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1. Introduction. The subject of this talk is the study of Legendre singularities which
arise from the problem of wave front refraction at a common boundary of two media.

Example. Let a wave front propagate in a plane divided by a line in two media with
the propagation velocities v1 and v2. It is well known that the formula of Snellius holds:
sinϕ1/ sinϕ2 = v1/v2, where ϕ1 and ϕ2 are the incidence angles of incoming and refracted
rays. If v1 < v2, then there exists a value ϕ̄1 such that the refracted ray is tangent to the
boundary. This point of the boundary is called the point of complete reflection. It is not
difficult to see that at the point of complete reflection an envelope of the refracted rays
appears and the refracted front becomes singular.

In terms of contact geometry this situation may be formulated as follows:
Let M be a smooth manifold of dimension n+1 , J1(M,R) be the contact manifold of

1-jets of functions on M . For any hypersurface H⊂J1(M,R) and an integral submanifold
∂L ⊂ H of dimension n (for the contact hyperplanes distribution (see [2], Chapter 3)), we
call a Legendre submanifold L such that ∂L ⊂ L ⊂ H the solution of the Cauchy problem
for H with the initial value ∂L. If L is a 1-graph of some function on M , then this function
is the solution of the corresponding first order partial differential equation ([1]).

The front of a Legendre manifold L is the image of L under the natural projection
of forgetting derivatives, π : J1(M,R)→M ×R. A family of hypersurfaces F (x, q, t) =
0, x ∈ X, q ∈ M, t ∈ R, where X is a space of additional parameters, defining the
Legendre submanifold L = {(t, q, p) ∈ J1(M,R) | ∃x, F = F ′x = 0, p = F ′q} with the
front {(t, q) ∈ R×M | ∃x, F = F ′x = 0} is called a generating family of hypersurfaces of
L ([2]).
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Let ∂M ⊂ M be a smooth hypersurface dividing M in two domains M1 and M2;
H1, H2 ⊂ J1(M,R) be smooth hypersurfaces of first order partial differential equations.
We are interested in the discontinuous equation H = (H1∩J1(M1,R))∪(H2∩J1(M2,R)).

Let us consider the Cauchy problem for H1 with an initial value ∂L0 ⊂ J1(M1,R).
Let L1 be the solution of this problem. Let ∂J1(M,R) denote the preimage of ∂M ×R
under π : J1(M,R)→M×R. The intersection ∂L1 = L1∩∂J1(M,R) defines the initial
value for H2 as follows ([3]):

1. Let ρ : ∂J1(M,R)→ J1(∂M,R) be the natural projection along the characteristics
of ∂J1(M,R) and ∂̄L = ρ(∂L1). In general (L1 is transversal to ∂J1(M,R)), ∂̄L is a
Legendre submanifold of J1(∂M,R).

2. Let ∂L2 denote the preimage of ∂̄L in H2 ∩ ∂J1(M,R) under ρ. We consider this
integral (for the contact hyperplanes distribution) variety (smooth if ∂̄L is transversal to
the critical values set of ρ restricted to H2 ∩ ∂J1(M,R)) as the initial value for H2.

Definition. The solution L2 of the Cauchy problem for H2 with initial value ∂L2 is
called refracted.

We construct the solution of the Cauchy problem for discontinuous H with the initial
value ∂L0 as L = (L1 ∩ J1(M1,R)) ∪ (L2 ∩ J1(M2,R)) .

R e m a r k. The construction of ∂L2 naturally arises in theoretical mechanics: tra-
jectories of a Hamiltonian system minimize the action functional. Studying Hamil-
tonian systems with discontinuous hamiltonians h : T ∗M → R, h(q, p) = h1(q, p) if
q ∈ M1, h(q, p) = h2(q, p) if q ∈ M2, where hi are smooth, and minimizing the corre-
sponding action functional one gets the construction described above.

