ ≥ s0 + c we have a(s′) > 1 (see (1)). So fixing
s′ = s0 + c + 1 we conclude that s′ ≥ 0 because otherwise, by applying
Proposition 2, we would get a contradiction with the assumptions:

µ(Us′) > 1.

Thus s0 ≥ −c − 1 =: B. The proof is complete.

R e m a r k. The hypothesis that µ satisfies (∗∗) can be replaced by

µ(K) ≤ A cap(K)h−1((cap(K))−1/n)

for any K ⊂ Ω compact and regular. The above proof still works.

It turns out that the integral condition (∗∗) is not far from being sharp.
From [BL, Corollary 2.2] (see also [D, Th. 2.2]) it follows that any bounded
solution of (∗) satisfies (∗∗) with h ≡ 1 and A = n!‖u‖n

L∞

T
Ω

dµ. However,
if we let h ≡ 1 then (∗∗) ceases to be a sufficient condition for boundedness
of u (when n > 1). This can be seen by considering radial psh functions
in a ball B = B(0, R). In that case we have a characterization of bounded
solutions of (∗) given in [P] (see also [M]). A radial psh function u is bounded
if and only if

(3)

R\
0

r−1F 1/n(r) dr < ∞,

where F (r) =
T
B(0,r)

(ddcu)n.
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It is easy to see that for the rotation invariant measure dµ=(ddcu)n the
integral in (∗∗) assumes its maximal value for v(z) = (2π)−n log |z|. Suppose
that

(4) (2π)n
\
B

|v|n dµ =

R\
0

|log r|nF ′(r) dr < ∞.

Via integration by parts this is equivalent to

R\
0

|log r|n−1r−1F (r) dr < ∞.

Write F (r) = |log r|−ng−1(r). Then (4) takes the form

R\
0

[|log r|rg(r)]−1 dr < ∞,

whereas (3) now says

R\
0

[|log r|rg1/n(r)]−1 dr < ∞.

Taking g such that the former inequality is satisfied but the latter is not,
e.g. g(r) = (log |log(r)|)n, we arrive at the desired conclusion.

Coupling Theorem 1 above with Theorem 1 from [KO] we obtain a fairly
general class of measures for which the Dirichlet problem (∗) is solvable. For
the definition of a measure locally dominated by capacity which we need in
the statement of the next theorem we refer to [KO]. Essentially we require
from such a measure (say µ) that there exists c > 0 such that given two
concentric balls B1 := B(a, r) ⊂ B2 := B(a, 2r) ⊂ Ω and a compact subset
E ⊂ B1, the following estimate holds:

µ(E) ≤ cµ(B1) cap(E,B2).

(The actual definition is a bit less restrictive.)

Theorem 2. If a measure µ in Ω is locally dominated by capacity and

satisfies the condition (∗∗) from Theorem 1 with h such that

h(ax) ≤ bh(x), x > 0,

for some a > 1 and b > 1, then there exists a solution of (∗).

P r o o f. For a while we assume that µ has compact support in Ω. Define a
regularizing sequence of measures µt by fixing a radial non-negative function
ω ∈ C∞

0 (B) with
T
ω dλ = 1 (here B is the unit ball in C

n) and setting

µt = ωt ∗ µ, where ωt(z) = t−2nω(z/t), t > 0.
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By Theorem 1 and Remark following it, it is enough to find t0 > 0 and
A > 0 such that for any compact set K ⊂ Ω,

(ι) µt(K) ≤ A cap(K,Ω)h−1((cap(K,Ω))−1/n), t < t0.

Proposition 3. If E ⋐ Ω is regular then for any d > 1 there exists t0
such that

cap(Ky, Ω) ≤ d cap(K,Ω), |y| < t0,

where K ⊂ E is regular and Ky := {x : x − y ∈ K}.

