SINGULARITIES AND DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 33 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

GLOBAL EXISTENCE OF SOLUTIONS OF PARABOLIC PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

PAVOL QUITTNER

Institute of Applied Mathematics, Comenius University Mlynská dolina, 84215 Bratislava, Slovakia E-mail: quittner@fmph.uniba.sk

In [1], H. Amann derived an a priori bound for solutions of parabolic problems with nonlinear boundary conditions in the Sobolev space $W_p^s(\Omega, \mathbb{R}^N)$ $(s \ge 1, p > n, \Omega \subset \mathbb{R}^n$ bounded). The result ([1, Theorem 15.2]) is based on the assumptions of an apriori estimate for the solutions in some weaker norm (in $W_{p_0}^{s_0}(\Omega, \mathbb{R}^N)$, $s > s_0$, $p_0 \ge 1$) and of suitable growth conditions for the local nonlinearities arising in the problem. However, the proof of this result contains some discrepancies (the choice of r in the proof does not match the assumptions in [1, Lemma 15.1]) and the result itself is not correct in the case n = 1: the growth of the function g arising in the boundary condition has to be controlled by the power $1 + p_0/(n - s_0 p_0)$ also in this case. The aim of this paper is to give a correct proof of a modification of the result mentioned above and to show that the growth assumption is optimal for n = 1.

The idea of our proof is the same as that in [1]. For the sake of simplicity we consider only the special case $s_0 = 0$. On the other hand, unlike [1] we do not assume p > n. We consider the problem

(P)
$$\begin{cases} u_t + \mathcal{A}u = f(x, t, u, \nabla u) & \text{in } \Omega \times (0, T), \\ \mathcal{B}u = g(x, t, u) & \text{on } \partial\Omega \times (0, T), \\ u(x, 0) = u_0(x), & x \in \overline{\Omega}, \end{cases}$$

where $0 < T \leq \infty$, Ω is a bounded domain in \mathbb{R}^n of class C^2 , $u : \Omega \times [0,T) \to \mathbb{R}^N$, $\mathcal{A}u = (-\Delta u_1, \ldots, -\Delta u_N)$, $\mathcal{B}u = \partial u/\partial n$ is the derivative with respect to the outer normal on the boundary $\partial \Omega$ (the generalization to more complicated, non-autonomous

¹⁹⁹¹ Mathematics Subject Classification: Primary 35K60; Secondary 35B35.

The paper is in final form and no version of it will be published elsewhere.

^[309]

operators \mathcal{A}, \mathcal{B} as in [1] is straightforward), f, g are C^1 functions with

$$\begin{aligned} |\partial_t f(x,t,\xi,\eta)| &\leq C(1+|\xi|^{2\nu_1+1}+|\eta|^{\nu_2+1}), \\ |\partial_\xi f(x,t,\xi,\eta)| &\leq C(1+|\xi|^{2\nu_1}+|\eta|^{\nu_2+\min(1,\nu_2)}) \\ |\partial_\eta f(x,t,\xi,\eta)| &\leq C(1+|\xi|^{\nu_1}+|\eta|^{\nu_2}), \\ |\partial_t g(x,t,\xi)| &\leq C(1+|\xi|^{\nu_1+1}), \\ |\partial_\xi g(x,t,\xi)| &\leq C(1+|\xi|^{\nu_1}), \end{aligned}$$

for some $\nu_1 < p/(n-p)$ (if p < n), $\nu_2 < p/n$ and p > 1 (the assumptions concerning the smoothness of f, g in t and x can be relaxed; see e.g. [1, p. 255] for sufficient assumptions in the case p > n).