At a point x ∈ ∂J1(M,R)∩H2 let the restriction of ρ to H2∩∂J1(M,R) be equivalent
to the Ai-singularity (i.e. to the projection of a hypersurface {(z, λ) | zi+1+λ1z

i−1+. . .+
λi = 0} in the total space of a fibration (z, λ) 7→ λ to the base space {λ}), ρ(x) ∈ ∂̄L and
y = π∂ ◦ ρ(x) where π∂ : J1(∂M,R)→ ∂M ×R is the derivatives forgetting projection.

Definition. The point y is called an Ai-point of complete reflection.

Example. An optical wave front propagating in Rn divided by a smooth ∂Rn in two
isotropic and homogeneous media, in the natural coordinates (t, q, p) on J1(Rn,R) (here
q are some coordinates on Rn, t is a coordinate on R, p = t′q) is the front of an H’s
solution for Hi = {(t, q, p) | v2

i (p2
1 + . . .+ p2

n) = 1}, i = 1, 2, where vi are the propagation
velocities. One can see that the notion of complete reflection point defined above coincides
with that of geometrical optics.

In the following, saying that an object is in general position (or simply generic) we
mean that it belongs to an open and everywhere dense set in the Whitney topology.

2. Results

2.1. Wave front refraction

Theorem 1. If the front of ∂̄L at an Ai-point of complete reflection is smooth, then
for a generic refracted solution its front in some neighbourhood of this complete reflection
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point is given by a generating family of hypersurfaces

yxi+1 + y2ϕ(x, y, q3, . . . , qn+1) + yxi−1qi+1 + . . .+ yxq3 + yq2 + xq0 + q1 = 0

for some i such that i < n+ 1, where ϕ is some smooth function, and (q0, . . . , qn+1) are
coordinates on M ×R such that ∂M ×R = {q0 = 0}.

Corollary 1. If the front of ∂̄L at an A1-point of complete reflection is smooth, then
for a generic refracted solution its front in some neighbourhood of this complete reflection
point is given by the generating family of hypersurfaces

yx2 + ym−1 + ym−2qm−1 + . . .+ yq2 + xq1 + q0 = 0

for some m such that 2 < m < n+ 3.

Corollary 2. Let ϕ(0) 6= 0, then for a generic refracted solution its front in some
neighbourhood of the considered Ai-point of complete reflection, in some coordinates
(q0, . . . , qn+1) on M ×R, is given by a generating family of hypersurfaces

x2i+2 + x2iqi + . . .+ xi+1q2 + xiϕ1(q) + . . .+ x2ϕi−1(q) + xq0 + q1 = 0,

where i < n+1 and ϕj are some smooth functions such that the rank of ∂(ϕ1,...,ϕi−1)
∂(qi+1,...,qn+1) |q=0

is equal to zero.

In what follows we assume H2 = {h(t, q, p) = 0}, the function h is smooth, quadratic
and convex in p. This condition guarantees that only A1-points of complete reflection may
occur. Note that the Hamilton-Jacobi equations of classical mechanics’ natural systems
belong to this class.

Theorem 2. If the restriction of the projection π∂ to ∂̄L at the point in J1(∂M,R)
over an A1-point of complete reflection is equivalent to the An−k+1-singularity , then for
a generic refracted solution in some neighbourhood of this point of complete reflection, in
suitable coordinates (q0, . . . , qn+1) on M × R, its front is given by one of the following
generating families:

1. n = 1: F (x, y, q) = x2y + y2ϕ(x, y) + yq1 + xq0 + q2 = 0,
2. n > 1: F (x, y, z, q) = zn+2−k +y(x2 + zm) +y2ϕ(x, y, z, q2, . . . , qn−1) + zn−kqk+1 +

. . .+zqn+y(zm−1qm+. . .+zq2+q1)+xq0+qn+1 = 0, where 0 < m ≤ k ≤ n, m < 2+n−k,
ϕ is some smooth function.

