
SINGULARITIES AND DIFFERENTIAL EQUATIONS
BANACH CENTER PUBLICATIONS, VOLUME 33

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1996

L∞-ESTIMATES FOR SOLUTIONS
OF NONLINEAR PARABOLIC SYSTEMS
WITH GRADIENT LINEAR GROWTH

WOJCIECH M. ZAJA̧CZKOWSKI

Institute of Mathematics, Polish Academy of Sciences
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Abstract. Existence of weak solutions and an L∞-estimate are shown for nonlinear non-
degenerate parabolic systems with linear growth conditions with respect to the gradient. The
L∞-estimate is proved for equations with coefficients continuous with respect to x and t in
the general main part, and for diagonal systems with coefficients satisfying the Carathéodory
condition.

1. Introduction. We consider the following initial boundary value problem for a
nonlinear system of parabolic equations:

(1.1)

uit −
m∑
j=1

∇ · (aij(x, t, u,∇u) · ∇uj) = fi(x, t, u,∇u) in ΩT = Ω × (0, T ),

ui|t=0 = u0i in Ω,

ui = ubi on ST = S × (0, T ),

where i = 1, . . . ,m, Ω ⊂ Rn is a bounded domain, S = ∂Ω and the dot denotes scalar
product in Rn. Strictly speaking the main term in (1.1)1 takes the form

m∑
j=1

∇ · (aij · ∇uj) =
m∑
j=1

n∑
r,s=1

∂xr (a
rs
ij ∂xsuj).

Moreover, u = (u1, . . . , um) ∈ Rm, x = (x1, . . . , xn) ∈ Rn.
Our aim is to prove existence of solutions to (1.1) and then to show regularity under

appropriate assumptions on the coefficients of (1.1)1.
To this end we assume the following structure conditions. First

aij : ΩT × Rn × Rmn → Rn
2
, i, j = 1, . . . ,m,
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satisfy the Carathéodory condition and

(1.2) α1|∇u|2 ≤
m∑

i,j=1

aij(x, t, u,∇u) · ∇uj · ∇ui ≤ α2|∇u|2,

where α1, α2 are positive constants and | | denotes the norm in Rα.
Moreover, there exists a positive constant α0 such that

(1.3) α0|∇u1 −∇u2|2

≤
m∑

i,j=1

(aij(x, t, u,∇u1) · ∇u1j − aij(x, t, u,∇u2) · ∇u2j) · (∇u1i −∇u2i).

Finally, the r.h.s. (right hand side) functions

fi : ΩT × Rm × Rmn → R, i = 1, . . . ,m,

satisfy the Carathéodory condition and there exist positive constants β1, β2, β3 such that

(1.4) |fi(x, t, u,∇u)| ≤ β1|∇u|+ β2|u|+ β3, i = 1, . . . ,m.

Now, we introduce some definitions and auxiliary results. First we define the Steklov
averages

vh(x, t) =
{

1
h

∫ t
t−h v(x, τ)dτ, t ∈ (h, T ],

0, t < h.
Next,

W
◦

1
2(Ω) = {u ∈W 1

2 (Ω) : u|S = 0}.
In this paper we prove existence of weak solutions to nonlinear parabolic systems with

linear growth conditions with respect to ∇u for the right-hand side functions. Next an
L∞-estimate is shown in two cases. In the first case using the technique of Solonnikov (see
[5]) an L∞–estimate is shown for general parabolic systems with coefficients of the main
part continuous with respect to x and t. In the case of coefficients which are measurable
with respect to x and t the L∞-estimate is shown by the method of Di Benedetto (see [3])
for diagonal systems only. Moreover, the diagonal elements are the same. In this paper
the methods of [7] cannot be applied for general n.

2. Existence of weak solutions. First we need

Definition 2.1. By a weak solution of problem (1.1) we mean solutions ui ∈
L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1

p (Ω)), i = 1, . . . ,m, of the integral identity

(2.1) −
m∑
i=1

∫
ΩT

(ui − u0i)φit dx dt+
m∑

i,j=1

∫
ΩT

aij · ∇uj · ∇φi dx dt =
m∑

i,j=1

∫
ΩT

fiφi dx dt,

which holds for any φi such that φi|S = 0, φi|t=T = 0, φit∈L2(ΩT ), φi∈L∞(0, T ;L2(Ω))
∩ L2(0, T ;W

◦
1
2(Ω)), i = 1, . . . ,m.

