SINGULARITIES AND DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 33 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

WHITNEY STRATIFICATION OF SETS DEFINABLE IN THE STRUCTURE \mathbb{R}_{exp}

TA LÊ LOI

Department of Mathematics, University of Dalat, Dalat, Vietnam

Abstract. The aim of this paper is to prove that every subset of \mathbb{R}^n definable from addition, multiplication and exponentiation admits a stratification satisfying Whitney's conditions a) and b).

1. Preliminaries. Let \mathcal{A}_n be the smallest ring of real-valued functions on \mathbb{R}^n such that:

(a) \mathcal{A}_n contains all polynomials, i.e. $\mathbb{R}[x_1, \ldots, x_n] \subset \mathcal{A}_n$.

(b) \mathcal{A}_n is closed under taking exponentiation, i.e. if $f \in \mathcal{A}_n$, then $\exp f \in \mathcal{A}_n$.

1.1. DEFINITION. Let $\mathcal{D} = (\mathcal{D}_n)_{n \in \mathbb{N}}$ be the smallest class of subsets of Euclidean spaces $\mathbb{R}^n, n \in \mathbb{N}$, where \mathcal{D}_n is a class of subsets of \mathbb{R}^n , satisfying the following properties for all n:

(D1) \mathcal{D}_n contains all sets of the form $\{x \in \mathbb{R}^n : f(x) = 0\}$, where $f \in \mathcal{A}_n$.

(D2) If $S, T \in \mathcal{D}_n$, then $S \cup T, S \cap T$ and $S \setminus T \in \mathcal{D}_n$.

(D3) If $S \in \mathcal{D}_{n+1}$, then $\pi(S) \in \mathcal{D}_n$, where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the natural projection.

A set S is called a \mathcal{D}_n -set iff $S \in \mathcal{D}_n$. A \mathcal{D} -set is a \mathcal{D}_n -set for some $n \in \mathbb{N}$. A function $f: S \to \mathbb{R}$ is called a \mathcal{D} -function iff its graph is a \mathcal{D} -set.

Remark. The class \mathcal{D} contains all semi-algebraic sets. A \mathcal{D} -set, in general, is not subanalytic (e.g. $\{(x, y) : x > 0, y = \exp(-1/x)\}$). If f is a \mathcal{D} -function, then so is $\exp f$. If, in addition, f > 0, then $\log f$, f^{α} ($\alpha \in \mathbb{R}$) are \mathcal{D} -functions. The closure, the interior and the boundary in \mathbb{R}^n of a \mathcal{D}_n -set are \mathcal{D}_n -sets.

The following theorem is due to Wilkie [9], [10], which is an essential result for the class \mathcal{D} .

¹⁹⁹¹ Mathematics Subject Classification: 14P99, 32B25.

Key words and phrases: \mathcal{D} -sets, Whitney stratification.

The paper is in final form and no version of it will be published elsewhere.

^[401]

TA LÊ LOI

1.2. THEOREM (Wilkie). Let $S \subset \mathbb{R}^n$ be a \mathcal{D} -set. Then there exists $f \in \mathcal{A}_{n+m}$, for some $m \in \mathbb{N}$, such that $S = \pi(f^{-1}(0))$, where $\pi : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is the natural projection.

Combining the theorem with a Khovanskiĭ result on fewnomials [4] it follows that every \mathcal{D} -set has only finitely many connected components.

1.3. DEFINITION (cf. [2]). (i) A map $f: S \to \mathbb{R}^m$ with $S \subset \mathbb{R}^n$ is called a \mathcal{D} -map if its graph belongs to \mathcal{D}_{n+m} . In this case it is called \mathcal{D} -analytic if there is an open neighborhood U of S in $\mathbb{R}^n, U \in \mathcal{D}_n$ and an analytic \mathcal{D} -map $F: U \to \mathbb{R}^m$ such that $F|_S = f.$

(ii) \mathcal{D}_n -analytic cells in \mathbb{R}^n are defined by induction on n: \mathcal{D}_1 -analytic cells are points $\{r\}$ or open intervals $(a, b), -\infty \leq a < b \leq +\infty$. If C is a \mathcal{D}_n -analytic cell and $f, g: C \to \mathbb{R}$ are \mathcal{D} -analytic such that f < g, then

$$(f,g) := \{(x,r) \in C \times \mathbb{R} : f(x) < r < g(x)\}, (-\infty, f) := \{(x,r) \in C \times \mathbb{R} : r < f(x)\}, (g, +\infty) := \{(x,r) \in C \times \mathbb{R} : g(x) < r\},$$

 $\Gamma(f) := \operatorname{graph} f$ and $C \times \mathbb{R}$ are \mathcal{D}_{n+1} -analytic cells.

