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JÁN FILO

Institute of Applied Mathematics, Comenius University
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Introduction. In this survey we review some results on blow-up of solutions of the
problem

(0.1)
∂um

∂t
= ∆u, x ∈ Ω, t > 0,

(0.2)
∂u

∂ν
= up, x ∈ ∂Ω, t ≥ 0,

(0.3) u(x, 0) = u0(x) > 0, x ∈ Ω,

(0.4)
∂u0

∂ν
= up0, x ∈ ∂Ω,

where m, p > 0 and Ω is either a smoothly bounded domain in RN or Ω = RN+ =
{(x1, x

′) : x′ ∈ RN−1, x1 > 0}, ν is the outward normal.
Over the past two decades this problem has received considerable interest. For Ω

bounded, m = 1 and p > 1 it was shown by Levine and Payne ([LP1]) in 1974 and by
Walter ([Wa]) in 1975 that there are solutions which blow up in finite time. This means
that

lim sup
t→T

max
Ω

u(x, t) =∞ for some T <∞.

The major questions that have been studied since then are:

1. For which values of m, p does blow-up occur?
2. For which initial functions does blow-up occur?
3. Where are the blow-up points located?
4. With which rate (in t) does the solution approach the blow-up time?
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5. What is the profile (in x) at the blow-up time?
6. Can blow-up in infinite time occur?
7. If Ω = RN+ , what is the critical Fujita exponent?

Here we give a survey of answers (or partial answers) to the above questions and we
also present some basic ideas under the simplest circumstances.

1. m = 1, Ω = (0,∞). We will assume throughout this section that u0 ∈ C1 and
limx→∞ u0(x) = 0.

1.1. If p ≤ 1 then all solutions are global.

To see this it is sufficient to verify that

v(x, t) = eα
2t(e−αx + c)

is a supersolution if c > 0 and α2 = (1 + c)p (cf. [GL. Remark 2.2]). Let us mention here
that if p < 1 then uniqueness fails to hold (cf. [DFL, Theorem 3.5]).

1.2. If p > 1 then there are explicit selfsimilar solutions that blow up in finite time.

They are of the form

u(x, t) = (T − t)−λf−(ξ), T > 0, λ =
1

2(p− 1)
, ξ =

x√
T − t

,

f− is the unique bounded solution of

f ′′−(ξ)− ξ

2
f ′−(ξ)− λf−(ξ) = 0, ξ > 0,

−f ′−(0) = fp−(0).

The function f− is given explicitly in terms of degenerate hypergeometric functions (see
[FQ, Lemma 3.1]) and it is not difficult to verify that u has the following properties (cf.
[DFL, Lemma 3.1]):

(i) ut > 0 in (0,∞)× (0, T ),

(ii) u(x, T ) = kx−2λ, k = π−1/2

(
λ
Γ p(λ+ 1/2)
Γ (λ+ 1)

)2λ

,

(iii) x2λu(x, t)→ k as x→∞, 0 ≤ t ≤ T .

Here x = 0 is the only blow-up point and the blow-up rates in t and x are (T − t)−λ and
x−2λ, respectively. We shall show that many solutions behave similarly.

1.3. If u is a solution that blows up in the time T and

β = inf
x>0
−u
′
0(x)
up0(x)

∈ (0, 1]

then
lim sup
t→T

u(x, t) ≤ [β(p− 1)]−2λ x−2λ for x > 0.

This was shown in [B, Theorem 2].
The proof follows by a simple maximum principle argument. If we take

J(x, t) = ux + βup
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then it is not difficult to show that J ≤ 0 in Ω × (0, T ). If we integrate the inequality

ux + βup ≤ 0

we obtain the assertion.

1.4. Assume u blows up at the time T and u′0 ≤ 0. Then there is a δ = δ(u0) > 0
such that

lim sup
t→T

u(x, t) ≥ p−
p
p−1 (p− 1) x−2λ for x ∈ (0, δ).

To show this one uses the intersection-comparison method as in [GKS]. Namely, for
any u0 there are α0, δ > 0 such that the stationary solution Uα(x) = −αpx + α has in
(0, δ) a unique intersection with u0 for all α ≥ α0 and Uα(0) > u0(0). Since ux ≤ 0 and u
blows up, we obtain that for any α ≥ α0 there is a tα ∈ (0, T ) such that Uα(0) < u(0, tα).
The number of intersections is nonincreasing therefore it is actually equal to zero at
t = tα. Hence lim supt→T u(x, t) ≥ supα≥α0

Uα(x) for x ∈ (0, δ) and it is easy to verify
that supα≥α0

Uα(x) = p−p/(p−1)(p− 1)x−2λ.

