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Abstract. The aim of this paper is to prove that every subset of Rn definable from addi-
tion, multiplication and exponentiation admits a stratification satisfying Whitney’s conditions a)
and b).

1. Preliminaries. Let An be the smallest ring of real-valued functions on Rn such
that:

(a) An contains all polynomials, i.e. R[x1, . . . , xn] ⊂ An.
(b) An is closed under taking exponentiation, i.e. if f ∈ An, then exp f ∈ An.

1.1. Definition. Let D = (Dn)n∈N be the smallest class of subsets of Euclidean
spaces Rn, n ∈ N, where Dn is a class of subsets of Rn, satisfying the following properties
for all n:

(D1) Dn contains all sets of the form {x ∈ Rn : f(x) = 0}, where f ∈ An.
(D2) If S, T ∈ Dn, then S ∪ T , S ∩ T and S \ T ∈ Dn.
(D3) If S ∈ Dn+1, then π(S) ∈ Dn, where π : Rn+1 → Rn is the natural projection.

A set S is called a Dn-set iff S ∈ Dn. A D-set is a Dn-set for some n ∈ N. A function
f : S → R is called a D-function iff its graph is a D-set.

R e m a r k. The class D contains all semi-algebraic sets. A D-set, in general, is not
subanalytic (e.g. {(x, y) : x > 0, y = exp(−1/x)}). If f is a D-function, then so is exp f .
If, in addition, f > 0, then log f , fα (α ∈ R) are D-functions. The closure, the interior
and the boundary in Rn of a Dn-set are Dn-sets.

The following theorem is due to Wilkie [9], [10], which is an essential result for the
class D.
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1.2. Theorem (Wilkie). Let S ⊂ Rn be a D-set. Then there exists f ∈ An+m, for
some m ∈ N, such that S = π(f−1(0)), where π : Rn×Rm → Rn is the natural projection.

Combining the theorem with a Khovanskĭı result on fewnomials [4] it follows that
every D-set has only finitely many connected components.

1.3. Definition (cf. [2]). (i) A map f : S → Rm with S ⊂ Rn is called a D-map
if its graph belongs to Dn+m. In this case it is called D-analytic if there is an open
neighborhood U of S in Rn, U ∈ Dn and an analytic D-map F : U → Rm such that
F |S = f .

(ii) Dn-analytic cells in Rn are defined by induction on n: D1-analytic cells are points
{r} or open intervals (a, b),−∞ ≤ a < b ≤ +∞. If C is a Dn-analytic cell and f, g : C→R
are D-analytic such that f < g, then

(f, g) := {(x, r) ∈ C × R : f(x) < r < g(x)},
(−∞, f) := {(x, r) ∈ C × R : r < f(x)},
(g,+∞) := {(x, r) ∈ C × R : g(x) < r},

Γ (f) := graph f and C × R are Dn+1-analytic cells.

.

(iii) A D-analytic decomposition of Rn is defined by induction on n: A D-analytic
decomposition of R1 is a finite collection of intervals and points {(−∞, a1), . . . , (ak,+∞),
{a1}, . . . , {ak}}, where a1 < . . . < ak, k ∈N. A D-analytic decomposition of Rn+1 is a
finite partition of Rn+1 into Dn+1-analytic cells C such that the collection of all the
projections π(C) is a D-analytic decomposition of Rn (here π : Rn+1 → Rn is the natural
projection).

We say that a decomposition partitions S if S is a union of some cells of the decom-
position.

1.4. Theorem (van den Dries & Miller). (In) For S1, . . . , Sk ∈ Dn there is a D-
analytic decomposition of Rn partitioning S1, . . . , Sk.

(IIn) For every fuction f : S → R, S ∈ Dn, there is a D-analytic decomposition of
Rn partitioning S such that for each cell C ⊂ S of the decomposition, the restriction f |C
is D-analytic.

For the proof see [1], [2] or [6].