This theorem provides typical singularities which may occur at points of complete
reflection in J1(M,R) for dimM = 2, 3, 4. Namely:

Corollary 3. Generic generating families 1. and 2. are V -equivalent (i.e. can be
transferred to each other by a diffeomorphism of the form

(x, y, z) 7→ (x′(x, y, z, q), y′(x, y, z, q), z′(x, y, z, q), q′(q));

such families define Legendre equivalent germs) to the following generating families:

n = k = 1 : y2 + x4 + x2q1 + xq2 + q3 = 0,

n = k = 2 : z2 + y2 + x4 + x2q1 + xq2 + q3 = 0,

z2 + y3 ± yx2 + y2q1 + yq2 + xq3 + q4 = 0,

n = 2, k = m = 1 : z2 + y2 + x6 + x4q1 + x3ϕ(q) + x2q2 + xq3 + q4 = 0,
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n = k = 3 : z2 + y2 + x4 + x2q1 + xq2 + q3 = 0,

z2 + y3 ± yx2 + y2q1 + yq2 + xq3 + q4 = 0,

z2 + y4 + yx2 + y3q1 + y2q2 + yq3 + xq4 + q5 = 0,

n = 3, k = m = 2 : z2 + x3 + y4 + y2xq1 + y2q2 + xyϕ(q) + yq3

+ xq4 + q5 = 0,

n = 3, k = 2,m = 1 : z2 + y2 + x6 + x4q1 + x3q2 + x2q3 + xq4 + q5 = 0,

n = 3, k = m = 1 : z2 + y2 + x8 + x6q1 + x5ϕ1(q) + x4q2 = 0,

+ x3ϕ2(q) + x2q3 + xq4 + q5 = 0.

Here ϕ and ϕi are functional moduli.

2.2. Normal forms of smooth functions on Legendre submanifolds in the spaces of
Legendre fibrations. For the proof of Theorem 2 we need to reduce to the normal form
a generic smooth function on ∂̄L by a Legendre equivalence (i.e. a contactomorphism of
the total space of a Legendre fibration preserving the fibers).

Let PT ∗Rn+1 be the projectivization of the cotangent bundle of Rn+1, i : (L, x) ↪→
(PT ∗Rn+1, y) be a Legendre submanifold germ, Φ : (PT ∗Rn+1, y)→ (R, 0) be a smooth
function germ, (q1, . . . , qn+1; p1 : . . . : pn+1) be the standard coordinates on PT ∗Rn+1

(q1, . . . , qn+1 being some coordinates on Rn+1, and p1 : . . . : pn+1 the homogeneous
coordinates on the fibers of the projectivized cotangent bundle induced from the canonical
coordinates on the fibers of the cotangent bundle of Rn+1) in some neighbourhood of y.
Let the derivative of π ◦ i at x , where π : PT ∗Rn+1 → Rn+1 is the cotangent bundle
projectivization, have one-dimensional kernel.

Theorem 3. For a generic pair (i(L),Φ|i(L)) its germ at the point i(x) such that
(π ◦ i)∗,x has one-dimensional kernel and Φ(i(x)) = 0, is Legendre equivalent to the germ
at (q = 0, p1 = . . . = pn = 0) of the pair (L0,Φ0) defined by :

1. L0 = {(q; p) | qn+1 = f(qk+1, . . . , qn−1, pn) + pnqn; pi = ∂f/∂qi for i = 1, . . . , n −
1; qn = −∂f/∂pn; pn+1 = 1}, where f = pn+2−k

n + pn−kn qk+1 + . . .+ p2
nqn−1,

2. Φ0(q1, . . . , qn−1, pn) = pmn + qmp
m−1
n + . . .+ q1

for some k,m such that 0 < m ≤ k ≤ n, m < 2 + n− k.

3. Proofs

3.1. Preliminary results. Since we are interested in local situation, we may replace the
Legendre fibration J1(M,R) → M ×R of derivatives forgetting by the Legendre fibra-
tion PT ∗(M ×R)→ M ×R (the projectivized cotangent bundle) because all Legendre
fibrations of equal dimensions are locally isomorphic (see [2], Chapter 3).