P r o o f. For K ⊂ E define wy := uKy
(x + y), where uKy

is the extremal
function of Ky. For any c such that 0 < c < 1/2 define Ωc = {uE < −c}.
By continuity of uE one can fix t0 > 0 such that if |y| ≤ t0 and x ∈ Ωc/2

then x + y ∈ Ω. Therefore

g(x) :=

{

max(wy − c, (1 + 2c)uE)(x), x ∈ Ωc/2,
(1 + 2c)uE(x), x 6∈ Ωc/2,

is a well defined plurisubharmonic function in Ω. Since K ⊂ E and wy = −1
on K one concludes that g = wy − c in a neighbourhood of K. Hence

cap(K,Ω) ≥ (1 + 2c)−n
\
K

(ddcg)n = (1 + 2c)−n
\
K

(ddcwy)n

= (1 + 2c)−n
\

Ky

(ddcuKy
)n = (1 + 2c)−n cap(Ky , Ω).

Thus the proposition is proved.

To complete the proof of Theorem 2 let us fix a set E and a positive
number t0 such that the above proposition holds with E :=

⋃

t<t0
suppµt

⋐ Ω and d = an. By the assumptions there exists A0 > 0 such that

µ(K) ≤ A0 cap(K)h−1((cap(K))−1/n).

Hence for t < t0 we have by Proposition 3 and the extra assumption on h,

µt(K) ≤ sup
|y|<t

µ(Ky) ≤ A0 sup
|y|<t

cap(Ky)h−1((cap(Ky))−1/n)

≤ A0d cap(K)h−1((d cap(K))−1/n)

≤ A0db1/n cap(K)h−1((cap(K))−1/n).

Setting A := A0a
nb1/n we verify this way that µt satisfies (ι) for t < t0,

with the constant A independent of t. Thus by Theorem 1 the family of
solutions of (∗) for µt, t < t0, is uniformly bounded. So one can apply
[KO, Th. 1] to get the conclusion.

To verify the statement for an arbitrary measure µ note that by the
above argument the solutions exist for χj dµ, where χj is a non-decreasing
sequence of smooth cut-off functions with χj↑1 in Ω. Moreover, the L∞
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norms of those solutions are uniformly bounded by a constant depending
only on A. Hence the result follows by applying the monotone convergence
theorem of [BT2].

Solutions for measures having densities in Lp, p > 1. In Theorem
3 we are going to prove that for dµ = f dλ, f ∈ Lp(Ω), p > 1, the Dirichlet
problem (∗) has a continuous solution. To this end we shall use the following

Lemma 1. Suppose v ∈ PSH(Ω) ∩ C(Ω), v=0 on ∂Ω and
T
(ddcv)n=1.

Then the Lebesgue measure λ(Us) of the set {v < s} is bounded from above

by c exp(−2π|s|), where c does not depend on v.

P r o o f. The proof is a variation of the proof of Proposition 2 of [KO].
First we shall estimate cap(Us) = cap(Us, Ω) applying the Comparison Prin-
ciple [BT2]. For t > 1 and a regular compact set K ⊂ Us we have

cap(K) =
\
K

(ddcuK)n =
\

{−ts−1v<uK}

(ddcuK)n ≤ tns−n
\
Ω

(ddcv)n ≤ tns−n.

Hence

(5) cap(Us) ≤ |s|−n.

Write (z1, z
′) ∈ C × C

n−1 and set Us(z′) := {z1 ∈ C : (z1, z
′) ∈ Us}. Let

Vz′ (resp. V ) be the extremal function of logarithmic growth of Us(z′) (resp.
Us). Then (see [TS])

λ(Us(z′)) ≤ C1TR(Us(z′)),

where λ denotes the Lebesgue measure in C, C1 is an independent constant
and

TR(Us(z′)) := exp(− sup
|z1|<R

Vz′),

with R chosen so that Ω ⊂ B(0, R). Thus

λ(Us) =
\
λ(Us(z′)) dλ(z′) ≤ C1

\
TR(Us(z′)) dλ(z′)(6)

= C1

\
exp(− sup

|z1|<R

V (z1, z
′)) dλ(z′).