If $u_0 \in W_p^s(\Omega, \mathbb{R}^N)$, $s \in [1, 1 + 1/p)$, then the theory developed in [1] guarantees the existence of a unique maximal solution of (P) in $W_p^s(\Omega, \mathbb{R}^N)$. Moreover, $u(t) \in W_p^{s+\varepsilon}(\Omega, \mathbb{R}^N)$ for some $\varepsilon > 0$ and any t > 0 and a simple bootstrap argument together with standard imbedding theorems show that $u(t) \in W_{\tilde{p}}^{\tilde{s}}(\Omega, \mathbb{R}^N)$ for any $\tilde{p} \ge p$, $\tilde{s} < 1 + 1/\tilde{p}$ and t > 0. The solution fulfils a variation-of-constants formula of the form

$$u(t) = e^{-At}u_0 + \int_0^t e^{-A(t-s)}F(s, u(s)) \, ds$$

where A is an operator associated with the differential operators \mathcal{A} , \mathcal{B} and F is a map induced by the nonlinear functions f, g (see [1, p. 244] for details). The results of [1, Section 12] imply also that this solution is global if the map F fulfils an estimate of the type

$$\|F(t, u(t))\|_{W^{s'/2-1}_{p}} \le c(t) (1 + \|u(t)\|_{W^{s/2}_{p}}^{\varepsilon})$$

for some $\varepsilon < 1$, s < s' < 1 + 1/p and a nondecreasing function $c : \mathbb{R}^+ \to \mathbb{R}^+$ (where $W^{s/2}_{\mathcal{B}} = W^s_p(\Omega, \mathbb{R}^N)$ and the extrapolation space $W^{s'/2-1}_{\mathcal{B}}$ can be viewed as the dual of the space $W^{2-s'}_q(\Omega, \mathbb{R}^N)$ with 1/p + 1/q = 1; see [1]). Moreover, if $T = \infty$ and $c : \mathbb{R}^+ \to \mathbb{R}^+$ is bounded then $u : [0, T) \to W^s_p(\Omega, \mathbb{R}^N)$ is bounded.

Our main result is the following modification of [1, Theorem 15.2]. By $\|\cdot\|_{s,p}$ or $\|\cdot\|_p$ we denote the norm in $W_p^s(\Omega, \mathbb{R}^N)$ or $L_p(\Omega, \mathbb{R}^N)$, respectively.

THEOREM. Let $p_0 \ge 1$, $p > \max(1, p_0(n-1)/(p_0+n))$, $\hat{\lambda}_1 < 1 + 1/p$,

$$\begin{split} 1 &\leq \hat{\lambda}_j < 1 + \frac{p_0(2-j)}{n+jp_0}, \qquad j = 0, 1, \\ 1 &\leq \hat{\lambda} < 1 + \frac{p_0}{n}, \\ |f(x, t, \xi, \eta)| &\leq C(1+|\xi|^{\hat{\lambda}_0} + |\eta|^{\hat{\lambda}_1}), \\ |g(y, t, \xi)| &\leq C(1+|\xi|^{\hat{\lambda}}) \end{split}$$

for $x \in \overline{\Omega}$, $y \in \partial\Omega$, $t \in [0,T)$ and $(\xi,\eta) \in \mathbb{R}^N \times \mathbb{R}^{Nn}$. Let $u_0 \in W_p^1(\Omega, \mathbb{R}^N)$ and let u be the corresponding maximal solution of (P) with the maximal existence time $T_{\max} \leq T$. Let $c : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function and let $||u(t)||_{p_0} \leq c(t)$ for any $t \in [0, T_{\max})$. Then $T_{\max} = T$ and $\sup_{t \in [t_1, t_2)} ||u(t)||_{s,p} < \infty$ for any s < 1 + 1/p, $t_1 > 0$ and $t_2 \leq T$, $t_2 < \infty$ (or $t_2 = \infty$ if $T = \infty$ and $c : \mathbb{R}^+ \to \mathbb{R}^+$ is bounded). Remark 1. The assumption $\hat{\lambda}_1 < 1+1/p$ seems to be of technical nature: it is due to the fact that we work in the space $W_p^s(\Omega, \mathbb{R}^N)$ with s < 1+1/p which is required by the nonlinear boundary conditions. If we consider e.g. homogeneous Dirichlet boundary conditions then one can use the variation-of-constants formula and corresponding estimates in the space $W_p^s(\Omega, \mathbb{R}^N)$ for any s < 2 and the assumption $\hat{\lambda}_1 < 1+1/p$ becomes unnecessary (cf. also [2, Theorem 5.3]).