Let us consider the action on ∂PT ∗(M×R) of a Legendre equivalence of PT ∗(M×R)
preserving ∂PT ∗(M ×R). In the canonical coordinates (q; p) = (q0, q

′; p0 : p′) induced
from the coordinates q on M×R such that ∂M×R = {q0 = 0}, any Legendre equivalence
of PT ∗(M ×R) preserving ∂PT ∗(M ×R) is generated by a diffeomorphism of M ×R
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of the form

(q0, q
′) 7→ (q0ξ0(q), q̃′(q)), ξ0(0) 6= 0.

Writing this Legendre equivalence explicitly one gets the following:

Lemma 1. In the chosen coordinates the restriction to ∂PT ∗(M ×R) of any Legendre
equivalence of PT ∗(M×R) preserving ∂PT ∗(M×R) is the superposition of the following
two:

1. Legendre equivalence of PT ∗(∂M ×R),
2. p̃0 = ξ0(q′)p0 + . . .+ ξn+1(q′)pn+1 , ξ0(0) 6= 0.

Conversely for any composition of 1. and 2. there exists a Legendre equivalence of
PT ∗(M ×R) preserving ∂PT ∗(M ×R) and inducing this transformation.

Let H2 = {(q; p) | h(q, p) = 0}, with h smooth and quadratic in p. In the canonical
coordinates (q0, . . . , qn+1; p0 : . . . : pn+1) = (q0, q

′; p0 : p′) on PT ∗(M × R) such that
∂M ×R = {q0 = 0} we have

h(0, q′, p0, p
′) = (ξ0(q′)p0 + . . .+ ξn+1(q′)pn+1)2 + Φ(q′, p′)

for some smooth ξi , ξ0(0) 6= 0 and Φ : PT ∗(∂M ×R)→ R.
Applying Lemma 1 we get:

Lemma 2. The restriction of the canonical projection ρ to H2 is reducible to the
form {(0, q′; p0 : p′) | p2

0 + Φ(q′, p′) = 0} 7→ (q′; p′) by a Legendre equivalence preserving
∂PT ∗(M ×R).

Notice once again that H2 is the zero set of some smooth and quadratic (in p) function.

3.2. Proof of Theorem 1. Let us choose a system of coordinates (q0, . . . , qn+1) in some
neighbourhood of the considered Ai-point of complete reflection y = π∂ ◦ ρ(x) such that
∂M ×R = {q0 = 0} and π∂(∂̄L) = {q0 = q1 = 0}. This is possible because π∂(∂̄L) is
smooth. These coordinates induce the canonical coordinates (q; p) (= (q0, q

′; p0 : p′) =
(q0, q1, q

′′; p0 : p1 : p′′)) in some neighbourhood of x. Under the assumption of the theorem
at the point x the projection ρ : ∂PT ∗(M ×R) ∩H2 → PT ∗(∂M ×R) is equivalent to
the Ai-singularity, hence ∂PT ∗(M ×R)∩H2 = {(q; p) | q0 = 0, pi+1

0 + f0(q′, p′)pi0 + . . .+
fi(q′, p′) = 0}.

We have ∂̄L = {(q; p) | q0 = q1 = p0 = p′′ = 0}, hence ∂L2 = ρ−1(∂̄L) ∩H2 is of the
form

∂L2 = {(q; p) | pi+1
0 + ϕ0(q′′)pi0 + . . .+ ϕi(q′′) = q0 = q1 = p′′ = 0, p1 = 1},

where ϕj(q′′) = fj(0, q2, . . . , qn+1, 1, 0, . . . , 0). We can see that in general i ≤ n.
A diffeomorphism of M ×R such that its inverse is of the form q0 = q̃0, q1 = q̃1 −

q̃0ϕ0(q̃′)/(i+ 1), q′′ = q̃′′, induces a Legendre equivalence of PT ∗(M ×R) reducing ∂L2

(forgetting tilde): ∂L2 = {(q; p) | pi+1
0 + ψ1(q′′)pi−1

0 + . . . + ψi(q′′) = q0 = q1 = p′′ =
0, p1 = 1}.