1.5. Corollary. Let S1, . . . , Sk be Dn-sets. Then there is an analytic stratification
of Rn compatible with S1, . . . , Sk. Precisely , there is a finite family {Γ dα} of subsets of
Rn such that :

(S1) Γ dα are disjiont , Rn =
⋃
α,d Γ

d
α and Si =

⋃
{Γ dα : Γ dα ∩ Si 6= ∅}, i = 1, . . . , k.

(S2) Each Γ dα is a Dn-analytic cell of dimension d.
(S3) Γ dα \ Γ dα is a union of some cells Γ eβ with e < d.

1.6. Corollary. Let f : R→ R be a D-function. Then the limits lim+∞ f , lim−∞ f ,
limc+ f and limc− f (c ∈ R) exist in R ∪ {−∞,+∞}.

1.7. Corollary (curve selecting lemma). Let S ⊂ Rn be a D-set and a ∈ S be a
nonisolated point of S. Then there exists an analytic D-map γ : (0, 1) → S such that
lim0+ γ = a.
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For the proof of the corollaries see [5], [6].

R e m a r k. The class D shares many nice properties with those of semi-algebraic sets
(see [1], [5], [7]).

2. Whitney stratification. In this section we prove the existence of the Whitney
stratification of D-sets. The proof is inspired by that of  Lojasiewicz [8] for semianalytic
sets.

Let Gk(Rn) denote the Grassmannian of k-dimensional vector subspaces of Rn. Let
〈 , 〉 denote the scalar product with respect to the canonical base of Rn. Then Gk(Rn) can
be identified with the set of all n× n matrices A ∈ Mat(n, n) with A2 = A, tA = A and
traceA = k. Therefore Gk(Rn) is an algebraic subset of Rn2

. So it is a D-set.

2.1. Proposition. Let X be an analytic submanifold of Rn which is also a D-set.
Suppose that φ1, . . . , φk : X → Rn are analytic D-maps such that for all x in X the
vectors φ1(x), . . . , φk(x) generate a k-dimensional vector subspace Φ(x) of Rn. Then the
map Φ : X → Gk(Rn) is a D-map. Consequently , if X is of dimension k, then the map

TX : X → Gk(Rn) defined by TX(x) = TX,x

(where TX,x denotes the tangent space of X at x) is a D-map.

P r o o f. Since Φ(x) is identified with the orthogonal projection of Rn onto Φ(x),

Φ(x) · h =
k∑
i=1

ai(x, h)φi(x),

where 
a1(x, h)

...

ak(x, h)

 = A−1(x)


〈h,φ1(x)〉

...

〈h,φk(x)〉

 ,

with A(x) being the k×k matrix (〈φi(x), φj(x)〉). So the coefficients of Φ are D-functions.
This implies that Φ is a D-map.

Let C ⊂ Rn be a D-analytic cell of dimension k. Then, by Definition 1.3, C can be
parametrized by an analytic D-map φ : U → Rn, where U is an open D-set of Rk. Put
φi(x) = (∂φ/∂yi)(φ−1(x)), x∈C, i = 1, . . . , k. By the first part of the proposition, TC is
a D-map. If X is of dimension k, then, by Theorem 1.4, X can be partitioned into finitely
many cells Cj . It is easy to see that

graph TX = {(x, T ) : x ∈ X,T = TX,x} = X ×Gk(Rn) ∩
( ⋃
j:dimCj=k

graph TCj
)

Thus TX is a D-map.

2.2. Definition. Let X,Y be analytic submanifolds of Rn of dimensions k and l

respectively. Suppose that X ∩ Y = ∅ and Y ⊂ X. Let y ∈ Y . We say that (X,Y )
satisfies Whitney’s condition a) at y if the following condition is satisfied:

a) For any sequence (xν)ν∈N of points of X with limxν = y, if limTX,xν = τ in
Gk(Rn), then τ ⊃ TY,y.
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We say that (X,Y ) satisfies Whitney’s condition b) at y iff

b) For any pair of sequences (xν)ν∈N, xν ∈ X, and (yν)ν∈N, yν ∈ Y , with limxν =
lim yν = y, if limTX,xν = τ and the sequence of lines R(xν − yν) has a limit λ in G1(Rn),
then τ ⊃ λ.