The proof of the Theorem is based on the following three lemmas.

LEMMA 1. Let $p_0, \lambda, r \ge 1, \lambda r > 1, p > 1, s, \sigma \in [0, 2], s > 0$ and

(A)
$$1 + p_0(1/r - 1/p) < \lambda < 1 + p_0 \frac{s - \sigma + n(1/r - 1/p)}{n + \sigma p_0}$$

Then there exists $\varepsilon \in (0,1)$ such that

 $\|u\|_{\sigma,r\lambda}^{\lambda} \leq C \|u\|_{p_0}^{\lambda-\varepsilon} \|u\|_{s,p}^{\varepsilon} \quad \text{for any } u \in W_p^s(\Omega, \mathbb{R}^N) \cap L_{p_0}(\Omega, \mathbb{R}^N).$

Proof. The proof follows from [1, Lemma 15.1] by choosing ε sufficiently close to 1, $s_0 = 0$ and observing that the assumption $r \ge p \ge p_0$ in [1] can be relaxed to the assumption $1/(\lambda r) < (1 - 1/\lambda)/p_0 + (1/\lambda)/p$ (cf. [2, Proposition 4.1]) which is equivalent to $\lambda > 1 + p_0(1/r - 1/p)$.

LEMMA 2. Let $p_0 \geq 1$, $p > \max(1, p_0(n-1)/(p_0+n))$, $1 \leq \hat{\lambda} < 1 + p_0/n$. If $s \in [1, 1+1/p)$ is sufficiently close to 1+1/p then there exist $r \geq 1$ and $\lambda \geq \hat{\lambda}$ such that r > p(n-1)/(n-p(s-1)), $r\lambda < p(n-1)/(n-sp)$ (if n > sp) and (A) is fulfilled with $\sigma = 1/(\lambda r)$.

Proof. If n > 1 choose $s \in [1, 1+1/p)$ such that $s > \max(2-n+n/p, 1/n+1/p)$. Then $\tilde{r} := p(n-1)/(n-p(s-1)) > 1$. Choose $r > \tilde{r}$ such that $r(1+p_0/n) < p(n-1)/(n-sp)$ (if n > sp) and $\lambda_{\max}(r) > \max(\hat{\lambda}, \lambda_{\min}(r))$, where

$$\lambda_{\min}(r) := 1 + p_0(1/r - 1/p)$$
 and $\lambda_{\max}(r) := \lambda_{\min}(r) + (p_0/n)(s - 1/r).$

This is possible since $\tilde{r}(1+p_0/n) < p(n-1)/(n-sp)$ (if n > sp) and $\lambda_{\max}(\tilde{r}) = 1+p_0/n > \lambda_{\min}(\tilde{r})$. If n = 1 and r > 1 is arbitrary then $\lambda_{\max}(r) = 1+p_0(s-1/p) > \max(\hat{\lambda}, \lambda_{\min}(r))$ if s is sufficiently close to 1+1/p.

Now for any $n \ge 1$ choose $\lambda \in (\max(\hat{\lambda}, \lambda_{\min}(r)), \lambda_{\max}(r))$. This choice guarantees (A) with $\sigma = 1/(\lambda r)$ since the second inequality in (A) is equivalent to $\lambda < \lambda_{\max}(r)$ in this case.

LEMMA 3. Let $p_0 \geq 1$, $p > \max(1, p_0(n-1)/(p_0+n))$, $1 \leq \hat{\lambda}_0 < 1 + 2p_0/n$, $s \in [1, 1 + 1/p)$, $s' \in (s, 1 + 1/p)$. Put r = pn/(n + (2 - s')p) if n > 1, r = 1 if n = 1. If $s \in [1, 1 + 1/p)$ is sufficiently close to 1 + 1/p then there exists $\lambda_0 > \hat{\lambda}_0$ such that $r\lambda_0 < pn/(n - sp)$ (if n > sp) and (A) is fulfilled with $\sigma = 0$ and λ replaced by λ_0 . If, moreover, $1 \leq \hat{\lambda}_1 < 1 + \min(p_0/(n + p_0), 1/p)$ then there exist $R \geq r$ and $\lambda_1 > \hat{\lambda}_1$ such that $R\lambda_1 < pn/(n - (s - 1)p)$ and (A) is fulfilled with $\sigma = 1$, r replaced by R and λ replaced by λ_1 .