(iii) A \mathcal{D} -analytic decomposition of \mathbb{R}^n is defined by induction on n: A \mathcal{D} -analytic decomposition of \mathbb{R}^1 is a finite collection of intervals and points $\{(-\infty, a_1), \ldots, (a_k, +\infty), (a_k, +\infty)$ $\{a_1\},\ldots,\{a_k\}\}$, where $a_1 < \ldots < a_k, k \in \mathbb{N}$. A *D*-analytic decomposition of \mathbb{R}^{n+1} is a finite partition of \mathbb{R}^{n+1} into \mathcal{D}_{n+1} -analytic cells C such that the collection of all the projections $\pi(C)$ is a \mathcal{D} -analytic decomposition of \mathbb{R}^n (here $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the natural projection).

We say that a decomposition partitions S if S is a union of some cells of the decomposition.

1.4. THEOREM (van den Dries & Miller). (I_n) For $S_1, \ldots, S_k \in \mathcal{D}_n$ there is a \mathcal{D} analytic decomposition of \mathbb{R}^n partitioning S_1, \ldots, S_k .

(II_n) For every function $f: S \to \mathbb{R}, S \in \mathcal{D}_n$, there is a \mathcal{D} -analytic decomposition of \mathbb{R}^n partitioning S such that for each cell $C \subset S$ of the decomposition, the restriction $f|_C$ is \mathcal{D} -analytic.

For the proof see [1], [2] or [6].

1.5. COROLLARY. Let S_1, \ldots, S_k be \mathcal{D}_n -sets. Then there is an analytic stratification of \mathbb{R}^n compatible with S_1, \ldots, S_k . Precisely, there is a finite family $\{\Gamma^{\alpha}_{\alpha}\}$ of subsets of \mathbb{R}^n such that:

(S1) Γ^d_{α} are disjont, $\mathbb{R}^n = \bigcup_{\alpha,d} \Gamma^d_{\alpha}$ and $S_i = \bigcup \{\Gamma^d_{\alpha} : \Gamma^d_{\alpha} \cap S_i \neq \emptyset\}, i = 1, \dots, k.$ (S2) Each Γ^d_{α} is a \mathcal{D}_n -analytic cell of dimension d.

(S3) $\overline{\Gamma^d_{\alpha}} \setminus \Gamma^d_{\alpha}$ is a union of some cells Γ^e_{β} with e < d.

1.6. COROLLARY. Let $f : \mathbb{R} \to \mathbb{R}$ be a \mathcal{D} -function. Then the limits $\lim_{+\infty} f$, $\lim_{-\infty} f$, $\lim_{c^+} f$ and $\lim_{c^-} f$ $(c \in \mathbb{R})$ exist in $\mathbb{R} \cup \{-\infty, +\infty\}$.

1.7. COROLLARY (curve selecting lemma). Let $S \subset \mathbb{R}^n$ be a \mathcal{D} -set and $a \in \overline{S}$ be a nonisolated point of S. Then there exists an analytic \mathcal{D} -map $\gamma: (0,1) \to S$ such that $\lim_{0^+} \gamma = a.$

For the proof of the corollaries see [5], [6].

R e m a r k. The class \mathcal{D} shares many nice properties with those of semi-algebraic sets (see [1], [5], [7]).

2. Whitney stratification. In this section we prove the existence of the Whitney stratification of \mathcal{D} -sets. The proof is inspired by that of Lojasiewicz [8] for semianalytic sets.

Let $G_k(\mathbb{R}^n)$ denote the Grassmannian of k-dimensional vector subspaces of \mathbb{R}^n . Let \langle , \rangle denote the scalar product with respect to the canonical base of \mathbb{R}^n . Then $G_k(\mathbb{R}^n)$ can be identified with the set of all $n \times n$ matrices $A \in \operatorname{Mat}(n, n)$ with $A^2 = A$, ${}^tA = A$ and trace A = k. Therefore $G_k(\mathbb{R}^n)$ is an algebraic subset of \mathbb{R}^n^2 . So it is a \mathcal{D} -set.

2.1. PROPOSITION. Let X be an analytic submanifold of \mathbb{R}^n which is also a \mathcal{D} -set. Suppose that $\phi_1, \ldots, \phi_k : X \to \mathbb{R}^n$ are analytic \mathcal{D} -maps such that for all x in X the vectors $\phi_1(x), \ldots, \phi_k(x)$ generate a k-dimensional vector subspace $\Phi(x)$ of \mathbb{R}^n . Then the map $\Phi: X \to G_k(\mathbb{R}^n)$ is a \mathcal{D} -map. Consequently, if X is of dimension k, then the map

$$\mathcal{T}_X: X \to G_k(\mathbb{R}^n)$$
 defined by $\mathcal{T}_X(x) = T_{X,x}$

(where $T_{X,x}$ denotes the tangent space of X at x) is a \mathcal{D} -map.

Proof. Since $\Phi(x)$ is identified with the orthogonal projection of \mathbb{R}^n onto $\Phi(x)$,

$$\Phi(x) \cdot h = \sum_{i=1}^{k} a_i(x,h)\phi_i(x),$$

where

$$\begin{pmatrix} a_1(x,h) \\ \vdots \\ a_k(x,h) \end{pmatrix} = A^{-1}(x) \begin{pmatrix} \langle h,\phi_1(x) \rangle \\ \vdots \\ \langle h,\phi_k(x) \rangle \end{pmatrix},$$

with A(x) being the $k \times k$ matrix $(\langle \phi_i(x), \phi_j(x) \rangle)$. So the coefficients of Φ are \mathcal{D} -functions. This implies that Φ is a \mathcal{D} -map.