2.3. R e m a r k. Let δ : Gl(Rn)×Gk(Rn)→ R be the function defined by

δ(E,F ) = sup{d(x, F ) : x ∈ E, ‖x‖ = 1}, E ∈ Gl(Rn), F ∈ Gk(Rn) (l ≤ k).

Then δ is semialgebraic (so it is a D-function) and δ(E,F ) = 0 ⇔ E ⊂ F . If K ⊂ F

is a vector subspace, then δ(E,F ) ≤ δ(E,K). If E = graph η and F = graph θ, where
η, θ : Rp → Rq are linear maps (p+ q = n), then δ(E,F ) ≤ ‖θ − η‖ .

2.4. Proposition. Under the notation of Def. 2.2, let Wa(X,Y ) (resp. Wb(X,Y )) be
the set of points of Y at which (X,Y ) satisfies Whitney’s condition a) (resp. b)). Then
Wa(X,Y ) and Wb(X,Y ) are D-sets.

P r o o f. We have
Wa(X,Y ) = {y ∈ Y : ∀τ ∈ Gk(Rn), (y, τ) ∈ graph TX ⇒ τ ⊃ TY,y}

= {y ∈ Y : ∀τ ∈ Gk(Rn), (y, τ) ∈ graph TX ⇒ δ(TY,y, τ) = 0}.
By Proposition 2.1, Remark 2.3 and Definition 1.1, Wa(X,Y ) is a D-set.
Similarly, let V = {(x, T, y, d) ∈ TX×Y ×G1(Rn) : d = R(x−y)}. By Proposition 2.1

the map X × Y 3 (x, y) 7→ R(x− y) ∈ G1(Rn) is a D-map. So V is a D-set. Then

Wb(X,Y ) = {y ∈ Y : ∀τ ∈ Gk(Rn),∀λ ∈ G1(Rn), (y, τ, y, λ) ∈ V ⇒ δ(λ, τ) = 0}

is also a D-set.

2.5. Theorem. Let X,Y be analytic submanifolds of Rn which are D-sets. Suppose
that X ∩ Y = ∅ and Y ⊂ X. Then

dim(Y \Wa(X,Y )) < dimY and dim(Y \Wb(X,Y )) < dimY.

To prove this theorem we prepare some lemmas.

2.6. Lemma (definable selection). Let S ⊂ Rp×Rm be a D-set and let π : Rp×Rm →
Rp be the natural projection. Then there exists a D-map % : π(S) → Rp × Rm such that
π(%(x)) = x for all x ∈ π(S).

P r o o f (cf. [1, Ch. 8, Prop. (1.2)]). Clearly, it is sufficient to prove the lemma for
m=1. Moreover, by Theorem 1.4, we may assume that S is a cell. We define % as follows:

If S = (f, g), where f, g : π(S)→ R are D-functions, let %(x) = (x, 1
2 (f(x) + g(x))).

If S = (−∞, g), where g : π(S)→ R is a D-function, let %(x) = (x, g(x)− 1).
If S = (f,+∞), where f : π(S)→ R is a D-function, let %(x) = (x, f(x) + 1).
If S = Γ (f), where f : π(S)→ R is a D-function, let %(x) = (x, f(x)).
If S = π(S)× R, let %(x) = (x, 0).

2.7. Lemma (half wing). Let S, V ⊂Rp×Rq be D-sets, S∩V = ∅ and V ⊂ S. Suppose
that V is open in Rp, where Rp ≡ Rp × O ⊂ Rp × Rq. Let π : Rp × Rq → Rp be the
natural projection. Then there are an open D-set U in V , r > 0 and an analytic D-map
θ : (0, r)×U → S such that θ(t, y) = (y, θ(t, y)) and ‖θ(t, y)‖ ≤ t for all (t, y) ∈ (0, r)×U .
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P r o o f. Let

A = {(t, y, x) : 0 < t < 1, y ∈ V, x ∈ S, ‖x− y‖ ≤ t, π(x) = y}.