In general the rank of ∂(ψ1,...,ψi)
∂(q2,...,qn+1) is maximal , say det ∂(ψ1,...,ψi)

∂(q2,...,qi+1) |q=06=0. A Legendre
equivalence of PT ∗(M × R) induced by q̃0 = q0, q̃1 = q1, q̃2 = ψi(q′′), . . . , q̃i+1 =
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ψ1(q′′), q̃i+2 = qi+2, q̃n+1 = qn+1 preserves ∂PT ∗(M ×R) and brings ∂L2 to the form

∂L2 = {(q; p) | pi+1
0 + qi+1p

i−1
0 + . . .+ q2 = q0 = q1 = p′′ = 0, p1 = 1}.

Assume that L2 is a Legendre submanifold containing ∂L2. Locally it is given by some
generating function S(pJ , qI)(I ∪ J = {0, 2, . . . , n + 1}, 0, 2 ∈ J) : L2 = {(q; p) | q1 =
S, qJ = −S′pJ

, pI = S′qI
, p1 = 1}, and we know the values of S and its derivatives at

p2 = 0:

S(p0, 0, q3, . . . , qn+1) = S′p0(p0, 0, q3, . . . , qn+1) = 0,

S′qi
(p0, 0, q3, . . . , qn+1) = 0, i = 3, . . . , n+ 1,

S′p2(p0, 0, q3, . . . , qn+1) = pi+1
0 + qi+1p

i−1
0 + . . .+ q3p0.

Hence S = pi+1
0 p2 + p2

2ϕ(p0, p2, q3, . . . , qn+1) + pi−1
0 p2qi+1 + . . .+ p0p2q3, where ϕ is some

smooth function. Hence L2 can be given by the generating family from the statement of
the theorem.

3.3. Proof of Theorem 2. The proof of the case n = 1 is exactly the same as in
Theorem 1 (here i = 1 and in the generic case a point of complete reflection does not
belong to the caustic in the first medium, hence the front of ∂̄L is smooth at this point).

Let n > 1. In the generic case ∂̄L is smooth. If the projection of ∂̄L to ∂M ×R is
equivalent to the An−k+1-singularity, then from Theorem 3 and Lemma 2 we get that
∂L2 = ρ−1(∂̄L) ∩H2 is of the form

qn+1 = pn+2−k
n + pn−kn qk+1 + . . .+ p2

nqn−1 + pnqn.

q0 = 0.

q1 = −p2
0 − pmn − pm−1

n qm − . . .− pnq2.

qn = −(n+ 2− k)pn+1−k
n − (n− k)pn−k−1

n qk+1 − . . .− 2pnqn−1.

p1 = . . . = pk = 0.

pk+1 = pn−kn , . . . , pn−1 = p2
n.

pn+1 = 1.

Hence for any Legendre manifold L2 such that

∂L2 = L2 ∩ ∂PT ∗(M ×R),

a generating function S is of the form

S(p0, p1, pn, q2, . . . , qn−1) = pn+2−k
n + pn−kn qk+1 + . . .

+ p2
nqn−1 + p1(p2

0 + pmn + pm−1
n qm + . . .+ pnq2)

+ p2
1ϕ(p0, p1, pn, q2, . . . , qn−1).

This proves the theorem.

3.4. Proof of Theorem 3. The technique used here was developed in [5].
First of all we can reduce the germ of a generic Legendre submanifold i(L) ⊂ PT ∗Rn+1

at a point i(x), where (π ◦ i)∗ has one-dimensional kernel, by a Legendre equivalence
of PT ∗Rn+1 to the germ at the point q = p1 = . . . = pn = 0 of the Legendre
submanifold L0 ⊂ PT ∗Rn+1 given by the generating function f(qk+1, . . . , qn−1, pn) =
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pn+2−k
n +pn−kn qk+1 + . . .+p2

nqn−1, for some k < n, as in the theorem (see [2], Chapter 3).
Now we should reduce a generic smooth function Φ|L0 = Φ(q1, . . . , qn−1, pn) (functions
q1, . . . , qn−1, pn form a coordinate system on L0) such that Φ(0) = 0 to the normal form
by a Legendre equivalence of PT ∗Rn+1 preserving L0.