In 1.3 and 1.4 we described the profile in x and next we turn to the same question
but in t.

1.5. Assume u0 ∈ C3, (−1)iu(i)
0 ≥ 0, i = 1, 2, 3 and −u′′′0 (0) = pup−1

0 (0)u′′0(0). Then
u blows up at a finite time T and

u(0, t) ≤ (p− 1)−λ(T − t)−λ for t ∈ (0, T ).

We proceed as in [FQ, Lemma 2.1] (cf. also [DFL, Theorem 3.4]). By the maximum
principle u, ut ≥ 0 and ux, uxt ≤ 0. Using this and integration by parts we obtain

1
2
u2p(0, t) =

1
2
u2
x(0, t) = −

∞∫
0

uxx(x, t)u(x, t)dx

= −
∞∫
0

ut(x, t)ux(x, t)dx

= − lim
x→∞

ut(x, t)u(x, t) + ut(0, t)u(0, t) +
∞∫
0

uxt(x, t)u(x, t)dx

≤ ut(0, t)u(0, t).

From the inequality

ut(0, t) ≥
1
2
u2p−1(0, t)

we conclude that u blows up at a time T and integrating over (t, T ) we obtain the result.

1.6. Assume that u′0 ≤ −u
p
0 and u blows up at a finite time T . Then

u(0, t) ≥ (λp−1)λ(T − t)−λ for t ∈ (0, T ).

We proceed similarly as in 1.3. By the maximum principle, J(x, t) = ux + up ≤ 0 in
Ω × (0, T ) and J(0, t) = 0. Therefore Jx(0, t) = ut(0, t) − pu2p−1(0, t) ≤ 0. Integration
of the last inequality over (t, T ) yields the result. Notice that 1.5 and 1.6 give upper and
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lower bounds for T in terms of p and u0(0). As an example of a function u0 satisfying all
assumption in 1.5 and 1.6 we can take

u0(x) = [4λa(x+ a)−2]2λ, a > 0.

For the existence time T of the solution starting from this initial function we obtain

(p− 1)a2

8p
≤ T ≤ (p− 1)a2

4
.

1.7. If p > 2 then there are global selfsimilar solutions. They are of the form

u(x, t) = (t0 + t)−λf+(ζ), ζ =
x√
t0 + t

, t0 > 0,

f+ satisfies

f ′′+(ζ) +
ζ

2
f ′+(ζ) + λf+(ζ) = 0, ζ > 0,

−f ′+(0) = fp+(0),

and it can be expressed explicitly in terms of degenerate hypergeometric functions (cf.
[DFL]).

1.8. If p ∈ (1, 2] then all solutions blow up in finite time. If p > 2 then there are both
global and nonglobal solutions. (p = 2 is the critical Fujita exponent.)

The first statement is shown by Kaplan type arguments in [GL]. The second one
follows from 1.7.

1.9. Assume p > 2. Then the solution blows up in finite time provided

lim inf
x→∞

x2λu0(x) ≥ k,

k is from 1.2(ii). On the other hand , there are global solutions such that limx→∞ x2λu(x, t)
exists and is positive for all t > 0.

The first assertion follows by comparison with selfsimilar solutions from 1.2. The
property from the second statement is satisfied for a one parameter family of selfsimilar
solutions from 1.7 (cf. [DFL]).

1.10. If Ω = RN+ then the Fujita type result from 1.8 holds with the critical exponent
p = 2 replaced by p = 1 + 1/N (cf. [DFL]).

2. m < 1, Ω = (0,∞). Assume sup |(um
−1−1

0 )′| < ∞, u0 has compact support and
−u′0(0) = up0(0).

2.1. If p ≤ (m + 1)/2 then all solutions are global. If p > (m + 1)/2 then there are
solutions that blow up in finite time.