To obtain necessary estimates we need the following identity with Steklov averages:

(2.2)
m∑
i=1

∫
Ω×(h,T )

(
∂tuhiφi +

m∑
j=1

(aij · ∇uj)h · ∇φi − fihφi
)
dx dt = 0.
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Hence, we have

Lemma 2.2. Let ub ∈ L∞(0, T ;L2(Ω)) ∩W 1
2 (ΩT ), u0 − ub(0) ∈ L2(Ω). Let (1.2) and

(1.4) hold.
Then there exist constants c1 = c1(α1, β1, β2, β3), c2 = c2(α1, α2, β2) such that

(2.3)
∫
Ω

|u|2dx+ α1

∫
Ωt

|∇u|2dx dt

≤ ec1t
[
c2
∫
Ωt

(|ub|2 + |ubt|2 + |∇ub|2)dx dt

+ β3|Ωt|+ ess supt
∫
Ω

|ub|2dx+
∫
Ω

|u0 − ub(0)|2dx
]
, t ≤ T,

where |Ωt| = t volΩ.

P r o o f. Putting φi = uhi−ubi into (2.2), integrating with respect to time and passing
with h to 0 we obtain

1
2

∫
Ω

|u− ub|2dx+ α1

∫
Ωt

|∇u|2dx dt

≤
∫
Ωt

|u− ub| |ubt| dx dt+ α2

∫
Ωt

|∇u| |∇ub| dx dt

+
∫
Ωt

(β1|∇u|+ β2|u|+ β3)|u− ub| dx dt+
1
2

∫
Ω

|u0 − ub(0)|2dx,

where we have used (1.2) and (1.4).
In view of the Hölder and Young inequalities we have

1
2

∫
Ω

|u− ub|2dx+ α1

∫
Ωt

|∇u|2dx dt ≤ 1
2

∫
Ωt

(|u− ub|2 + |ubt|2)dx dt

+ ε
∫
Ωt

|∇u|2dx dt+
α2

2

2ε

∫
Ωt

|∇ub|2dx dt

+
β2

1

2ε

∫
Ωt

|u− ub|2dx dt+ β2

∫
Ωt

|u− ub|2dx dt

+ β2

∫
Ωt

|ub||u− ub| dx dt+ β3

∫
Ωt

|u− ub| dx dt

+
1
2

∫
Ω

(u0 − ub(0))2dx.

Choosing ε = α1
2 and using again the Hölder and Young inequalities implies

1
2

∫
Ω

(u− ub)2dx+
α1

2

∫
Ωt

|∇u|2dx dt ≤
(

1
2

+
β2

1

α1
+

3β2

2
+
β3

2

) ∫
Ωt

(u− ub)2dx dt
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+
α2

2

α1

∫
Ωt

|∇ub|2dx dt+
1
2

∫
Ωt

|ubt|2dx dt

+
β2

2

∫
Ωt

|ub|2dx dt+
β3

2
|Ωt|+ 1

2

∫
Ω

(u0 − ub(0))2dx,

where |Ωt| = t|Ω| and |Ω| = volΩ.
In view of the Gronwall inequality we have∫
Ω

|u− ub|2dx+ α1

∫
Ωt

|∇u|2dx dt

≤ e(1+
2β2

1
α1

+3β2+β3)t

[(
1 +

2α2
2

α1
+ β2

) ∫
Ωt

(|∇ub|2 + |ubt|2 + |ub|2)dx dt

+ β3|Ωt|+
∫
Ω

(u0 − ub(0))2dx
]
.

Using
∫
Ω
|u|2dx ≤

∫
Ω
|u − ub|2dx +

∫
Ω
|ub|2dx in the above inequality gives (2.3). This

concludes the proof.

Now, we prove existence of solutions to (1.1).

Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Let (1.3) hold and let S be
Lipschitz continuous. Then there exists a weak solution to problem (1.1) such that

ui ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1
2 (Ω)), i = 1, . . . ,m,

and the estimate (2.3) holds.

P r o o f. To prove existence of solution to problem (1.1) we replace ∂tu by the back-
ward difference quotient

∂−ht u =
1
h

[u(t)− u(t− h)].

Hence, to prove existence of solutions to (1.1) we approximate (1.1) using time and
space discretization. Successively, on time levels we solve approximated (projected on
finite-dimensional space) elliptic equations.

Then, we prove estimates for approximate solutions. Finally, we pass to the limit to
show existence.