Let $C \subset \mathbb{R}^n$ be a \mathcal{D} -analytic cell of dimension k. Then, by Definition 1.3, C can be parametrized by an analytic \mathcal{D} -map $\phi: U \to \mathbb{R}^n$, where U is an open \mathcal{D} -set of \mathbb{R}^k . Put $\phi_i(x) = (\partial \phi / \partial y_i)(\phi^{-1}(x)), x \in C, i = 1, ..., k$. By the first part of the proposition, \mathcal{T}_C is a \mathcal{D} -map. If X is of dimension k, then, by Theorem 1.4, X can be partitioned into finitely many cells C_i . It is easy to see that

$$\operatorname{graph} \mathcal{T}_X = \{(x,T) : x \in X, T = T_{X,x}\} = X \times G_k(\mathbb{R}^n) \cap \left(\bigcup_{j: \dim C_j = k} \overline{\operatorname{graph} \mathcal{T}_{C_j}}\right)$$

Thus \mathcal{T}_X is a \mathcal{D} -map.

2.2. DEFINITION. Let X, Y be analytic submanifolds of \mathbb{R}^n of dimensions k and l respectively. Suppose that $X \cap Y = \emptyset$ and $Y \subset \overline{X}$. Let $y \in Y$. We say that (X, Y) satisfies *Whitney's condition* a) at y if the following condition is satisfied:

a) For any sequence $(x_{\nu})_{\nu \in \mathbb{N}}$ of points of X with $\lim x_{\nu} = y$, if $\lim T_{X,x_{\nu}} = \tau$ in $G_k(\mathbb{R}^n)$, then $\tau \supset T_{Y,y}$.

We say that (X, Y) satisfies Whitney's condition b) at y iff

b) For any pair of sequences $(x_{\nu})_{\nu \in \mathbb{N}}$, $x_{\nu} \in X$, and $(y_{\nu})_{\nu \in \mathbb{N}}$, $y_{\nu} \in Y$, with $\lim x_{\nu} = \lim y_{\nu} = y$, if $\lim T_{X,x_{\nu}} = \tau$ and the sequence of lines $\mathbb{R}(x_{\nu} - y_{\nu})$ has a limit λ in $G_1(\mathbb{R}^n)$, then $\tau \supset \lambda$.

2.3. Remark. Let $\delta: G_l(\mathbb{R}^n) \times G_k(\mathbb{R}^n) \to \mathbb{R}$ be the function defined by

 $\delta(E, F) = \sup\{d(x, F) : x \in E, ||x|| = 1\}, \quad E \in G_l(\mathbb{R}^n), \ F \in G_k(\mathbb{R}^n) \quad (l \le k).$

Then δ is semialgebraic (so it is a \mathcal{D} -function) and $\delta(E, F) = 0 \Leftrightarrow E \subset F$. If $K \subset F$ is a vector subspace, then $\delta(E, F) \leq \delta(E, K)$. If $E = \operatorname{graph} \eta$ and $F = \operatorname{graph} \theta$, where $\eta, \theta : \mathbb{R}^p \to \mathbb{R}^q$ are linear maps (p + q = n), then $\delta(E, F) \leq \|\theta - \eta\|$.

2.4. PROPOSITION. Under the notation of Def. 2.2, let $W_{\rm a}(X,Y)$ (resp. $W_{\rm b}(X,Y)$) be the set of points of Y at which (X,Y) satisfies Whitney's condition a) (resp. b)). Then $W_{\rm a}(X,Y)$ and $W_{\rm b}(X,Y)$ are \mathcal{D} -sets.

Proof. We have

$$W_{\mathbf{a}}(X,Y) = \{ y \in Y : \forall \tau \in G_k(\mathbb{R}^n), (y,\tau) \in \overline{\operatorname{graph} \mathcal{T}_X} \Rightarrow \tau \supset T_{Y,y} \}$$

= $\{ y \in Y : \forall \tau \in G_k(\mathbb{R}^n), (y,\tau) \in \overline{\operatorname{graph} \mathcal{T}_X} \Rightarrow \delta(T_{Y,y},\tau) = 0 \}$

By Proposition 2.1, Remark 2.3 and Definition 1.1, $W_{a}(X,Y)$ is a \mathcal{D} -set.