2.2. If p ∈ ((m+ 1)/2,m+ 1] then all solutions blow up in finite time. If p > m+ 1
then global solutions exist.

All statements in 2.1 and 2.2 were proved in [GL]. The most difficult and very inter-
esting result here is blow-up of all solutions when p = m+ 1. All other results in 2.1 and
2.2 are proved by comparison with sub- and supersolutions of selfsimilar type.
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3. m = 1, Ω is a bounded domain in RN

3.1. If p ≤ 1 then all solutions are global. If p > 1 then there are solutions that blow
up in finite time.

Blow-up of solutions emanating from “large” initial data was established in [LP1]
using energy methods. In [Wa] both the global existence and the blow-up result were
shown by comparison arguments.

3.2. If p > 1 then all (positive) solutions blow up in finite time.

We indicate here how this fact follows from the result in [Fa] (discussed below) which
says that global solutions are bounded provided p < N/(N − 2) if N > 2. It is easy to
see that there are no positive steady states and that zero is unstable. If a solution were
global then it would be bounded and its ω-limit set would have to contain nonnegative
steady states — a contradiction. If p ≥ N/(N − 2) then a comparison argument finishes
the proof. In [LMW1] this result was established for balls in RN and simply connected
domains in R2. See also [HY] for a short proof.

3.3. If a ∈ Ω is a blow-up point then a ∈ ∂Ω. (We call a a blow-up point if there are
{xn} ⊂ Ω and tn → T <∞ such that xn → a and limt→T u(xn, tn) =∞.)

This result was first proved for radially symmetric solutions in [LMW1] using a max-
imum principle argument similar as in 1.3. The general case was settled later in [HY]
under the assumption that u ≤ C(T − t)−q for some C, q > 0. (This is satisfied for
example if ∆u0 ≥ 0.)

3.4. There is an example of single point blow-up on the boundary.

This example can be found in [H2].

3.5. Assume that ∂Ω ∈ C2+α and p < N/(N − 2) if N > 2. Suppose u0 ∈ C2(Ω) and
∆u0 ≥ 0 in Ω. Then

max
Ω

u(x, t) ≤ C(T − t)−λ,

λ = 1/2(p− 1) as in Section 1.

This result was first established in the radially symmetric case (no restriction on p is
needed there) in [FQ] under additional assumptions on u0 (cf. 1.5). In [HY] the general
case was proved under a stronger restriction on p, namely, p < (N −1)/(N −2) if N > 2.
This restriction was needed because of lack of a sharp nonexistence result for

∆u = 0 in RN+ ,
∂u

∂x1
= up for x1 = 0.

The sharp nonexistence result was established later in [H1].

3.6. Suppose ∂Ω ∈ C1+α. Then

max
Ω

u(x, t) ≥ c(T − t)−λ.

Using an integral representation of u, this was shown in [HY].
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3.7. Assume Ω = (−1, 1), u0(x) = u0(−x) and u
(i)
0 (x) ≥ 0, i = 1, 2, 3, 4, x ∈ [0, 1].

Let T be the blow-up time. Then for any y ≥ 0 we have

(T − t)λu(1− y
√
T − t, t)→ f−(y) as t→ T

uniformly on compact intervals; f− is from 1.2.

For the proof (also in the radial case on balls in higher dimension) we refer to [FQ].
For a generalization see [HY].

3.8. Suppose that ∂Ω ∈ C2+α and

max
Ω

u(x, t) ≤ C(T − t)−λ

for some C > 0. If for some K > 0

lim inf
t→T

(T − t)λ inf
|y|≤K

u(a+ y
√
T − t, t) = 0,

then a is not a blow-up point.

This nondegeneracy of the blow-up limit was established in [H2].

3.9. Let u be a global solution of

ut = ∆u, x ∈ Ω, t > 0,
∂u

∂ν
= f(u), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

with ∂Ω ∈ C2 and f ∈ Cα for some α ∈ (0, 1). Suppose

uf(u) ≥ (2 + ε)
u∫

0

f(v)dv − C

for some positive constants ε, C. Assume

(i) |f(u)| ≤ g(u) for some increasing C1 function g if N = 1,
(ii) |f(u)| ≤ g(ϑ)eϑu

2
for some positive function g and all ϑ > 0, u ∈ R if N = 2,

(iii) |f(u)| ≤ ϑ|u|N/(N−2) + g(ϑ) for some positive function g and all ϑ > 0, u ∈ R if
N > 2.

Then u is uniformly bounded in C1,α.

This was proved in [L]. It is a significant improvement of the result from [Fa]. It
says that under the above assumptions there are just two possible types of behavior of
solutions:

(a) blow-up in finite time,
(b) global existence and uniform boundedness.