Proof. Denote $\lambda_{\min} = 1 + p_0(1/r - 1/p)$, $\lambda_{\max} = \lambda_{\min} + (p_0/n)s$. Then (A) with

 $\sigma = 0$ is equivalent to $\lambda_{\min} < \lambda < \lambda_{\max}$. It is easy to see that

$$1 + \frac{2p_0}{n} > \lambda_{\max} = 1 + \frac{2p_0}{n} - p_0 \frac{s' - s}{n} > \max(\hat{\lambda}_0, \lambda_{\min}) \quad \text{if } n > 1,$$

$$1 + \frac{2p_0}{n} > \lambda_{\max} = 1 + 2p_0 - p_0(1 + 1/p - s) > \max(\hat{\lambda}_0, \lambda_{\min}) \quad \text{if } n = 1$$

provided s is sufficiently close to 1+1/p. Moreover, $r(1+2p_0/n) < pn/(n-sp)$ if n > sp and s is close to 1+1/p due to our assumption $p > p_0(n-1)/(p_0+n)$. Hence, it is sufficient to choose $\lambda_0 \in (\max(\hat{\lambda}_0, \lambda_{\min}), \lambda_{\max})$.

Now let $1 \le \hat{\lambda}_1 < 1 + \min(p_0/(n+p_0), 1/p)$. If $n > p_0(p-1)$ (i.e. $p_0/(n+p_0) < 1/p$), put R = r,

(1)
$$\Lambda_{\max} = 1 + p_0 \frac{s - 1 + n(1/R - 1/p)}{n + p_0}, \quad \Lambda_{\min} = 1 + p_0(1/R - 1/p)$$

Then

$$\Lambda_{\max} = 1 + \frac{p_0}{n + p_0} (1 - (s' - s)), \qquad \Lambda_{\min} = 1 + \frac{p_0}{n} (2 - s') \qquad \text{if } n > 1,$$

$$\Lambda_{\max} = 1 + \frac{p_0}{n + p_0} \left(s - \frac{1}{p}\right), \qquad \Lambda_{\min} = 1 + p_0 \left(1 - \frac{1}{p}\right) \qquad \text{if } n = 1.$$

In both cases, $\Lambda_{\max} > \max(\hat{\lambda}_1, \Lambda_{\min})$ if s is sufficiently close to 1 + 1/p so that we may choose λ_1 between these values to get (A) with $\sigma = 1$. Moreover, $R\lambda_1 < R\Lambda_{\max} < pn/(n - (s - 1)p)$ if s is close to 1 + 1/p since $p > p_0(n - 1)/(n + p_0)$.

If $n \leq p_0(p-1)$ (i.e. $p_0/(n+p_0) \geq 1/p$), put $\tilde{R} = pp_0/(p_0+1)$. Then $\tilde{R} \in [r, p)$ so that we may choose $R \in (\tilde{R}, p)$. Define $\Lambda_{\min} = \Lambda_{\min}(R)$ and $\Lambda_{\max} = \Lambda_{\max}(R)$ by (1). Then $\Lambda_{\max}(R) > \Lambda_{\min}(R)$ if and only if $R > pp_0/(p_0 + p(s-1))$. Since $\Lambda_{\max}(\tilde{R}) = 1 + 1/p + (s-1-1/p)p_0/(n+p_0) > \hat{\lambda}_1$ for s sufficiently close to 1+1/p, we have also $\Lambda_{\max}(R) > \hat{\lambda}_1$ for s close to 1+1/p and R close to \tilde{R} . Consequently, $\Lambda_{\max}(R) > \max(\hat{\lambda}_1, \Lambda_{\min}(R))$ if s is close to 1+1/p, R is close to \tilde{R} , $R > pp_0/(p_0 + p(s-1))$, so that we may choose λ_1 between these values to get (A) with $\sigma = 1$ (and r or λ replaced by R or λ_1 , respectively). Moreover, $R\lambda_1 < R\Lambda_{\max}(R) < pn/(n-(s-1)p)$ if s is close to 1+1/p and R is close to \tilde{R} since $p > p_0(n-1)/(n+p_0)$.