A simple argument using a result of Alexander [A] shows that the right hand
side of (6) is dominated by

C2 exp(− sup
|z|<R

V (z)) = C2TR(Us)

(see [KO] for details). Finally, we apply an inequality between the capacities
cap and T proved in [AT] to obtain

λ(Us)≤ C2 exp[−2π(cap(Us, B(0, R)))−1/n]≤ C2 exp[−2π(cap(Us, Ω))−1/n].



Complex Monge–Ampère operator 19

Hence by (5) we get

λ(Us) ≤ C2 exp(−2π|s|),

which was to be proved.

Corollary. If v ∈ PSH(Ω) ∩ C(Ω), v = 0 on ∂Ω and
T
Ω

(ddcv)n ≤ 1,
then ‖v‖Lp ≤ c(p).

P r o o f. By the lemma,\
|v|p dλ ≤

\
Ω

dλ +

∞
∑

s=1

\
{−s−1<v<−s}

|v|p dλ ≤ c

∞
∑

s=1

(s + 1)pe−2πs =: c(p) < ∞.

Now we are in a position to prove

Theorem 3. If f ∈ Lp(Ω, dλ), p > 1, f ≥ 0 then the Dirichlet problem

(∗) has a continuous solution for dµ = f dλ.

P r o o f. Set fj := min(f, j). Let uj be the continuous solution of

(ddcu)n = fj dλ,

lim
z′→z

u(z′) = φ(z), z ∈ ∂Ω

(see [C], [CP]). Then by the convergence theorem of [BT2], u = lim uj is
the desired solution provided uj is uniformly bounded. This is the case if
the integral condition (∗∗) in Theorem 1 is satisfied for dµ = f dλ and some
suitable h. Let us verify this condition for h(x) = max(1, x). By Hölder’s
inequality we have\

|v|nh(|v|)f dλ =
\

{v≥−1}

+
\

{v<−1}

≤ ‖f‖L1 +
(\

|v|(n+1)q dλ
)1/q

‖f‖Lp ,

where p−1 + q−1 = 1. Since by the Corollary above,\
|v|(n+1)q dλ ≤ c(q(n + 1)),

one can apply Theorem 1 to conclude that u = lim uj is bounded.
Now, if ujk solves (ddcu)n = |fj − fk| dλ, u = 0 on ∂Ω, then by the

Comparison Principle and the above argument,

‖uj − uk‖ ≤ −ujk ≤ cp‖fj − fk‖
1/n
Lp .

So uj is uniformly convergent and u is continuous.

The last result readily extends to cover densities belonging to some Orlicz
spaces. As an example (which can be refined yet) we give the following

Theorem 4. Let Lϕ(Ω, dλ) denote the Orlicz space corresponding to

ϕ(t) = |t|(log(1 + |t|))nh(log(1 + |t|)) with h satisfying the hypothesis of

Theorem 1. If f ∈ Lϕ(Ω, dλ) then (∗) is solvable with dµ = f dλ.
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P r o o f. As in the preceding proof, it is enough to verify the condi-
tion (∗∗). We apply Young’s inequality for the function g(log(1 + r)) =
(log(1 + r))nh(log(1 + r)) and its inverse. Then

g(|v(x)|)f(x) ≤

f(x)\
0

g(log(1 + r)) dr +

g(|v(x)|)\
0

[exp(g−1(t)) − 1] dt

≤ f(x)g(log(1 + f(x))) +

|v(x)|\
0

esg′(s) ds

≤ ‖f‖Lϕ + g(|v(x)|)e|v(x)| .

When integrated over Ω, the right hand side remains bounded since by the
lemma, \

Ω

g(|v(x)|)e|v(x)| dx ≤ c
∞
∑

s=1

es(1−2π)g(s + 1) < ∞.

Thus the result follows from Theorem 1.

Example. If ϕ(t) = |t|(log(1 + |t|))n(log(log(1 + |t|)))m,m > n, then
Theorem 4 applies. On the other hand, if ϕ(t) = |t|(log(1 + |t|))m,m < n,
it is no longer true; a suitable counterexample is given in [P].
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