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Polynomial set-valued functions

by JOANNA SzCzZAWINSKA (Krakéw)

Abstract. The aim of this paper is to give a necessary and sufficient condition for a
set-valued function to be a polynomial s.v. function of order at most 2.

Let X, Z be vector spaces over Q and C' be a Q-convex subset of X. Let
f: C — Z be an arbitrary function and h € X. The difference operator Ay,
is given by the formula

Anf(x) == f(z +h) - f(z)
for x € C such that « + h € C. The iterates A} of A; are given by the
recurrence
AVf = f, APt fi=AL(ATf), n=0,1,2,...

The expression A} f is a function defined for all x € C such that x+nh € C.
It is easy to see that x+kh € C for k =1,...,n—1 whenever x,z+nh € C.

A function f : C — Z is said to be a Jensen function if it satisfies the
Jensen functional equation

(552 = @ + 100

for all z,y € C.
A function f : C — Z is called a polynomial function of order at most n
if
At f(a) =0
for every x € C and h € X such that z + (n +1)h € C.
We have

B = 3 (-1t (Z) fla+ kh)

k=0
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56 J. Szczawinska

forn € N, h € X and = € C such that x +nh € C (see e.g. [3], Corollary 2,
p. 368).

R. Ger has proved that every polynomial function f : C — Z of order
at most n admits an extension to a polynomial function of order at most n
on the whole X (see Theorem 2 of [2]). Therefore, due to Theorem 3 of [3]
(p- 379), we can formulate the following theorem:

THEOREM 1. Let X, Z be Q-linear spaces and C be a nonempty Q-convex
subset of X. If f:C — Z is a polynomial function of order at most n then

Ahl...hn_Hf(CU) = AhlAh2 e Ahn+1f(a;) = 0

forx e C and hy,...,hps1 € X such that x +e1h1 + ...+ ent1hnt1 € C,
€1y---3En+1 € {071}

We are going to deal with polynomial set-valued functions (abbreviated
to s.v. functions in the sequel). Let Y be a real Hausdorff topological vector
space. The symbol n(Y') will stand for the set of all non-empty subsets of Y.
The set of all convex and compact members of n(Y) will be denoted by
cc(Y).

Radstrém’s equivalence relation ~ (see [5]) is defined on (cc(Y))? by
stating (A, B) ~ (C,D) if A+ D = B+ C. The equivalence class containing
(A, B) is denoted by [A, B]. The quotient space Z = (cc(Y))?/~, with
addition defined by

[A,B]|+ [D,E]:=[A+ D,B+ E],

and scalar multiplication
[ [MA,AB], A >0,
A4, Bl = { [-AB,—AA], A<0,

is a real vector space.
The following result of Radstrém (see [5], Lemma 3) is useful.

LEMMA 1. Let A, B be convex and closed sets in'Y and let C' be nonempty
and bounded. Then A+ C = B+ C implies A = B.

Let Y be a topological vector space and let VW be a base of neighbour-
hoods of zero in Y. The space n(Y) may be considered as a topological
space with the Hausdorff topology. In this topology the families of sets

Nw(A):={BenY):ACB+Wand BC A+ W},
where W runs over the base W, form a base of neighbourhoods of the set
Aen(Y) (see [6]).
The three lemmas below can be found e.g. in [4] (Lemmas 5.6 and 3.2).

LEMMA 2. Let Y be a topological vector space and Ay, By, A, B € n(Y)
forn eN. If A, — A and B,, — B (in the Hausdorff topology on n(Y)),
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then A, + B, — A+ B. If A is bounded, then the function t — tA is
continuous.

LEMMA 3. If A\, — 0 and A € n(Y) is bounded, then A\, A — {0}.
LEMMA 4. If A\, — Ao and A € n(Y) is bounded, then A\, A — X\A.
The next lemma is proved in [1] for a metric space Y.

LEMMA 5. Let Y be a topological vector space. If A, — A (z’n the Haus-
dorff topology on n(Y')) and A is closed then A= (,—; U

Proof. Fix n € Nand W € W, where VW denotes a base of nelghbour—
hoods of zero in Y. Since A,, — A, there is ng € N such that A C A,, + W
for every m > ng. Hence, A C | A, + W for W € W. Therefore, we
have

m>n

m>n

Ac () U Am
Now, fix W € W. Let V. € W with V +V C W. There is ng € N such
that if n > ng, then
(1) A, CA+V.

Choose anz € (", U
by (1),

A,,. Hence z € A,, +V for some m > ng. Then

m>n

re€A+V+V CA+W,
that is, z € A = A. Consequently, ;2 U,s, Am € A. =

LEMMA 6. Let Y be a topological vector space and A,,B,C € cc(Y)
forn e N. If A, + B =: C,, — C, then there exists A € cc(Y) such that
C=A+B.