Let ei(x), i = 1, . . . , λ, be linearly independent smooth functions in W
◦

1
2(Ω) such that

their linear combinations are dense in W
◦

1
2(Ω). Then we are looking for an approximate

solution of (1.1) in the form

(2.4) uα(x, t) = ubh +
λ∑
i=1

dα,i(t) ei(x), (x, t) ∈ ΩT ,

where α = (h, λ−1), dα,i(t) ∈ L∞(0, T ) are constant on the subintervals Ik = (tk−1, tk),
tk = kh, k = 1, . . . , s, h = T

s , s ∈ N. The values of dα on Ik are determined successively
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for k = 1, . . . , Th by solving the elliptic problems

(2.5) Sα(uα, φ) :=
m∑
i=1

∫
Ω

[
∂−ht uαi(t)φi +

m∑
j=1

aijh · ∇uαj · ∇φi − fihφi
]
dx = 0,

which hold for any φi ∈ Vλ = span{e1, . . . , eλ},

aijh =
1
h

kh∫
(k−1)h

aij(s, x, uα(t),∇uα(t)) ds,

fih =
1
h

kh∫
(k−1)h

fi(s, x, uα(t),∇uα(t)) ds, t ∈ ((k − 1)h, kh).

We take the initial data

(2.6) uα(t) := u0h(t) for− h < t ≤ 0,

and

(2.7) u0h := min
(

1,
1

h|u0|

)
u0,

and the boundary conditions

(2.8) ubh(x, t) :=
1
h

kh∫
(k−1)h

ub(x, s) ds, t ∈ ((k − 1)h, kh),

where ubh is time independent also in each interval ((k − 1)h, kh).
The choice of u0h implies that we can determine uα(t) inductively for t ∈ ((k−1)h, kh)

as a solution of an elliptic problem. In fact if uα(t−h) is known the l.h.s. of (2.5) defines a
continuous mapping Φα : Rλ → Rλ, where the λ parameters are the unknown coefficients
of uα(t).

To prove the existence of uα(t) for t ∈ (0, kh) we assume that uα(t) is already known
in (0, (k−1)h). Therefore, we have to determine {dα,i}i=1,...,λ for t ∈ (0, kh). Consider a
continuous mapping Φα : Rλ → Rλ such that

Φαi(dα) := Sα(uα, ei), i = 1, . . . , λ,

where dα = uα − ubh, dα =
∑λ
i=1 dα,i(t)ei(x). Then using (2.5) we obtain

Φα(dα) · dα =
λ∑
i=1

Φαi(dα) dα,i =
λ∑
i=1

Sα(uα, ei) dα,i(2.9)

=
λ∑
i=1

Sα(uα, uα − ubh)

=
m∑
i=1

∫
Ω

1
h

(uαi(t)− uαi(t− h))(uαi(t)− ubhi)dx

+
m∑
i=1

∫
Ω

[ m∑
j=1

aijh · ∇uαj(t) · ∇(uαi − ubhi)− fih(uαi − ubhi)
]
dx.
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In view of the Hölder and Young inequalities we have

Φα(dα) · dα ≥
∫
Ω

1
h

(
|uα(t)|2 − ε1|uα(t)|2 − 1

2ε1
|ubh|2(2.10)

− 1
2ε1
|uα(t− h)|2 − |uα(t− h)||ubh|

)
dx

+
∫
Ω

α1|∇uα|2dx− ε2
∫
Ω

|∇uα|2dx−
α2

2

2ε2

∫
Ω

|∇ubh|2dx

− β2
1

2ε2

∫
Ω

|uα − ubh|2dx− β2

∫
Ω

|uα|2dx

− β2

2

∫
Ω

(|uα|2 + |ubh|2)dx− β3

∫
Ω

(|uα|+ |ubh|)dx.

Choosing ε1 = 1
2 and ε2 = α1

2 we obtain

Φα(dα) · dα ≥
(

1
2h
− 2β2

1

α1
− 3β2

2
− β3

) ∫
Ω

|uα|2 dx(2.11)

+
α1

2

∫
Ω

|∇uα|2 dx−
1
h

∫
Ω

(|ubh|2 dx+ |uα(t− h)|2 dx

+ |uα(t− h)||ubh|)dx−
α2

2

α1

∫
Ω

|∇ubh|2 dx−
2β2

1

α1

∫
Ω

|ubh|2 dx

− β2

2

∫
Ω

|ubh|2 dx− β3

∫
Ω

|ubh| dx−
β3

4
|Ω|.