Proof of the Theorem. Let us write $F = F_f + F_g$ where F_f or F_g represents the contribution of the function f or g, respectively, i.e.

$$F_f(t, u) = f(\cdot, t, u(\cdot), \nabla u(\cdot)),$$

$$F_q(t, u) = (\sigma + A)\mathcal{R}g(\cdot, t, u(\cdot)).$$

where $\sigma > 0$ and the operator \mathcal{R} is described in [1, Section 11]. Denote by \hat{f} and \hat{g} the Nemytskiĭ operators defined by

$$\begin{split} f(t,u,v) &= f(\cdot,t,u(\cdot),v(\cdot)),\\ \hat{g}(t,u) &= g(\cdot,t,u(\cdot)). \end{split}$$

Let s, λ, r be from Lemma 2. Denoting by Tr and *i* the trace operator and the imbedding,

respectively, the operator F_g can be written in the form (cf. [1, p. 258])

$$F_{g}(t,\cdot): W_{\mathcal{B}}^{s/2} = W_{p}^{s}(\Omega, \mathbb{R}^{N}) \xrightarrow{\mathrm{Tr}} W_{p}^{s-1/p}(\partial\Omega, \mathbb{R}^{N}) \xrightarrow{i} L_{r\lambda}(\partial\Omega, \mathbb{R}^{N})$$
$$\xrightarrow{\hat{g}(t,\cdot)} L_{r}(\partial\Omega, \mathbb{R}^{N}) \xrightarrow{i} W_{p}^{s'-1-1/p}(\partial\Omega, \mathbb{R}^{N}) \xrightarrow{(\sigma+A)\mathcal{R}} W_{\mathcal{B}}^{s'/2-1}$$

for some $s' \in (s, 1+1/p)$ (the imbeddings are guaranteed by the inequalities in Lemma 2). Hence, using Lemmas 1 and 2 we can estimate

$$\begin{aligned} \|F_g(t,u)\|_{W^{s'/2-1}_{\mathcal{B}}} &\leq C \|\hat{g}(t,u)\|_{L_r(\partial\Omega,\mathbb{R}^N)} \leq C(1+\|u\|^{\lambda}_{L_{r\lambda}(\partial\Omega,\mathbb{R}^N)}) \\ &\leq C(1+\|u\|^{\lambda}_{1/r\lambda,r\lambda}) \leq C(1+\|u\|^{\lambda-\varepsilon}_{p_0}\|u\|^{\varepsilon}_{s,p}) \\ &\leq Cc(t)^{\lambda-\varepsilon}(1+\|u\|^{\varepsilon}_{W^{s/2}_{\mathcal{B}}}). \end{aligned}$$

Similarly, if $s, \lambda_0, \lambda_1, r, R$ are the constants from Lemma 3 then the operator F_f can be written as

$$F_f(t,\cdot): W^{s/2}_{\mathcal{B}} = W^s_p(\Omega, \mathbb{R}^N) \xrightarrow{i \times \nabla} W^s_p(\Omega, \mathbb{R}^N) \times (W^{s-1}_p(\Omega, \mathbb{R}^N))^n \xrightarrow{i} L_{r\lambda_0}(\Omega, \mathbb{R}^N) \times (L_{R\lambda_1}(\Omega, \mathbb{R}^N))^n \xrightarrow{\hat{f}(t,\cdot,\cdot)} L_r(\Omega, \mathbb{R}^N) \xrightarrow{i} W^{s'/2-1}_{\mathcal{B}}$$

together with the corresponding estimate

$$\|F_g(t,u)\|_{W^{s'/2-1}_{\mathcal{B}}} \le C(t)(1+\|u\|^{\varepsilon}_{W^{s/2}_{\mathcal{B}}}). \quad$$