Blow-up in infinite time cannot occur.
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4. m > 0, Ω is a bounded domain in RN

4.1. Assume (N − 2)m < N + 2. If lim supt→T maxΩ u(x, t) =∞ then also

lim sup
t→T

◦
∫
∂Ω

|u(X, t)|rdS =∞ ∀r > (N − 1)(p− 1).

It was proved in [Fo1] (for a more general reaction term and with no sign restriction
on u0) that for any r > (N − 1)(p − 1) there exist positive constants M, ξ, independent
of T such that

|u(x, t)| ≤M(1 + sup
Ω

|u0(x)|)
(

1 + sup
0≤τ≤t

◦
∫
∂Ω

|u(X, τ)|rdS
)ξ

∀(x, t) ∈ Ω × [0, T ) and the assertion follows.
The proof of the above estimate is based on Moser’s iteration technique and it makes

use of the inequalities:

◦
∫
∂Ω

|u|p+λ ≤

(
◦
∫
∂Ω

|u|
(λ+1)(N−1)

N−2

)P (
◦
∫
∂Ω

|u|(N−1)(p−1)+ε

)Q(
◦
∫
∂Ω

|u|λ+1

)R
,

P =
(p− 1)(N − 2)

(N − 1)(p− 1) + ε
, Q =

p− 1
(N − 1)(p− 1) + ε

, R =
ε

(N − 1)(p− 1) + ε

if N > 2, and

◦
∫
∂Ω

|u|p+λ ≤

(
◦
∫
∂Ω

|u|2(λ+1)(p−1+ε)/ε

)P (
◦
∫
∂Ω

|u|p−1+ε

)Q(
◦
∫
∂Ω

|u|λ+1

)R
,

P =
ε(p− 1)

(p− 1 + ε)(2(p− 1) + ε)
, Q =

p− 1
p− 1 + ε

, R =
ε

2(p− 1) + ε

if N = 2 (0 < ε <∞).

4.2. Assume Ω = (−1, 1), u0(x) = u0(−x) and

(i) 0 < m < 1.

If p ≤ m then each solution exists globally whereas in the case m < p all solutions
blow up in finite time. In the case m < p ≤ 1 solutions become unbounded on the whole
space interval [−1, 1], but for p > 1 the only blow up points are x = ±1.

(ii) m ≥ 1.

If 2p ≤ m + 1 then all solutions are global and for 2p > m + 1 all solutions blow up
in finite time.

All statements in 4.2 except for the case 2p = m + 1 > 2 were proved in [Fo2]. The
borderline case 2p = m + 1 > 2 was settled later in [Wo] (see 4.3 below). The results
are proved by comparison with solutions emanating from special chosen initial data (cf.
[Fo2]). In some cases also the rate in t and profile in x at the blow-up time are shown.

If 0 < m < p ≤ 1 and u is a solution that blows up in the time T such that ux, uxx
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are nonnegative on [0, 1], u0(1) > 1 then

ξp ≤ T (p−m)m−1
( 1∫

0

um0 (x)dx
)(p−m)/m

≤ 1,

ξ = 1− up−1
0 (1) and

ξ(2p−m)/(p−m) ≤ c(T − t)1/(p−m)u(x, t) ≤ ξ−1

∀(x, t) ∈ [0, 1]× [0, T ), c = ((p−m)/m)1/(p−1).
If 0 < m < 1 < p and u is a solution such that ux is nonnegative on [0, 1] then

u(x, t) ≤ C

(1− |x|)1/(p−1)

for some positive constant C.
If 2p > m+ 1 > 2 and u is a solution that blows up at time T such that ux, uxx, uxxx

are nonnegative on [0, 1]× [0, T ) then

Cε
(T − t)1/(2p−m−1+ε)

≤ u(1, t) ≤ C

(T − t)1/(2p−m−1)

for some positive constants C,Cε and 0 < ε� 1.
The results of [Fo2] were generalized by [Wo] in two ways. In [Wo] general nonlin-

earities are allowed and the domain is an N -dimensional ball or any simply connected
smooth domain in R2.