Therefore, for sufficiently large |dα(t)| and sufficiently small h we have Φα(dα) · dα > 0,
so there exists dα0(t) such that Φα0(dα0) = 0, that is, uα(t) exists.

Now, we obtain an estimate for solutions of (2.5). We put φ = uα(t) − ub into (2.5)
and integrate the result over t from 0 to ti+1, where ti = ih, i ≤ T

h . Then we obtain

(2.12)
ti+1∫
0

1
h

∫
Ω

(uα(t)− uα(t− h))(uα(t)− ubh(t))dx dt

+
ti+1∫
0

m∑
k,l=1

∫
Ω

alkh · ∇uαk · ∇(uαl − ubhl) dx dt−
m∑
i=1

ti+1∫
0

∫
Ω

flh(uαl − ubhl) dx dt.

Using the formula in line 6 on page 316 of [1] and the structure conditions (1.2) and (1.4)
we get

(2.13)
1
h

ti+1∫
ti

∫
Ω

u2
α(t) dx dt−

∫
Ω

u2
0h dx+ α1

ti+1∫
0

∫
Ω

|∇uα|2 dx dt

≤ −
ti∫

0

∫
Ω

(uα − u0h)∂ht ubh dx dt+
1
h

ti+1∫
ti

∫
Ω

(uα − u0h)ubh dx dt
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+ α2

ti+1∫
0

∫
Ω

|∇uα||∇ubh| dx dt

+
ti+1∫
0

∫
Ω

(β1|∇uα|+ β2|uα|+ β3)|uα − ubh| dx dt.

Since uα and ubh are constants in the intervals (ti, ti+1), i = 0, . . . , Th − 1, we have

(2.14)
∫
Ω

u2
α(ti+1) dx+ α1

ti+1∫
0

dt
∫
Ω

|∇uα|2dx

≤ c1
ti+1∫
0

dt
∫
Ω

u2
α(t) dx+ c2

∫
Ω

(u2
bh(ti+1) + u2

0h)dx

+ c3

ti+1∫
0

dt
∫
Ω

(|u0h|2 + |∂ht ubh|2 + |ubh|2 + |∇ubh|2)dx+ c4.

Hence, in view of the Gronwall lemma we obtain

(2.15)
∫
Ω

u2
α(ti+1) dx+ α1

ti+1∫
0

dt
∫
Ω

|∇uα|2 dx ≤ c,

so (2.15) holds for any t ∈ (0, T ).
From (2.15) we can choose a subsequence of {uα} still denoted by {uα} such that

uα → u weakly in L2(0, T ;W
◦

1
2(Ω)), and uα → u weak star in L∞(0, T ;L2(Ω)), as α→ 0.

Now, we shall show almost everywhere convergence of uα → u in ΩT . Changing the
time variable in (2.5) from t to t+ h and integrating the result over t from 0 to T − h we
obtain

(2.16)
m∑
i=1

(
1
h

T−h∫
0

∫
Ω

(uαi(t+ h)− uαi(t)
)
· φi dx dt

+
T−h∫
0

∫
Ω

( m∑
j=1

aijh∇uαj∇φi − fihφi
)
dx dt

)
= 0.

Putting φ = uα(t+ h)− uα(t)− (ubh(t+ h)− ubh(t)) we get

(2.17)
T−h∫
0

dt
∫
Ω

(uα(t+ h)− uα(t))2 dx ≤ ch.

Hence, in view of Lemma 1.9 from [1] uα → u strongly in L1(ΩT ), so

(2.18) uα → u a.e. in ΩT .

Now, from Lemma 6.3, Ch. 5, Sect. 6 of [4] we see that uα → u strongly in Lr(ΩT ),
where r < q = pn+2

n .
Finally, we prove strong convergence of ∇uα to ∇u. To show this we put φ=uα−vα=:

wα into (2.5), where vα ∈ L2(0, T ;Vλ) are approximations of u in L2(0, T ;W
◦

1
2(Ω)), which
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are time independent in each interval ((k − 1)h, kh), so

(2.19) vα → u strongly in L2(0, T ;W 1
2 (Ω)).

From (2.5) we have

(2.20)
m∑
i=1

t∫
0

∫
Ω

∂−ht uαiwαi dx dt+
m∑

i,j=1

t∫
0

∫
Ω

aijh∇uαj∇wαi dx dt

=
m∑
i=1

t∫
0

∫
Ω

fih · wαi dx dt.