Remark 2. If we assume $f \equiv 0$ and $\sup_{t \in [0,T)} \|u(t)\|_{L_{p_0}(\partial\Omega,\mathbb{R}^N)} \leq c(t)$ instead of $\sup_{t \in [0,T)} \|u(t)\|_{L_{p_0}(\Omega,\mathbb{R}^N)} \leq c(t)$ in our Theorem then we may repeat the considerations above with the corresponding estimate

$$\begin{split} \|F_g(t,u)\|_{W^{s'/2-1}_{\mathcal{B}}} &\leq C(1+\|u\|^{\lambda}_{L_{r\lambda}(\partial\Omega,\mathbb{R}^N)}) \\ &\leq C(1+\|u\|^{\lambda-\varepsilon}_{L_{p_0}(\partial\Omega,\mathbb{R}^N)}\|u\|^{\varepsilon}_{W^{s-1/p}_p(\partial\Omega,\mathbb{R}^N)}) \\ &\leq Cc(t)^{\lambda-\varepsilon}(1+\|u\|^{\varepsilon}_{W^{s/2}_{\mathcal{B}}}) \end{split}$$

under the following hypothesis on p, p_0 and $\hat{\lambda}$:

$$p > \max\left(1, \frac{p_0(n-1)}{p_0+n-1}\right), \qquad \hat{\lambda} < 1 + \frac{p_0}{n-1}.$$

This corresponds to the results of J. Filo in [4].

EXAMPLE. Let n = N = 1, $\Omega = (-1, 1)$, $f \equiv 0$, $g(x, t, u) = u^{\lambda}$, $\lambda > 1$, let $u_0 : [-1, 1] \to \mathbb{R}^+$ be a smooth function, $u_0(-x) = u_0(x)$ for $x \in [-1, 1]$, $u'_0(1) = u^{\lambda}_0(1) > 0$ and let the first four derivatives of u_0 restricted to the interval [0, 1] be non-negative. Then [3] implies that the solution u is non-negative, it blows up in a finite time $T = T(u_0)$ and choosing $p_0 \ge 1$ we get

$$\begin{aligned} \frac{1}{p_0} \frac{d}{dt} \int_0^1 u^{p_0}(x,t) \, dx &= \int_0^1 u^{p_0-1} u_t \, dx = \int_0^1 u^{p_0-1} u_{xx} \, dx \\ &= -\int_0^1 (p_0-1) u^{p_0-2} u_x^2 \, dx + u^{p_0-1} u_x \Big|_{x=0}^1 \\ &\le u^{p_0+\lambda-1}(1,t) \le \left(\frac{\lambda-1}{T-t}\right)^{\frac{p_0+\lambda-1}{2(\lambda-1)}} = C(T-t)^{-\frac{p_0+\lambda-1}{2(\lambda-1)}} \end{aligned}$$

where we have used the estimate (2.1) from [3]. Hence $||u(t)||_{p_0}$ stays bounded if $\frac{p_0+\lambda-1}{2(\lambda-1)} < 1$, i.e. if $\lambda > 1 + p_0$. This shows that the condition $\hat{\lambda} < 1 + p_0/n$ in our Theorem is (except for the equality sign) optimal if n = 1.

References

- H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations 72 (1988), 201–269.
- [2] H. Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math. 360 (1985), 47-83.
- [3] M. Fila and P. Quittner, The blow-up rate for the heat equation with a non-linear boundary condition, Math. Methods Appl. Sci. 14 (1991), 197-205.
- [4] J. Filo, Uniform bounds for solutions of a degenerate diffusion equation with nonlinear boundary conditions, Comment. Math. Univ. Carolin. 30 (1989), 485–495.