Then A is a D-set. If π1 is the projection defined by π1(t, y, x) = y, then π1(A) is dense in
V (so is of dimension p). Indeed, let y0 ∈ V and δ > 0. Then there is δ′, 0 < δ′ < min( 1

2 , δ)
such that B(y0, δ

′) ∩ Rp × O ⊂ V . Since y0 ∈ S \ S, there is x ∈ B(y0, δ
′) ∩ S. Then

y = π(x) ∈ B(y0, δ
′) ∩ π1(A).

Now, let π2 be the projection defined by π2(t, y, x) = (t, y). Put

π2(A)y = {t ∈ (0, 1) : (t, y) ∈ π2(A)}, ε(y) = inf π2(A)y, y ∈ π1(A).

Then ε is a D-function and ε(y) > 0⇒ (0, ε(y)) ∩ π2(A)y = ∅.

Claim 1. dim{y ∈ π1(A) : ε(y) > 0} < p.

Conversely, suppose that the dimension equals p. Then, by Theorem 1.4, there is an
open D-set W in Rp, W ⊂ π1(A) on which ε is analytic and ε > c for some c > 0. Let
y0 ∈W and δ ∈ R, 0 < δ < c, such that B(y0, δ)∩Rp×O ⊂W . Then ‖π(x)−y‖ > c > δ,
∀y ∈ B(y0, δ)∩Rp×O, ∀x∈S with π(x) = y. This contradicts the argument above. The
claim is verified.

Claim 2. If y ∈ π1(A), ε(y) = 0, then π2(A)y ⊃ (0, 1).

Since π2(A)y is a nonempty D-set and 0∈π2(A)y \ π2(A)y, there is δ > 0 such that
(0, δ) ⊂ π2(A)y, i.e. there is x in S, π(x) = y and ‖x−y‖ ≤ δ. So for every t ∈ (0, 1), t ≥ δ,
‖x− y‖ ≤ t, i.e. t ∈ π2(A)y. The claim follows.

Let V1 = {y ∈ π1(A) : ε(y) = 0}. Then, from Claim 1, dimV1 = p and, from Claim 2,
π2(A) ⊃ (0, 1)×V1. By the definable selection lemma there is a D-map % : (0, 1)×V1 → A

such that %(t, y) = (t, y, θ(t, y)). That means θ : (0, 1) × V1 → S satisfies π(θ(t, y)) = y

and ‖θ(t, y)− y‖ ≤ t, i.e. θ(t, y) = (y, θ(t, y)) and ‖θ(t, y)‖ ≤ t.
By Theorem 1.4, with t regarded as the last coordinate, (0, 1)×V1 can be partitioned

into cells such that the restriction of θ to each of the cells is analytic. Let C be a cell of
the partition with dimπ3(C) = p (here π3(t, y) = y). By the definition of cells, there is
an analytic D-function f : π3(C) → R, f > 0, such that (0, f) is a cell of the partition.
This implies that there are an open D-set U in π3(C) and r > 0 such that f > r on U .
Therefore, θ is analytic on (0, r)× U . This finishes the proof of the lemma.

2.8. Lemma. Under the notation of the above lemma, for every c > 0 there is (tc, yc) ∈
(0, r)× U such that ‖dyθ(tc, yc)‖ < c.

P r o o f. Let θ = (θ1, . . . , θq). For each i ∈ {1, . . . , q}, let

Ai = {(t, y) ∈ (0, r)× U : ‖dyθi(t, y)‖ < c/
√
q}.

Then A1, . . . , Aq are open D-sets.

Claim: 0× U ⊂ Ai \Ai, for all i ∈ {1, . . . , q}.

Let y0 ∈ U , δ ∈ R, 0 < δ < min(d(y0,
c U), c/(2

√
q)), and t ∈ (0, r), 0 < t < δ2/2. For

each i consider the function

ψi : U 3 y 7→ θi(t, y) + ‖y − y0‖2 − t ∈ R.
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By Lemma 2.6, −t ≤ θi(t, y) ≤ t for all y ∈ U . We have

ψi(y) ≥ −2t+ δ2 > 0 ∀y ∈ U, ‖y − y0‖ = δ,

ψi(y0) = θi(t, y0)− t ≤ 0.