Proof. By the last lemma, Lemma 5.3 of [4] and the fact that the
algebraic sum of a compact set and a closed set is closed, we have

C= ﬂUAerB ﬂUAerB ﬂUA +B

n=1m>n n=1m>n n=1lm>n
:ﬂ(U Am+B):ﬂ U An + B.
n=1 m>n n=1lm>n

Hence

—clconv(FjLZJ )zcl(convﬁ U Am+B>

n=1lm>n

=cl (clconv ﬂ U A, + B) = clconv ﬁ U A, + B.

n=1lm>n n=1lm>n
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Put

A := clconv ﬁ U A,

n=1m>n
The set A is of course closed and convex and A+ B = C. Since A C C— B,
A is compact. m

DEFINITION 1. A set S C X is said to be a Q-convex cone if S+S C S
and AS C S for all A € QN (0, 00).

Now consider an s.v. function F' : S — cc(Y), where S C X denotes a
Q-convex cone. Define f : S — Z as follows:

(2) f(@) == [F(x),{0}].

DEFINITION 2. Let h € X. The difference operator of the function f :
S — Z given by (2) is called the difference operator of the s.v. function F,
ie. ApF(z) == Apf(x) = [F(x + h),F(x)] for z € S and h € X such
that  + h € S, and A} F(z) := A} f(x) for x € S and h € X such that
x+nhes.

DEFINITION 3. An s.v. function F' : S — cc(Y) is called a polynomial
s.v. function of order at most n if the function f : S — Z given by (2) is a
polynomial function of order at most n, i.e. A}™' F(z) =0 for € S and
h € X such that x + (n+1)h € S.

Observe that if F': S — ce(Y') is polynomial of order 0, i.e. ApF(x) =0
for x € S and h € X such that x + h € S, then F' is constant.
Now, let F' be a polynomial s.v. function of order at most one. Then
APF(x) = [F(z + 2h) + F(x),2F(z + h)] =0
for x € S and h € X such that x 4+ 2h € S. This means that
(3) F(z 4+ 2h) + F(z) = 2F(z + h)

for x € S and h € X such that x +2h € S.
Putting h := (y — x)/2 € X in (3), where x,y are arbitrary from S, we
get x+h=(x+y)/2€ S,x+2h=y € S and
Tty

(4) F(y)+F(x):2F< 5 ) 7,y €S

So, if A2 F(x) = 0, then F satisfies the Jensen equation (4). Conversely, if
F satisfies the above equation, then F' is a polynomial function of order at
most one.

If F'is a polynomial s.v. function of order at most one then the function
g:S — Z given by

9(x) == Ay f(0) = [F(x), F(0)]
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is additive. Indeed, by Lemma 3 (p. 367) of [3] and Theorem 1,
9@ +y) = Doty f(0) = Az y f(0) + A2 f(0) + Ay f(0) = 9(z) + 9(y)
for all z,y € S. Then g(nx) = ng(x) for all n € N and = € S, which gives
[F(nx), F(0)] = n[F(x), F(0)].
Hence
1 1

for x € S and n € N. Since the limit of the right-hand side exists, so does
the limit of the left-hand side. By Lemma 6, there is a set A(x) € cc(Y)
such that
1
A(z) + F(0) = lim (nF(O) + F(ZL‘)> = F(x)

for x € S. It follows that
[A(z), {0}] = [F(z), F(0)],

so the s.v. function A is additive. Conversely, if A : S — cc(Y') is additive
and F(0) € ce(Y), then the s.v. function F' given by F(z) = F(0) + A(x) is
a polynomial s.v. function of order at most one. By the above considerations
we can formulate a theorem proved by K. Nikodem [4] in a different way.

THEOREM 2. Let X be a real vector space, S be a Q-convex cone in X
and let' Y be a real topological vector space. Then F : S — cc(Y') is a polyno-
mial s.v. function of order at most one if and only if there exists an additive
s.v. function A: S — cc(Y) such that F(x) = F(0) + A(x) forx € S.

An s.v. function F' is a polynomial function of order 2 if and only if
F(x+3h)+3F(x+ h) =3F(z + 2h) + F(x)
for z € S and h € X such that x + 3h € S. It is easily seen that if
(5) F(z) = Ao + Ay (x) + Az (2)

for x € S, where Ag € cc(Y), A1,A5 : S — cc(Y), A is additive and A,y
is the diagonalization of a biadditive s.v. function Ay : S x S — cc(Y) (i.e.
Ag(z) = Az(z,7), x € S) then F is a polynomial s.v. function of order at
most 2.