Similarly, let $V = \{(x, T, y, d) \in \mathcal{T}_X \times Y \times G_1(\mathbb{R}^n) : d = \mathbb{R}(x-y)\}$. By Proposition 2.1 the map $X \times Y \ni (x, y) \mapsto \mathbb{R}(x-y) \in G_1(\mathbb{R}^n)$ is a \mathcal{D} -map. So V is a \mathcal{D} -set. Then

$$W_{\rm b}(X,Y) = \{ y \in Y : \forall \tau \in G_k(\mathbb{R}^n), \forall \lambda \in G_1(\mathbb{R}^n), (y,\tau,y,\lambda) \in \overline{V} \Rightarrow \delta(\lambda,\tau) = 0 \}$$

is also a $\mathcal D\text{-}\mathrm{set.}~\blacksquare$

2.5. THEOREM. Let X, Y be analytic submanifolds of \mathbb{R}^n which are \mathcal{D} -sets. Suppose that $X \cap Y = \emptyset$ and $Y \subset \overline{X}$. Then

 $\dim(Y \setminus W_{\mathbf{a}}(X,Y)) < \dim Y \quad and \quad \dim(Y \setminus W_{\mathbf{b}}(X,Y)) < \dim Y.$

To prove this theorem we prepare some lemmas.

2.6. LEMMA (definable selection). Let $S \subset \mathbb{R}^p \times \mathbb{R}^m$ be a \mathcal{D} -set and let $\pi : \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}^p$ be the natural projection. Then there exists a \mathcal{D} -map $\varrho : \pi(S) \to \mathbb{R}^p \times \mathbb{R}^m$ such that $\pi(\varrho(x)) = x$ for all $x \in \pi(S)$.

Proof (cf. [1, Ch. 8, Prop. (1.2)]). Clearly, it is sufficient to prove the lemma for m=1. Moreover, by Theorem 1.4, we may assume that S is a cell. We define ρ as follows:

If S = (f, g), where $f, g: \pi(S) \to \mathbb{R}$ are \mathcal{D} -functions, let $\varrho(x) = (x, \frac{1}{2}(f(x) + g(x)))$. If $S = (-\infty, g)$, where $g: \pi(S) \to \mathbb{R}$ is a \mathcal{D} -function, let $\varrho(x) = (x, g(x) - 1)$. If $S = (f, +\infty)$, where $f: \pi(S) \to \mathbb{R}$ is a \mathcal{D} -function, let $\varrho(x) = (x, f(x) + 1)$. If $S = \Gamma(f)$, where $f: \pi(S) \to \mathbb{R}$ is a \mathcal{D} -function, let $\varrho(x) = (x, f(x))$. If $S = \pi(S) \times \mathbb{R}$, let $\rho(x) = (x, 0)$.

2.7. LEMMA (half wing). Let $S, V \subset \mathbb{R}^p \times \mathbb{R}^q$ be \mathcal{D} -sets, $S \cap V = \emptyset$ and $V \subset \overline{S}$. Suppose that V is open in \mathbb{R}^p , where $\mathbb{R}^p \equiv \mathbb{R}^p \times O \subset \mathbb{R}^p \times \mathbb{R}^q$. Let $\pi : \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^p$ be the natural projection. Then there are an open \mathcal{D} -set U in V, r > 0 and an analytic \mathcal{D} -map $\overline{\theta} : (0, r) \times U \to S$ such that $\overline{\theta}(t, y) = (y, \theta(t, y))$ and $\|\theta(t, y)\| \leq t$ for all $(t, y) \in (0, r) \times U$. Proof. Let

$$A = \{(t, y, x) : 0 < t < 1, y \in V, x \in S, ||x - y|| \le t, \pi(x) = y\}$$

Then A is a \mathcal{D} -set. If π_1 is the projection defined by $\pi_1(t, y, x) = y$, then $\pi_1(A)$ is dense in V (so is of dimension p). Indeed, let $y_0 \in V$ and $\delta > 0$. Then there is $\delta', 0 < \delta' < \min(\frac{1}{2}, \delta)$ such that $B(y_0, \delta') \cap \mathbb{R}^p \times O \subset V$. Since $y_0 \in \overline{S} \setminus S$, there is $x \in B(y_0, \delta') \cap S$. Then $y = \pi(x) \in B(y_0, \delta') \cap \pi_1(A)$.

Now, let π_2 be the projection defined by $\pi_2(t, y, x) = (t, y)$. Put

$$\pi_2(A)_y = \{t \in (0,1) : (t,y) \in \pi_2(A)\}, \quad \varepsilon(y) = \inf \pi_2(A)_y, \quad y \in \pi_1(A).$$

Then ε is a \mathcal{D} -function and $\varepsilon(y) > 0 \Rightarrow (0, \varepsilon(y)) \cap \pi_2(A)_y = \emptyset$.

CLAIM 1. dim{ $y \in \pi_1(A) : \varepsilon(y) > 0$ } < p.

Conversely, suppose that the dimension equals p. Then, by Theorem 1.4, there is an open \mathcal{D} -set W in \mathbb{R}^p , $W \subset \pi_1(A)$ on which ε is analytic and $\varepsilon > c$ for some c > 0. Let $y_0 \in W$ and $\delta \in \mathbb{R}, 0 < \delta < c$, such that $B(y_0, \delta) \cap \mathbb{R}^p \times O \subset W$. Then $\|\pi(x) - y\| > c > \delta$, $\forall y \in B(y_0, \delta) \cap \mathbb{R}^p \times O, \forall x \in S$ with $\pi(x) = y$. This contradicts the argument above. The claim is verified.