From [1] we know that Φ = 1
2 (u2

1 + . . . + u2
m), b = (u1, . . . , um) = ∇Φ, B(u) = 1

2 (u2
1 +

. . .+ u2
m), so

(2.21)
m∑
i=1

t∫
0

∫
Ω

∂−ht uαiwαi dx dt ≥
1
h

t∫
t−h

∫
Ω

B(uα(t)) dx dt−
∫
Ω

B(u(t)) dx+ o(α),

where o(α)→ 0 as α→ 0.
The second term in (2.20) takes the form
m∑

i,j=1

t∫
0

∫
Ω

aijh∇uαj∇wαi dx dt

=
m∑

i,j=1

t∫
0

∫
Ω

aijh(∇wαj∇wαi +∇(vαj − uj)∇wαi +∇uj∇wαi)dx dt

≡ I1 + I2 + I3,

where I2 converges to zero because of strong convergence of vα → u in L2(0, T ;W
◦

1
2(Ω)).

Finally, I3 → 0 because wα converges weakly to 0 in L2(0, T ;W
◦

1
2(Ω)).

Finally, we examine the last term in (2.20). Hence, we consider∣∣∣ m∑
i=1

t∫
0

∫
Ω

fih · wαi dx dt
∣∣∣ ≤ c(∇uαL2(Ωt) + ‖∇uα)‖L2(Ωt) + 1)‖wα‖L2(Ωt),

which converges to zero because wα → 0 strongly in L2(ΩT ).
Summarizing the above results we get

1
h

t∫
t−h

∫
Ω

B(uα(t)) dx dt−
∫
Ω

B(u(t)) dx+
∫
Ωt

|∇wα|2 dx dt ≤ o(α),

where in view of the Fatou lemma

lim inf
α→0

∫
Ω

1
h

t∫
t−h

B(uα(t)) dx dt−
∫
Ω

B(u(t)) dx ≥ 0.

Hence,

(2.22) ∇uα → ∇u strongly in L2(ΩT ).
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Finally, we pass to the limit in the integral identity

(2.23)
m∑
i=1

T∫
0

∫
Ω

∂−ht uαiφi dx dt+
m∑

i,j=1

T∫
0

∫
Ω

aijh∇uαj∇φi dx dt

=
m∑
i=1

T∫
0

∫
Ω

fih · φi dx dt.

In the first term we use the integration by parts formula and we can pass to the limit
since φ ∈ H1(ΩT ). In the other two terms we can pass to the limit because of (2.18),
(2.20) and Theorem 2, Ch. 1, Sect. 4 of [2]. Hence (2.1) follows. This concludes the proof.

3. Regularity of solutions. First we have

Theorem 3.1. Let S ∈ C2, aij = aij(x, t) ∈ C(ΩT ; Rn2
), i, j = 1, . . . ,m. Let the

assumptions of Lemma 2.2 hold. Then the weak solution belongs to W 2,1
p (ΩT ), p > 1.

P r o o f. Since ui ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;W 1
2 (Ω)), i = 1, . . . ,m, and (1.4) holds,

the r.h.s. of (1.1) are in L2(ΩT ). Hence, in view of [5] we have ui ∈ W 2,1
2 (ΩT ), i =

1, . . . ,m. Then by imbedding theorems ∇ui ∈ Lp1(ΩT ) and ui ∈ Lq1(ΩT ), i = 1, . . . ,m,
where p1 ≤ 2(n+2)

n , q1 ≤ 2(n+2)
n−2 . Now the r.h.s. of (1.1) are in Lp1(ΩT ), so in view of

[5], ui ∈W 2,1
p1 (ΩT ), i = 1, . . . ,m. Then imbedding theorems imply that ∇ui ∈ Lp2(ΩT ),

ui ∈ Lq2(ΩT ), where p2 ≤ p1(n+2)
n+2−p1 , q2 ≤ p1(n+2)

n+2−2p1
. Continuing the considerations we

get at the kth step ∇ui ∈ Lpk(ΩT ), ui ∈ Lqk(ΩT ), i = 1, . . . ,m, and pk ≤ pk−1(n+2)
n+2−pk−1

,

qk ≤ pk−1(n+2)
n+2−2pk−1

. By induction ps = 2(n+2)
n−2(s−1) and qs = 2(n+2)

n−2s , s = 1, 2, . . . Hence, at the
sth step ui ∈W 2,1

ps (ΩT ), i = 1, . . . , n, so for sufficiently large s we conclude the proof.