Now, let us consider an example. Let S = (0,00) and F' : S — cc(R)
be given by the formula F(z) := (2z,2% + 1), z € S. Obviously, F is a
polynomial function of order at most 2 but we cannot present it in the
form (5). In fact, putting z = 0 in (5), we get Ag = (0,1). Next, putting
x = 1in (5), we obtain

<O’ 1> + Al(l) + A2(1) = <2’ 2>7

which is not possible.
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Remark 1. Let F': S — cc(Y) be a polynomial s.v. function of order
at most 2 and let f: X — Z denote an extension of the function f defined
by (2). The function g : X x X — Z given by

g(z,y) == 504, F(0)
is biadditive and

(6) g(z,y) = 340, f(0) = 5[F(x +y) + F(0), F(z) + F(y)] for z,y € S.

Proof. A polynomial extension f : X — Z of order at most 2 of the
function f exists in view of Theorem 2 of [2]. Note that g is symmetric. Fix
z,y,z € X. By Lemma 3 of [3] (p. 367) and Theorem 1 we have

g9(r+z,y) = %Aw—i-z,yf(o) = %AyAw—&-zf(O)
= 34y(As2f(0) + Au f(0) + A2 £(0))
= 34,42 F(0) + 340, F(0) + 3 A, f()(0)
=g(x,y) + 9(z,y).
By (2), the equation (6) is obvious. m

THEOREM 3. Let F : S — cc(Y) be a polynomial function of order at
most 2. Then there ezists a polynomial s.v. function A : S — cc(Y') of order
at most 2 such that

1F(0)+ s F(2z) = A(z) + F(z), z€S,
A(x) = N2A(x), x€8, AeQn(0,00),
and the function
r— [F(z),F(0)+ A(z)], =z€S,
is additive.

Proof. By Remark 1 the function g : X x X — Z given by g(w,y) :=
%Aw,yf(O) is biadditive, where f denotes an extension of f.
First, we prove that

n

(7) F(Zxk) +(n—2) zn:F(xk)
k=1

k=1
~ (n—=2)(n—1)
= fF(O) + Z F(xy, + ),
1<k<I<n
where n > 2 and z1,...,2, € S. If n =2, then (7) is trivial. Now, assume

that (7) holds for n > 2. Let x1,...,2,41 € S. Since

g(z Tk, xn+1) = 9(@k: Tny1),
=1 P
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we have
(F(Don+ mnsn ) + F(0), F( Y o) + Flani)]
k=1 k=1
Z Tk + Tpi1) + F(0), F(xk) + F(zni1)],
k=1
whence
n+1 n
F( 3 xk) +F(0) + Y F(a) +nF(2nt1)
k=1 k=1
= F(ka> + F(zpy1) + ZF(mk + zp41) + nF(0).
k=1 k=1
By the Radstrom lemma
n+1
(Z ) ZF o) + (1 — D) F(2ni1)
k=1

= F<kz::1xk) + ;F(xk + zp41) + (n — 1)F(0).

Hence and by the induction hypothesis we have

n+1 n+1
F(;mk) t(n—1) ;F(:L‘k)
= F(Zazk) + (n—2) ZF(xk) + Z F(zr+ zpy1) + (n—1)F(0)
k=1 k=1 k=1

= (”_2)2(”_1)17(0) + > Flap+m)
1<k<i<n

n

+ > F(ag+ 2na1) + (0 — 1) F(0)

k=1
n—1)n
= Y Flata)+ (2)F(0),
1<k<i<n+1
which ends the induction.
Putting x = 1 = ... = z,, in (7), we have

F(nz) +n(n — 2)F(z) = (” ) 1) F(0) + <Z>F(2x), n>3, z€s,
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and

o Fo o 08 Lo G

n(n — 2) n(n —2) n(n —2)

By Lemmas 4 and 2 the limit of the right-hand side of (8) exists; con-
sequently, so does the limit of the left-hand side, and by Lemma 6, for all
x € S, there is a set A(z) € cc(Y) such that

TF(0)+ 3F(2z) = A(z) + F(z), =z€S.
This means that
[A(z), {0}] = 3[F(2z) + F(0),2F (z)] = g(z,z), =z€S.

Therefore, the function a : X — Z defined by a(x) := g(z,x) is the diago-
nalization of the biadditive function g and

a(x) = [A(z),{0}] foraz e S.

By Definition 3, A is a polynomial function of order at most 2. Since g is
biadditive, for z € S and A € QN (0, c0),

[A(A2), {0}] = g(Az, Aa) = Ng(x, z) = N*[A(x), {0}],

which means that A(Az) = A\?A(z).
Finally, observe that the function x — f(x) — a(x), z € S, is a Jensen
function. Indeed, let z € S and h € X with z +2h € S. Then

Af (f(z) —a(x)) = AF f(x) = 29(h, h) = Af f(z) = A7 f(0) = A} A, f(0) =0,
by Theorem 1 and biadditivity of g. Define g: S — Z by
9(z) = f(z) — a(z) — [F(0),{0}] = [F(x), A(z) + F(0)].