CLAIM 2. If $y \in \pi_1(A)$, $\varepsilon(y) = 0$, then $\pi_2(A)_y \supset (0,1)$.

Since $\pi_2(A)_y$ is a nonempty \mathcal{D} -set and $0 \in \overline{\pi_2(A)_y} \setminus \pi_2(A)_y$, there is $\delta > 0$ such that $(0, \delta) \subset \pi_2(A)_y$, i.e. there is x in S, $\pi(x) = y$ and $||x-y|| \leq \delta$. So for every $t \in (0, 1), t \geq \delta$, $||x-y|| \leq t$, i.e. $t \in \pi_2(A)_y$. The claim follows.

Let $V_1 = \{y \in \pi_1(A) : \varepsilon(y) = 0\}$. Then, from Claim 1, dim $V_1 = p$ and, from Claim 2, $\pi_2(A) \supset (0,1) \times V_1$. By the definable selection lemma there is a \mathcal{D} -map $\varrho : (0,1) \times V_1 \to A$ such that $\varrho(t,y) = (t,y,\bar{\theta}(t,y))$. That means $\bar{\theta} : (0,1) \times V_1 \to S$ satisfies $\pi(\bar{\theta}(t,y)) = y$ and $\|\bar{\theta}(t,y) - y\| \leq t$, i.e. $\bar{\theta}(t,y) = (y,\theta(t,y))$ and $\|\theta(t,y)\| \leq t$.

By Theorem 1.4, with t regarded as the last coordinate, $(0, 1) \times V_1$ can be partitioned into cells such that the restriction of θ to each of the cells is analytic. Let C be a cell of the partition with dim $\pi_3(C) = p$ (here $\pi_3(t, y) = y$). By the definition of cells, there is an analytic \mathcal{D} -function $f : \pi_3(C) \to \mathbb{R}$, f > 0, such that (0, f) is a cell of the partition. This implies that there are an open \mathcal{D} -set U in $\pi_3(C)$ and r > 0 such that f > r on U. Therefore, θ is analytic on $(0, r) \times U$. This finishes the proof of the lemma.

2.8. LEMMA. Under the notation of the above lemma, for every c > 0 there is $(t_c, y_c) \in (0, r) \times U$ such that $||d_y \theta(t_c, y_c)|| < c$.

Proof. Let $\theta = (\theta_1, \dots, \theta_q)$. For each $i \in \{1, \dots, q\}$, let

$$A_i = \{ (t, y) \in (0, r) \times U : \| d_y \theta_i(t, y) \| < c/\sqrt{q} \}$$

Then A_1, \ldots, A_q are open \mathcal{D} -sets.

CLAIM: $0 \times U \subset \overline{A}_i \setminus A_i$, for all $i \in \{1, \ldots, q\}$.

Let $y_0 \in U$, $\delta \in \mathbb{R}$, $0 < \delta < \min(d(y_0, {}^cU), c/(2\sqrt{q}))$, and $t \in (0, r), 0 < t < \delta^2/2$. For each *i* consider the function

$$\psi_i: U \ni y \mapsto \theta_i(t, y) + \|y - y_0\|^2 - t \in \mathbb{R}.$$

By Lemma 2.6, $-t \leq \theta_i(t, y) \leq t$ for all $y \in U$. We have

$$\psi_i(y) \ge -2t + \delta^2 > 0 \quad \forall y \in U, ||y - y_0|| = \delta,$$

 $\psi_i(y_0) = \theta_i(t, y_0) - t \le 0.$

Therefore ψ_i has a critical point in $B(y_0, \delta)$, i.e. there is a $\overline{y} \in B(y_0, \delta)$ such that

$$d_y \theta_i(t, \overline{y}) + 2(\overline{y} - y_0) = 0$$

This implies $||d_y \theta_i(t, \overline{y})|| < 2\delta < c/\sqrt{q}$. The claim is verified.

Now, let $(A_i)_y = \{t \in (0, r) : (t, y) \in A_i\}$. For each $i \in \{1, ..., q\}$ define

$$\varepsilon_i(y) = \begin{cases} \inf(\overline{(A_i)}_y \setminus (A_i)_y) \cap (0, r) & \text{if } 0 \in \overline{(A_i)}_y \\ 0 & \text{if } 0 \notin \overline{(A_i)}_y \end{cases}$$

Then ε_i is a \mathcal{D} -function on U and $\varepsilon_i(y) \neq 0 \Leftrightarrow (A_i)_y \supset (0, \varepsilon_i(y)).$