In the case when aij are not continuous with respect to x and t the result of Solonnikov
(see [5]) cannot be used. Then we obtain an L∞-estimate by applying the method of Di
Benedetto (see [3], Ch. 8, Sect. 2).

Theorem 3.2. Let S be Lipschitz continuous, let aij = aδij , i, j = 1, . . . ,m, a =
a(x, t, u,∇u) be measurable with respect to x, t and continuous with respect to u,∇u. Let
the assumptions of Lemma 2.2 hold. Then the weak solution is bounded.

P r o o f. We use the integral identity

(3.1)
m∑
i=1

t∫
0

∫
Ω

[∂tuihφi + (a · ∇ui)h · ∇φi] dx dy =
m∑
i=1

t∫
0

∫
Ω

fih · φi dx dt,

where φi = uihf(|uh|), f is a nonnegative, nondecreasing function on R+ satisfying
sup0≤s≤l f

′(s) <∞ for all l > 0, and f(ω) = fε[(ω − k)+], where

fε(s) =

{ 1 if s ≥ ε,
ε−1s if 0 < s < ε,
0 if s ≤ 0,

and k > k0, k0 = max{|ω|t=0|L∞(Ω), |ω|S |L∞(S×(0,T ))}.
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Using the function φi in (3.1), integrating with respect to time and passing with h to
zero we obtain

(3.2)
1
2

∫
Ω

ω∫
0

sf(s) ds+
α1

2

∫
Ωt

|∇u|2f(ω) dx dt+ α1

∫
Ωt

|ui∇ui|2
f ′(ω)
ω

dx dt

≤ c
∫
Ωt

(1 + ω2)f(ω) dx dt+
1
2

∫
Ω

ω∫
0

sf(s) ds|t=0,

where ω = |u|. Then passing with ε to zero we get

(3.3)
∫
Ω

(ω − k)2+ dx+
∫
Ωt

|∇(ω − k)+|2 dx dt ≤ A
∫
Ωt

ω2χ{(ω − k) > 0} dx dt.

Now, using Lemma 2 of [6] we obtain supΩT ω ≤ 2k0. This concludes the proof.

4. Remarks

1. Using the technique of DiBenedetto we proved an L∞-estimate for the system

(4.1)
uit − div(a(x, t, u,∇u)∇ui) = fi(x, t, u,∇u), i = 1, . . . ,m,

ui|t=0 = ui0, ui|S = ubi, i = 1, . . . ,m,

where |fi| ≤ c4|∇u|+ c5|u|+ c6, 0 < c1 ≤ a(x, t, u,∇u) ≤ c2, |u0|+ |ub| ≤ c3, c1 − c6 are
positive constants and a(x, t, u,∇u) is measurable with respect to x, t and continuous
with respect to u, ∇u. Continuity with respect to u and∇u is necessary to prove existence
of weak solutions.

2. Assuming continuity with respect to x and t in the principal part of the parabolic
system we can prove regularity for weak solutions to the following system using the
technique of Solonnikov:

(4.2)
uit −

n∑
j,l=1

m∑
i,k=1

∂xj (aijkl(x, t)ukxl) = fi(x, t, u,∇u), i = 1, . . . ,m,

ui|t=0 = ui0, ui|S = ubi, i = 1, . . . ,m,

where aijkl = aijkl(x, t) are continuous with respect to x, t and satisfy the Legendre–
Hadamard condition

aijklξ
ijξkl ≥ a0|ξ|2, a0 > 0,

where | | is the euclidean norm in the linear space of matrices. The other assumptions
are the same as in (4.1). Applying the technique of Solonnikov we can also show that
ui ∈ L∞(ΩT ) and ∇ui ∈ L∞(ΩT ), i = 1, . . . ,m. Moreover, Theorem 3.1 implies some
Hölder continuity of ∇u also if data are sufficiently smooth.

In the above considerations the linear growth of fi, i = 1, . . . ,m, with respect to ∇u
plays the role of critical exponent.

In this case we can repeat the considerations of [7] implying an L∞-estimate and we
obtain the inequality Ys+1 ≤ c 2as

ka Y
1+α
s (see (3.18) of [7]) but α > 0 holds for n < 2 only.
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