Therefore ψi has a critical point in B(y0, δ), i.e. there is a y ∈ B(y0, δ) such that

dyθi(t, y) + 2(y − y0) = 0.

This implies ‖dyθi(t, y)‖ < 2δ < c/
√
q. The claim is verified.

Now, let (Ai)y = {t ∈ (0, r) : (t, y) ∈ Ai}. For each i ∈ {1, . . . , q} define

εi(y) =

{
inf((Ai)y \ (Ai)y) ∩ (0, r) if 0 ∈ (Ai)y,
0 if 0 6∈ (Ai)y.

Then εi is a D-function on U and εi(y) 6= 0⇔ (Ai)y ⊃ (0, εi(y)).
Since 0 × U ⊂ Ai \ Ai, dim{y ∈ U : εi(y) = 0} < p. (If not, then there is an open

D-set Ui in U on which εi ≡ 0. Let αi : Ui → R be defined by αi(y) = inf(Ai)y. Then
αi is a D-function, αi > 0 and (0, αi(y)) ∩ (Ai)y = ∅. By Theorem 1.4 there are an
open cell Vi ⊂ Ui and M > 0 such that αi|Vi ≥ M . This implies O × Vi 6⊂ Ai \ Ai, a
contradiction.) So U \

⋃q
i=1{y∈U : εi(y) = 0} is of dimension p. For each y in this set,

ε(y) := min1≤i≤q εi(y) > 0 . Thus (ε(y)/2, y) ∈ Ai,∀i ∈ {1, . . . , q}, i.e. this point satisfies
the demand of the lemma.

2.9. Lemma. Let X,Y be analytic submanifolds of Rn of dimensions k and p respec-
tively. Suppose that X,Y are D-sets, X ∩Y = ∅, Y ⊂ X and Y is open in Rp ≡ Rp×O.
Let π : Rn ≡ Rp×Rq → Rp be the natural projection. Let Wb′(X,Y ) be the set of points
y of Y where (X,Y ) satisfies the following condition:

b′) For any sequence (xν)ν∈N of points of X with limxν = y, if limTX,xν = τ ∈
Gk(Rn) and lim R(xν − π(xν)) = λ ∈ G1(Rn), then τ ⊃ λ.

Then Wb′(X,Y ) is a D-set and Wa(X,Y ) ∩Wb′(X,Y ) ⊂Wb(X,Y ).

P r o o f. Similarly to the proof of Proposition 2.4 it is easy to prove that Wb′(X,Y )
is a D-set. We prove the second part of the lemma.

Let y ∈Wa(X,Y ) ∩Wb′(X,Y ). Define

F{(x, T, y, d) : x ∈ X,T = TX,x, y ∈ Y, d = R(x− y)}.

Let (y, τ, y, λ) ∈ F . It suffices to prove that λ ⊂ τ .
By Corollary 1.7 there is a continuous D-map

γ : [0, 1]→ Rn ×Gk(Rn)× Rn ×G1(Rn)

such that γ is analytic on (0, 1), γ(0) = (y, τ, y, λ) and for all t in (0, 1], γ(t) = (γ1(t),
TX,γ1(t), γ2(t),R(γ1(t)− γ2(t))) with γ1(t) ∈ X, γ2(t) ∈ Y .

Since (X,Y ) satisfies condition a) at y, τ ⊃ TY,y.
Since (X,Y ) satisfies condition b′) at y, τ ⊃ lim0+ R(γ1(t)−π(γ1(t))) (this limit exists

by Corollary 1.6). This implies λ = lim0+ R(γ1(t)−γ2(t)) ⊂ τ because R(γ1(t)−γ2(t)) is
contained in the vector subspace spanned by R(γ1(t)−π(γ1(t))) and R(γ2(t)−π(γ1(t))) ⊂
TY,y = Rp ×O.
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2.10. Lemma. Let X be a D-set which is also an analytic submanifold of Rn. Let
y ∈ X \X and γ : (0, ε)→ X (ε > 0) be an analytic D-function with lim0+ γ = y. Then
limt→0+ δ(R(γ(t)− y), TX,γ(t)) = 0.