Let us consider a subsidiary fibration κ : Rn+2 → Rn+1, κ : (x, q) 7→ q, and the
Legendre submanifold N ⊂ PT ∗Rn+2 having the smooth front {(x, q) ∈ Rn+2 | F (x, q) =
f(qk+1, . . . , qn−1, x)+xqn+qn+1 = 0}. In PT ∗Rn+2 consider an hypersurface PA formed
by hyperplanes in spaces tangent to Rn+2, which contain lines tangent to fibers of κ. Then
L0 = κ∗π(N ∩ PA), where κ∗π : PA → PT ∗Rn+1 is the fibration induced from κ by
π, κ∗π : (x, q; 0 : p) 7→ (q; p) (see [2], Chapter 3). The function Φ on L0 can be lifted
by κ∗π to N ∩ PA and can be extended to a function (also denoted by Φ) on N . The
manifold N is diffeomorphic to its front {F (x, q) = xn−k+2 +xn−kqk+1 + . . .+qn+1 = 0}.
This diffeomorphism sends Φ on N to Φ on the front of N , {F = 0}. In the chosen
coordinates it can be expressed much more simply: Φ(q1, . . . , qn−1, pn) on L0 goes to
Φ(q1, . . . , qn−1, x) on {F = 0} ⊂ Rn+2. In these terms the problem of reducing a function
Φ(q1, . . . , qn−1, pn) to the normal form by a Legendre equivalence of PT ∗Rn+1 preserving
L0 is equivalent to reducing the function Φ(q1, . . . , qn−1, x) to the normal form on the
hypersurface {F (x, q) = 0} ⊂ Rn+2 (i.e. on the generating family of hypersurfaces for L0)
by a diffeomorphism of Rn+2 preserving {F = 0} and respecting κ. Indeed, preserving
κ’s fibers we get a generating family defining a Legendre submanifold which is Legendre
equivalent to L0 ([2], Chapter 3). Preserving {F = 0} we get that in fact this new
Legendre submanifold of PT ∗Rn+1 coincides with L0.

Definition. A diffeomorphism g : Rn+2 → Rn+2 preserving {F = 0} and respecting
κ is called admissible.

Now we are going to describe vector fields which are the velocities of one-parameter
families of analytic admissible diffeomorphisms. Let En+2 and En+1 denote the rings of
analytic functions’ germs at the points 0 ∈ Rn+2 and 0 ∈ Rn+1, and let V denote the
real vector space of germs at 0 of vector fields on Rn+2 with pointwise addition and
multiplication by scalars. In V we consider a subspace Ṽ = V1 ⊕ V2, where V1 is the
En+2-module generated by v0 = F ∂

∂x , V2 is the En+1-module generated by vi, where
vi = ∂

∂qi
for i = 1, . . . , k and vi = vix(x, q) ∂

∂x + viqk+1
(q) ∂

∂qk+1
+ . . . + viqn+1

(q) ∂
∂qn+1

for
i = k + 1, . . . , n+ 1 are the solutions of the equations

vi • F = FF ′qi
(= Fxn+1−i), i = k + 1, . . . , n+ 1.

Here the symbol • stands for the differentiation along the corresponding vector field.

Lemma 3. The space Ṽ is the tangent space to the space of germs at the origin of
analytic admissible diffeomorphisms.

P r o o f. Let us consider a one-parameter family of admissible diffeomorphisms gt:

gt(x, q) = (ht(x, q), ϕ1,t(q), . . . , ϕn+1,t(q)),

(1) Ht(gt(x, q))F (gt(x, q)) = F (x, q),

where Ht is some one-parameter family of analytic functions such that Ht(0) 6= 0.
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Differentiating (1) with respect to t, for any t′ we get the equation

(2) vxF
′
x + vqk+1F

′
qk+1

+ . . .+ vqn+1F
′
qn+1

= MF,

where vx,M ∈ En+2, vqi
∈ En+1, i = k + 1, . . . , n+ 1, and

v = vx
∂

∂x
+ vqk+1

∂

∂qk+1
+ . . .+ vqn+1

∂

∂qn+1
=

d

dt

∣∣∣∣
t=t′

gt.