Since $0 \times U \subset \overline{A}_i \setminus A_i$, dim $\{y \in U : \varepsilon_i(y) = 0\} < p$. (If not, then there is an open \mathcal{D} -set U_i in U on which $\varepsilon_i \equiv 0$. Let $\alpha_i : U_i \to \mathbb{R}$ be defined by $\alpha_i(y) = \inf(A_i)_y$. Then α_i is a \mathcal{D} -function, $\alpha_i > 0$ and $(0, \alpha_i(y)) \cap (A_i)_y = \emptyset$. By Theorem 1.4 there are an open cell $V_i \subset U_i$ and M > 0 such that $\alpha_i|_{V_i} \geq M$. This implies $O \times V_i \not\subset \overline{A}_i \setminus A_i$, a contradiction.) So $U \setminus \bigcup_{i=1}^q \{y \in U : \varepsilon_i(y) = 0\}$ is of dimension p. For each y in this set, $\varepsilon(y) := \min_{1 \leq i \leq q} \varepsilon_i(y) > 0$. Thus $(\varepsilon(y)/2, y) \in A_i, \forall i \in \{1, \ldots, q\}$, i.e. this point satisfies the demand of the lemma.

2.9. LEMMA. Let X, Y be analytic submanifolds of \mathbb{R}^n of dimensions k and p respectively. Suppose that X, Y are D-sets, $X \cap Y = \emptyset$, $Y \subset \overline{X}$ and Y is open in $\mathbb{R}^p \equiv \mathbb{R}^p \times O$. Let $\pi : \mathbb{R}^n \equiv \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^p$ be the natural projection. Let $W_{\mathbf{b}'}(X,Y)$ be the set of points y of Y where (X,Y) satisfies the following condition:

b') For any sequence $(x_{\nu})_{\nu \in \mathbb{N}}$ of points of X with $\lim x_{\nu} = y$, if $\lim T_{X,x_{\nu}} = \tau \in G_k(\mathbb{R}^n)$ and $\lim \mathbb{R}(x_{\nu} - \pi(x_{\nu})) = \lambda \in G_1(\mathbb{R}^n)$, then $\tau \supset \lambda$.

Then $W_{\mathbf{b}'}(X,Y)$ is a \mathcal{D} -set and $W_{\mathbf{a}}(X,Y) \cap W_{\mathbf{b}'}(X,Y) \subset W_{\mathbf{b}}(X,Y)$.

Proof. Similarly to the proof of Proposition 2.4 it is easy to prove that $W_{b'}(X,Y)$ is a \mathcal{D} -set. We prove the second part of the lemma.

Let $y \in W_{\mathbf{a}}(X, Y) \cap W_{\mathbf{b}'}(X, Y)$. Define

$$F\{(x, T, y, d) : x \in X, T = T_{X, x}, y \in Y, d = \mathbb{R}(x - y)\}.$$

Let $(y, \tau, y, \lambda) \in \overline{F}$. It suffices to prove that $\lambda \subset \tau$.

By Corollary 1.7 there is a continuous \mathcal{D} -map

$$\gamma: [0,1] \to \mathbb{R}^n \times G_k(\mathbb{R}^n) \times \mathbb{R}^n \times G_1(\mathbb{R}^n)$$

such that γ is analytic on (0,1), $\gamma(0) = (y,\tau,y,\lambda)$ and for all t in (0,1], $\gamma(t) = (\gamma_1(t), T_{X,\gamma_1(t)}, \gamma_2(t), \mathbb{R}(\gamma_1(t) - \gamma_2(t)))$ with $\gamma_1(t) \in X, \gamma_2(t) \in Y$.

Since (X, Y) satisfies condition a) at $y, \tau \supset T_{Y,y}$.

Since (X, Y) satisfies condition b') at $y, \tau \supset \lim_{0^+} \mathbb{R}(\gamma_1(t) - \pi(\gamma_1(t)))$ (this limit exists by Corollary 1.6). This implies $\lambda = \lim_{0^+} \mathbb{R}(\gamma_1(t) - \gamma_2(t)) \subset \tau$ because $\mathbb{R}(\gamma_1(t) - \gamma_2(t))$ is contained in the vector subspace spanned by $\mathbb{R}(\gamma_1(t) - \pi(\gamma_1(t)))$ and $\mathbb{R}(\gamma_2(t) - \pi(\gamma_1(t))) \subset T_{Y,y} = \mathbb{R}^p \times O$.

406

2.10. LEMMA. Let X be a \mathcal{D} -set which is also an analytic submanifold of \mathbb{R}^n . Let $y \in \overline{X} \setminus X$ and $\gamma : (0, \varepsilon) \to X$ ($\varepsilon > 0$) be an analytic \mathcal{D} -function with $\lim_{0^+} \gamma = y$. Then $\lim_{t\to 0^+} \delta(\mathbb{R}(\gamma(t) - y), T_{X,\gamma(t)}) = 0$.