P r o o f. Since y 6∈X, γ(t) 6≡const. So γ′ 6≡ 0. Moreover, γ′ is a D-map, and reducing ε,
we can assume that γ′ 6= 0. By Corollary 1.6 the limit lim0+ γ′/‖γ′‖ exists. This implies
the curve C = {y} ∪ γ(0, ε) is a C1 curve. So lim0+ δ(R(γ(t) − y),Rγ′(t)) = 0. But
γ′(t) ∈ TX,γ(t), ∀t ∈ (0, ε). Thus lim0+ δ(R(γ(t)− y), TX,γ(t)) = 0.

P r o o f o f T h e o r e m 2.5. Let p = dimY . By Theorem 1.4, Y can be partitioned
into finitely many cells Cj . It is therefore sufficient to prove that for any j with dimCj=p,
both dim(Cj \Wa(X,Y )) and dim(Cj \Wb(X,Y )) are smaller than p.

Moreover, the Whitney conditions are of a local nature and invariant under analytic
isomorphisms, and from the definition of cells, we may assume that Y is an open D-set
in Rp ≡ Rp ×O ⊂ Rp × Rq (p+ q = n).

P r o o f o f dim(Y \Wa(X,Y )) < p. Define

φ(y, t) = sup{δ(Rp, TX,x) : x ∈ X, ‖x− y‖ ≤ t}, y ∈ Y, t > 0.

Then φ is a D-function. For each y ∈ Y , φ(y, ·) is a bounded D-function with respect to
t. Then, by Corollary 1.6, there exists limt→0+ φ(y, t) = f(y) ∈ R,∀y ∈ Y . Note that
f : Y → R is a D-function and f(y) 6= 0⇔ y ∈Wa(X,Y ).

Suppose, contrary to our assertion, that dim(Y \Wa(X,Y )) = p. Then, from The-
orem 1.4, there are an open D-set V in Y and c > 0 such that f > c on V . Let
S = {x ∈ X : δ(Rp, TX,x) ≥ c}. Then V ⊂ S \S. By Lemma 2.7, there are an open D-set
U ⊂ V , r > 0 and an analytic D-map θ : (0, r) × U → S such that θ(t, y) = (y, θ(t, y))
and ‖θ(t, y)‖ ≤ t, for all (t, y) ∈ (0, r)× U .

From Lemma 2.8, there exists (tc, yc) ∈ (0, r) × U such that ‖dyθ(tc, yc)‖ < c. But
TX,θ̄(tc,yc) ⊃ Im dyθ(tc, yc) = graph dyθ(tc, yc), and from Remark 2.3 we have

δ(Rp, TX,θ̄(tc,yc)) ≤ ‖dyθ(tc, yc)‖ < c.

This is a contradiction.

P r o o f o f dim(Y \ Wb(X,Y )) < p. By Lemma 2.9 it suffices to prove that
dim(Y \Wb′(X,Y )) < p. Define

ψ(y, t) = sup{δ(R(x− π(x)), TX,x) : x ∈ X, ‖x− y‖ ≤ t}, y ∈ Y, t > 0.

Then ψ is a D-function and there exists limt→0+ ψ(y, t) = g(y) ∈ R for each y ∈ Y . Note
that g : Y → R is a D-function and g(y) 6= 0⇔ y ∈Wb′(X,Y ).

If dim(Y \Wb′(X,Y )) = p, then, by Theorem 1.4, there is an open D-set V ′ in Y

such that g > c′ on V ′ for some c′ > 0.
Let S′ = {x ∈ X : δ(R(x− π(x)), TX,x) ≥ c′}. Then V ′ ⊂ S′ \ S′. So, by Lemma 2.7,

there are an open set U ′ ⊂ V ′, ε > 0 and an analytic D-map θ̃ : (0, ε) × U ′ → S′ such
that π ◦ θ̃(t, y) = y. Fix y ∈ U ′, define γ(t) = θ̃(t, y). Then γ(t) ∈ X and π(γ(t)) = y for
all t ∈ (0, ε). Applying Lemma 2.10 we have
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lim
0+

δ(R(γ(t)− π(γ(t))), TX,γ(t)) = 0,

a contradiction.