Then the considerations above and the fact that g(0) = 0 imply the addi-
tivity of g. m

F(2z), n>3.

DEFINITION 4 (cf. [3]). Let S be a convex cone in a vector space X
over Q. A set £ is called a base of S if £ is linearly independent and the
cone is spanned by &, i.e., the set

{xeX:x:Z)\kek, €l,..,en €&, A, A € QN (0, 00), neN}
k=1

coincides with S.

THEOREM 4. Let X be a wvector space over Q and Y be a topological
vector space, and let S C X be a cone with a base. Then F : S — cc(Y) is a
polynomial s.v. function of order at most 2 if and only if there exist additive
s.v. functions B,C : S — cc(Y) and biadditive s.v. functions D, H : SxS —
cc(Y) such that
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9) F(z)+C(x) + H(z,x) = F(0) + D(z,x) + B(x)
forx e S.

Proof. Since a cone with a base is Q-convex, by Theorem 3 there is an
s.v. function A : S — ce(Y') such that

r — [F(x),F(0)+ A(x)], =z€S,

is additive. There exist (see Theorem 1 of [7]) additive s.v. functions B,C :
S — cc(Y) such that

[F(2), F(0) + A(z)] = [B(2),C(z)], z €S,
which gives
(10) F(z)+C(z) = F(0)+ B(z) + A(z), z€S8.
In view of Remark 1,
g(z,y) = 3[F(z +y) + F(0), F(z) + F(y)]
is biadditive. Set
D(z,y) == 3(F(z +y) + F(0)), H(z,y):=3(F(z) + F(y)),

and let £ be a base of S. Fix z,y € S. There exist n € N, Aq,..., A\, €
QN (0,00) and ey, ..., e, € € such that z = Y"1 | \e;, and

D(ﬂ?,y) + ZAlH(euy) = H(ﬂ?,y) + Z)\iD(eiay)'

i=1 i=1
Similarly
m m
H(ei,y) + > piDlei ) = Dles,y) + Y piH(ei, &),
=1 =1

where y = Zmzl [i€j, E1,...,€m € E and p1, ..., ftm € QN (0,00). Hence

D(x,y +Z)\Demy +ZZ)\Z,UJ 61,6]

=1 j=1

:D(a:,y)—kZ)\i[ (eiyy +Z,u] ez,e]}
i=1

:D($7y)+z)\i|: ezyy "’Z/L] ezye]}
i=1

:D(x,y)—i—Z)\iH(eZ, —I—ZZ)\MJ (€:,€5).

=1 =1 j=1
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Define
sz\z,u] (ei,€5), H(z,y) ::ZZ it H (e, €5),
=1 j=1 i=1 j=1

where z = Y1) Niej, y = D01, p€j, v,y € S. It is clear that D and H are
biadditive and

iF(z+y)+ 3F(0)+ H(z,y) = 1F(2) + 1 F(y) + D(z, y).

Setting y = x, we have
1F(2z) + 3 F(0) + H(z,z) = F(z) + D(z, z).
Hence and by Theorem 3,
A(z) + H(x,z) = D(z,x)

and by (10),

F(x) +C(z) + H(z,z) = F(0) + B(z) + A(z) + H(z, x)

= F(0) + D(x,z) + B(z), x€S.

Thus (9) holds true. To end the proof it suffices to prove that F' is a poly-
nomial s.v. function of order at most 2 if (9) is satisfied. By (9),

A F (x)
= [F(z+3h) +3F(x + h),3F (z + 2h) + F(z)]

= [D(x + 3h,x + 3h) + B(x + 3h) +3D(x + h,z + h) + 3B(x + h),
H(z + 3h,z + 3h) + C(z + 3h) + 3H(z + h,z + h) + 3C(x + h)]
— [3D(z + 2h,x + 2h) + 3B(x + 2h) + D(x,x) + B(x),
3H(z + 2h,x + 2h) + 3C(x + 2h) + H(z,z) + C(z)]
=[D

D(z + 3h,x + 3h) + 3D(z + h,x + h),3D(z + 2h,z + 2h) + D(z, )]
= [H(z + 3h,z + 3h) + 3H(z + h,x + h),3H(x + 2h,z + 2h) + H(z, z)]
+ [B(x + 3h) + 3B(x + h),3B(x + 2h) + B(z)]
[C(z + 3h) + 3C(z + h),3C(z + 2h) + C(z)]

= A3D(z,x) — A3 H(x,2) + A3 B(x) — A3C(x) = 0,

_l’_

for z € S and h € X such that x + 3h € 5, because D and H are biadditive
and By and C are additive. So, the proof is complete. m
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