Proof. Since $y \notin X$, $\gamma(t) \notin \text{const.}$ So $\gamma' \notin 0$. Moreover, γ' is a \mathcal{D} -map, and reducing ε , we can assume that $\gamma' \neq 0$. By Corollary 1.6 the limit $\lim_{0^+} \gamma' / \|\gamma'\|$ exists. This implies the curve $C = \{y\} \cup \gamma(0, \varepsilon)$ is a C^1 curve. So $\lim_{0^+} \delta(\mathbb{R}(\gamma(t) - y), \mathbb{R}\gamma'(t)) = 0$. But $\gamma'(t) \in T_{X,\gamma(t)}, \forall t \in (0, \varepsilon)$. Thus $\lim_{0^+} \delta(\mathbb{R}(\gamma(t) - y), T_{X,\gamma(t)}) = 0$.

Proof of Theorem 2.5. Let $p = \dim Y$. By Theorem 1.4, Y can be partitioned into finitely many cells C_j . It is therefore sufficient to prove that for any j with dim $C_j = p$, both dim $(C_j \setminus W_a(X, Y))$ and dim $(C_j \setminus W_b(X, Y))$ are smaller than p.

Moreover, the Whitney conditions are of a local nature and invariant under analytic isomorphisms, and from the definition of cells, we may assume that Y is an open \mathcal{D} -set in $\mathbb{R}^p \equiv \mathbb{R}^p \times O \subset \mathbb{R}^p \times \mathbb{R}^q$ (p+q=n).

Proof of dim $(Y \setminus W_{a}(X, Y)) < p$. Define

$$\phi(y,t) = \sup\{\delta(\mathbb{R}^p, T_{X,x}) : x \in X, \|x - y\| \le t\}, \quad y \in Y, t > 0$$

Then ϕ is a \mathcal{D} -function. For each $y \in Y$, $\phi(y, \cdot)$ is a bounded \mathcal{D} -function with respect to t. Then, by Corollary 1.6, there exists $\lim_{t\to 0^+} \phi(y,t) = f(y) \in \mathbb{R}, \forall y \in Y$. Note that $f: Y \to \mathbb{R}$ is a \mathcal{D} -function and $f(y) \neq 0 \Leftrightarrow y \in W_a(X,Y)$.

Suppose, contrary to our assertion, that $\dim(Y \setminus W_{a}(X,Y)) = p$. Then, from Theorem 1.4, there are an open \mathcal{D} -set V in Y and c > 0 such that f > c on V. Let $S = \{x \in X : \delta(\mathbb{R}^{p}, T_{X,x}) \ge c\}$. Then $V \subset \overline{S} \setminus S$. By Lemma 2.7, there are an open \mathcal{D} -set $U \subset V, r > 0$ and an analytic \mathcal{D} -map $\overline{\theta} : (0, r) \times U \to S$ such that $\overline{\theta}(t, y) = (y, \theta(t, y))$ and $\|\theta(t, y)\| \le t$, for all $(t, y) \in (0, r) \times U$.

From Lemma 2.8, there exists $(t_c, y_c) \in (0, r) \times U$ such that $||d_y \theta(t_c, y_c)|| < c$. But $T_{X,\bar{\theta}(t_c, y_c)} \supset \operatorname{Im} d_y \bar{\theta}(t_c, y_c) = \operatorname{graph} d_y \theta(t_c, y_c)$, and from Remark 2.3 we have

$$\delta(\mathbb{R}^p, T_{X,\bar{\theta}(t_c, y_c)}) \le \|d_y \theta(t_c, y_c)\| < c.$$

This is a contradiction.

Proof of $\dim(Y \setminus W_{\mathrm{b}}(X,Y)) < p$. By Lemma 2.9 it suffices to prove that $\dim(Y \setminus W_{\mathrm{b}'}(X,Y)) < p$. Define

$$\psi(y,t) = \sup\{\delta(\mathbb{R}(x-\pi(x)), T_{X,x}) : x \in X, \|x-y\| \le t\}, \quad y \in Y, t > 0.$$

Then ψ is a \mathcal{D} -function and there exists $\lim_{t\to 0^+} \psi(y,t) = g(y) \in \mathbb{R}$ for each $y \in Y$. Note that $g: Y \to \mathbb{R}$ is a \mathcal{D} -function and $g(y) \neq 0 \Leftrightarrow y \in W_{\mathrm{b}'}(X,Y)$.

If $\dim(Y \setminus W_{\mathbf{b}'}(X,Y)) = p$, then, by Theorem 1.4, there is an open \mathcal{D} -set V' in Y such that g > c' on V' for some c' > 0.