The function F is an R-versal deformation of the germ F (x, 0), hence it is R-infinite-
simally versal, hence forM there exist functions v′x ∈ En+2; v′qi

∈ En+1, i = k+1, . . . , n+1,
such that

(3) v′xF
′
x + v′qk+1

F ′qk+1
+ . . .+ v′qn+1

F ′qn+1
= M.

After substitution of (3) in (2), keeping in mind the uniqueness of decompositions (2)
and (3) for analytic functions, we get that v = vx

∂
∂x + vqk+1

∂
∂qk+1

+ . . . + vqn+1
∂

∂qn+1
=

v′xv
0 + v′qk+1

vk+1 + . . .+ v′qn+1
vn+1. The vector fields v1, . . . , vk correspond to changes of

q1, . . . , qk. The lemma is proved.

Corollary 4. 1. The vi are polynomial vector fields.
2. The vix are regular with respect to x of order n+ 2− i for i = k + 1, . . . , n+ 1 and

of order n+ 2− k for i = 0.
3. vi(0) = 0 for i = 0, k + 1, . . . , n+ 1.

Consider a function Φ(q1, . . . , qn−1, x), with Φ(0) = 0. Suppose that

∂Φ
∂x

(0) = . . . =
∂m−1Φ
∂xm−1

(0) = 0 6= ∂mΦ
∂xm

(0).

For a generic pair (L0,Φ) we have 0 < k, m < k. If m ≥ 2 +n− k, then, since we are
interested in the restriction of Φ to {F = 0}, we can divide Φ by F and get m < 2+n−k.
For a generic Φ, changing only q1, . . . , qk, we can bring it to the form

Φ = q1 + q2x+ . . .+ qmx
m−1 + xm + f, f ∈mm+1

n+2 ,

where mn+2 is the maximal ideal in C∞n+2, the ring of smooth functions’ germs at 0 ∈
Rn+2.

Let us consider

Φ0 = q1 + q2x+ . . .+ qmx
m−1 + xm.

Lemma 4. There exists an admissible diffeomorphism g such that g(0) = 0 and , for
the corresponding germs, Φ ◦ g = Φ0.

P r o o f. Connect Φ and Φ0 by Φt = Φ0 + tf . We are going to prove the existence of
a family gt : Rn+2 → Rn+2 of admissible diffeomorphisms such that

(4) Φt ◦ gt = Φ0.

After differentiating (4) with respect to t we get

(5) ṽxt(x, q)
∂Φt
∂x

+ ṽq1t(q)
∂Φt
∂q1

+ . . .+ ṽqn+1t(q)
∂Φt
∂qn+1

= −f,
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where

ṽxt(x, q) = f0
0 (t, x, q)v0

x(x, q) + fk+1
0 (t, q)vk+1

x (x, q) + . . .

+ fn+1
0 (t, q)vn+1

x (x, q),

ṽqit(q) = fi(t, q), i = 1, . . . , k,

ṽqit(q) = fk+1
0 (t, q)vk+1

qi
(q) + . . .+ fn+1

0 (t, q)vn+1
qi

(q), i = k + 1, . . . , n+ 1,

where fi and f j0 are some unknown functions. Let us put fm+1 = . . . = fk = 0. Writing
(5) in detail we have

(6) (mxm−1 + (m− 1)qmxm−2 + . . .+ q2 + tf ′x)

× (xn+2−k + xn−kqk+1 + . . .+ qn+1)f0
0 (t, x, q)

+ (mxm−1 + (m− 1)qmxm−2 + . . .+ q2 + tf ′x)

× (xn+1−k/(n+ 2− k) + . . .)fk+1
0 (t, q)

+ . . .+ (mxm−1 + (m− 1)qmxm−2 + . . .+ q2 + tf ′x)

× (x/(n+ 2− k))fn+1
0 (t, q) + (xm−1 + tf ′qm

)fm(t, q)

+ . . .+ (1 + tf ′q1)f1(t, q)

+ tf ′qk+1
(fk+1

0 (t, q)vk+1
qk+1

(q) + . . .+ fn+1
0 (t, q)vn+1

qk+1
(q)) + . . .