2.11. Theorem (Whitney stratification). Let S1, . . . , Sk be D-sets in Rn. Then there
exists a finite family W = {Γα} of subsets of Rn satisfying (S1)–(S3) of Corollary 1.5
which has the following property :

(W) If Γα, Γβ ∈ W, Γβ ⊂ Γα \ Γα, then (Γα, Γβ) satisfies Whitney’s conditions a)
and b) at all points of Γβ.

P r o o f. We construct the families Wd, d = 0, . . . , n, by decreasing induction on d

such that Wd has the following property:

(∗d) ∀Γi, Γj ∈ Wd, Γj ⊂ Γ i \ Γi,dimΓj ≥ d⇒Wa(Γi, Γj) = Wb(Γi, Γj) = Γj .

LetWn be a stratification of Rn compatible with S1, . . . , Sk as in Corollary 1.5. Suppose
that Wd is constructed (d ≥ 1). For every Γj ∈ Wd with dimΓj = d− 1 define

Tj =
(⋃
{Γj \ (Wa(Γi, Γj) ∩Wb(Γi, Γj)) : Γi ∈ Wd, Γj ⊂ Γ i \ Γi}

)
∩ Γj .

Note that dimTj < dimΓj by Theorem 2.5.
Let Vd be a stratification of Rn into cells which is compatible with Γj\Tj , Tj (Γj ∈ Wd,

dimΓj = d − 1) and Γl (Γl ∈ Wd,dimΓl < d − 1) (such a stratification exists by
Corollary 1.5). Define Wd−1 = {Γ ∈ Wd : dimΓ ≥ d}∪ {Γ ∈ Vd : dimΓ ≤ d− 1}. Then
Wd−1 satisfies (∗d−1). The family of cells W =W0 is the desired stratification.

Since Whitney stratified spaces can be triangulated (see, for example, [3]), Theo-
rem 2.11 implies

2.12. Corollary (triangulation). Let S ⊂ Rn be a D-set and S1, . . . , Sk be D-sets
contained in S. Then S admits a triangulation compatible with S1, . . . , Sk, i.e. there exist
a simplicial complex K and a homeomorphism h : |K| → S such that each Si, i = 1, . . . , k,
is a union of some elements of {h(σ) : σ ∈ K}.

Note that in [1] van den Dries proved that h can be taken to be a D-function.

Acknowledgements. The author would like to thank Prof. Wies law Paw lucki and
the Institute of Mathematics of the Jagiellonian University, Kraków.

References

[1] L. van den Dries, Tame topology and O-minimal structures, mimeographed notes
(1991).

[2] L. van den Dries and C. Mil ler, The field of reals with restricted analytic functions
and unrestricted exponentiation, Israel J. Math. (1991).

[3] R. M. Goresky, Triangulation of stratified objects, Proc. Amer. Math. Soc. 72 (1978),
193–200.

[4] A. G. Khovanski ı̆, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc.,
1991.

[5] T. L. Loi, thesis, Jagiellonian University, Kraków 1993.



WHITNEY STRATIFICATION 409

[6] T. L. Loi, Analytic cell decomposition of sets definable in the structure Rexp, Ann. Polon.
Math. 59 (1994), 255–266.

[7] —, On the global  Lojasiewicz inequalities for the class of analytic logarithmico-exponential
functions, C. R. Acad. Sci. Paris Sér. I 318 (1994), 543–548.

[8] S.  Lojas iewicz, Ensembles Semi-Analytiques, I.H.E.S., Bures-sur-Yvette, 1965.
[9] A. J. Wilkie, Some model completeness results for expansions of the ordered field of real

numbers by Pfaffian functions, preprint, 1991.
[10] —, Model completeness results for expansions of the real field II : The exponential function,

manuscript, 1991.