Let $S' = \{x \in X : \delta(\mathbb{R}(x - \pi(x)), T_{X,x}) \geq c'\}$. Then $V' \subset \overline{S'} \setminus S'$. So, by Lemma 2.7, there are an open set $U' \subset V'$, $\varepsilon > 0$ and an analytic \mathcal{D} -map $\tilde{\theta} : (0, \varepsilon) \times U' \to S'$ such that $\pi \circ \tilde{\theta}(t, y) = y$. Fix $y \in U'$, define $\gamma(t) = \tilde{\theta}(t, y)$. Then $\gamma(t) \in X$ and $\pi(\gamma(t)) = y$ for all $t \in (0, \varepsilon)$. Applying Lemma 2.10 we have

$$\lim_{0^+} \delta(\mathbb{R}(\gamma(t) - \pi(\gamma(t))), T_{X,\gamma(t)}) = 0,$$

a contradiction. \blacksquare

2.11. THEOREM (Whitney stratification). Let S_1, \ldots, S_k be \mathcal{D} -sets in \mathbb{R}^n . Then there exists a finite family $\mathcal{W} = \{\Gamma_\alpha\}$ of subsets of \mathbb{R}^n satisfying (S1)–(S3) of Corollary 1.5 which has the following property:

(W) If $\Gamma_{\alpha}, \Gamma_{\beta} \in \mathcal{W}, \Gamma_{\beta} \subset \overline{\Gamma}_{\alpha} \setminus \Gamma_{\alpha}$, then $(\Gamma_{\alpha}, \Gamma_{\beta})$ satisfies Whitney's conditions a) and b) at all points of Γ_{β} .

Proof. We construct the families \mathcal{W}^d , $d = 0, \ldots, n$, by decreasing induction on d such that \mathcal{W}^d has the following property:

 $(*_d) \qquad \forall \Gamma_i, \Gamma_j \in \mathcal{W}^d, \Gamma_j \subset \overline{\Gamma}_i \setminus \Gamma_i, \dim \Gamma_j \ge d \Rightarrow W_{\mathrm{a}}(\Gamma_i, \Gamma_j) = W_{\mathrm{b}}(\Gamma_i, \Gamma_j) = \Gamma_j.$

Let \mathcal{W}^n be a stratification of \mathbb{R}^n compatible with S_1, \ldots, S_k as in Corollary 1.5. Suppose that \mathcal{W}^d is constructed $(d \ge 1)$. For every $\Gamma_j \in \mathcal{W}^d$ with dim $\Gamma_j = d - 1$ define

$$T_j = \left(\bigcup \{ \Gamma_j \setminus (W_{\mathrm{a}}(\Gamma_i, \Gamma_j) \cap W_{\mathrm{b}}(\Gamma_i, \Gamma_j)) : \Gamma_i \in \mathcal{W}^d, \Gamma_j \subset \overline{\Gamma}_i \setminus \Gamma_i \} \right) \cap \Gamma_j.$$

Note that $\dim T_j < \dim \Gamma_j$ by Theorem 2.5.

Let \mathcal{V}^d be a stratification of \mathbb{R}^n into cells which is compatible with $\Gamma_j \setminus T_j$, T_j ($\Gamma_j \in \mathcal{W}^d$, dim $\Gamma_j = d - 1$) and Γ_l ($\Gamma_l \in \mathcal{W}^d$, dim $\Gamma_l < d - 1$) (such a stratification exists by Corollary 1.5). Define $\mathcal{W}^{d-1} = \{\Gamma \in \mathcal{W}^d : \dim \Gamma \ge d\} \cup \{\Gamma \in \mathcal{V}^d : \dim \Gamma \le d - 1\}$. Then \mathcal{W}^{d-1} satisfies ($*_{d-1}$). The family of cells $\mathcal{W} = \mathcal{W}^0$ is the desired stratification.

Since Whitney stratified spaces can be triangulated (see, for example, [3]), Theorem 2.11 implies

2.12. COROLLARY (triangulation). Let $S \subset \mathbb{R}^n$ be a \mathcal{D} -set and S_1, \ldots, S_k be \mathcal{D} -sets contained in S. Then S admits a triangulation compatible with S_1, \ldots, S_k , i.e. there exist a simplicial complex K and a homeomorphism $h : |K| \to S$ such that each $S_i, i = 1, \ldots, k$, is a union of some elements of $\{h(\sigma) : \sigma \in K\}$.

Note that in [1] van den Dries proved that h can be taken to be a \mathcal{D} -function.

Acknowledgements. The author would like to thank Prof. Wiesław Pawłucki and the Institute of Mathematics of the Jagiellonian University, Kraków.

References

- L. van den Dries, Tame topology and O-minimal structures, mimeographed notes (1991).
- [2] L. van den Dries and C. Miller, *The field of reals with restricted analytic functions* and unrestricted exponentiation, Israel J. Math. (1991).
- [3] R. M. Goresky, Triangulation of stratified objects, Proc. Amer. Math. Soc. 72 (1978), 193-200.
- [4] A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc., 1991.
- [5] T. L. Loi, thesis, Jagiellonian University, Kraków 1993.

408

- [6] T. L. Loi, Analytic cell decomposition of sets definable in the structure ℝ_{exp}, Ann. Polon. Math. 59 (1994), 255–266.
- [7] —, On the global Lojasiewicz inequalities for the class of analytic logarithmico-exponential functions, C. R. Acad. Sci. Paris Sér. I 318 (1994), 543–548.
- [8] S. Lojasiewicz, Ensembles Semi-Analytiques, I.H.E.S., Bures-sur-Yvette, 1965.
- [9] A. J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991.
- [10] —, Model completeness results for expansions of the real field II: The exponential function, manuscript, 1991.