+ tf ′qn+1
(fk+1

0 (t, q)vk+1
qn+1

(q) + . . .+ fn+1
0 (t, q)vn+1

qn+1
(q)) = −f(x, q).

Proposition 1. For any t ∈ R there exist neighbourhoods V of t and W of 0 ∈ Rn+2

such that (6) has a solution smooth in V ×W .

P r o o f. In the ring C∞n+2 of infinitely smooth functions’ germs at 0 ∈ Rn+2 we
consider the ideal A = F ∂Φt

∂x C
∞
n+2. Let B denote the quotient module C∞n+2/A. For

any t ∈ R the function F ∂Φt

∂x is regular with respect to x of order n+m+ 1− k. From
Malgrange’s division theorem it follows that B is a finitely generated C∞n+1-module (C∞n+1

stands for the ring of germs at 0 ∈ Rn+1 of infinitely smooth functions of the variables
q). The functions 1, x, . . . , xn+m−k can be chosen as generators. In B we consider the
submodule C generated by the images in B of the functions

e1 = 1 + tf ′q1 , . . . , em = xm−1 + tf ′qm
,

em+1 = (mxm−1 + (m− 1)qmxm−2 + . . .+ q2 + tf ′x)
x

n+ 2− k
+ tf ′qk+1

vn+1
qk+1

(q) + . . .+ tf ′qn+1
vn+1
qn+1

(q), . . . ,

em+n+1−k = (mxm−1 + (m− 1)qmxm−2 + . . .+ q2 + tf ′x)
(

xn+1−k

n+ 2− k
+ . . .

)
+ tf ′qk+1

vk+1
qk+1

(q) + . . .+ tf ′qn+1
vk+1
qn+1

(q).

We can see that

em+n+1−k = am+n+1−k
m+n+1−kx

m+n−k (mod mn+1B), . . . ,

e1 = a1
1 + am1 x

m + . . .+ am+n+1−k
1 xm+n−k (mod mn+1B),
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where mn+1 is the maximal ideal of C∞n+1 and aij ∈ R, aii 6= 0. Hence B = C + mn+1B.
By the Nakayama Lemma we conclude that B = C, i.e. for any t there exist f j0 , fi smooth
in some neighbourhood of 0 ∈ Rn+2 and solving (6). From the preparation theorem for
differentiable functions depending on parameters it follows that for any t there exist
neighbourhoods t ∈ V ⊂ R and 0 ∈ W ⊂ Rn+2 such that (6) has a solution smooth in
V ×W . The proposition is proved.

The existence of f0
0 (t, x, q), f i0(t, q), i = k+1, . . . , n+1, fi(t, q), i = 1, . . . ,m, smooth

in [0, 1] ×W for some neighbourhood W of 0 ∈ Rn+2 can be proved in a standard way
using a partition of unity. The family of vector fields v = f0

0 v
0 + f1v

1 + . . . + fmv
m +

fk+1
0 vk+1+. . .+fn+1

0 vn+1, depending on the parameter t, smooth in [0, 1]×W , vanishes at
0 for any t, because v0(0) = vk+1(0) = . . . = vn+1(0) = 0 and f1(t, 0) = . . . = fm(t, 0) = 0
(this can be easily got from (6)). Integrating this family we get a family of admissible
diffeomorphisms gt, preserving the origin 0 ∈ Rn+2 and such that Φt ◦gt = Φ0. Lemma 4
and Theorem 3 are proved.
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