4.3. The problem

ut = ∆Φ(u) in BR × (0, T ), BR = {x ∈ RN : |x| < R},
∂Φ(u)
∂ν

= f(u) on SR × [0, T ), SR = {x ∈ RN : |x| = R},

u(x, 0) = u0(x) > 0 in BR,

where Φ, f are increasing functions that are positive for u positive together with their
derivatives and which go to infinity as u goes to infinity, was studied in [Wo]. It was
shown that

(A) if Φ′(u) ≥ C > 0 and
(i) f(u)/(1 + u) is bounded then all solutions are global,
(ii)

∫∞
ds/f(s) <∞ then every solution blows up in finite time,

(B) if 0 < Φ′(u) ≤ C and
(i) Φ is concave or f(u)/Φ(u) is nondecreasing and

√
Φ′(u)f(u)/Φ(u) is bounded

then every solution exists globally,
(ii) Φ is concave, lim infu→∞ f(u)

√
Φ′(u)/Φ(u) > 0 and

∞∫ √Φ′(s)ds
f(s)

<∞

then each solution blows up in finite time.
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5. Related problems

5.1. The problem

(5.1) ut = ∇(a(u)∇u), x ∈ Ω, t > 0,

(5.2)
∂u

∂ν
= 1, x ∈ ∂Ω, t > 0,

(5.3) u(x, 0) = u0(x) > 0, x ∈ Ω,

was studied in [Y], where a ∈ C1 is such that a, a′ > 0 and lim supu→∞ a′(u)/a(u) <∞.
It was shown in [Y] that all solutions are global if and only if

∫∞
ds/a(s) = ∞. Also,

some results on the profile near blow-up were established.
If we take a(u) = m−1u

1
m−1, 0 < m ≤ 1/2 and v = u1/m then v satisfies

(5.4) (vm)t = ∆v, x ∈ Ω, t > 0,

(5.5)
∂v

∂ν
=

1
m
v1−m, x ∈ ∂Ω, t > 0,

which is a special case of (0.1), (0.2) (if we neglect the factor 1/m in (5.5)).

5.2. In [WW], the boundary condition (5.2) was replaced by

∂u

∂ν
= b(u)

and a global existence – global nonexistence result was proved.

5.3. In [LP2], the Laplace operator in (0.1) was replaced by an elliptic operator of
order 2k, and (0.2) was changed to correspond to the elliptic operator. For that problem
with m = 1, a “large” data blow-up result was established.

5.4. In [LS], the homogeneous Dirichlet condition was prescribed on a part of the
boundary and ”large” data blow-up was shown for m = 1.

5.5. In [CFQ], [LMW2] and [Q] the following problem with a damping term in the
equation was considered:

ut = ∆u− aup, x ∈ Ω ⊂ RN , t > 0,
∂u

∂ν
= uq, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

with Ω bounded, p, q > 1 and a > 0. For N = 1 it was shown in [CFQ] that

(i) if p < 2q− 1 (or p = 2q− 1 and a < q) then there are solutions which blow up in
finite time,

(ii) if p > 2q− 1 (or p = 2q− 1 and a > q) then all solutions are global and bounded,
(iii) if p = 2q − 1 and a = q then all nontrivial solutions exist globally but they are

not bounded, they tend (as t→∞) pointwise to a singular steady state.

The statements (i) and (ii) were proved in [CFQ] also for balls in higher dimension.
But for a general domain Ω only some partial results can be found in [CFQ]. It was shown
later in [Q] for a general domain Ω that
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(a) if p < 2q − 1 (or p = 2q − 1 and a is small) then there are solutions which blow
up in finite or infinite time,

(b) if p > 2q − 1 then all solutions are global and bounded.

5.6. In [DFL] the following system was studied:

ut = ∆u, vt = ∆v, x ∈ RN+ , t > 0,

− ∂u

∂x1
= vp, − ∂v

∂x1
= up, x1 = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ RN+ ,

with p, q > 0. It was shown there (among other things) that blow-up may occur if and
only if pq > 1 and all nontrivial solutions blow up if and only if

max
(
p+ 1
pq − 1

,
q + 1
pq − 1

)
≥ N.

When we referred to [DFL] in Section 1, we did that with the hope that interested readers
will easily see how to modify the results (or proofs) in the easier scalar case.

5.7. In [FL] the authors studied the profile of solutions that quench on the boundary.
They studied the problem

ut = uxx, x ∈ (0, 1), t > 0,

ux(0, t) = 0, t > 0,

ux(1, t) = −u−β(1, t), x ∈ [0, 1],

with β > 0. Every solution of this problem reaches zero (quenches) in finite time.

5.8. The heat equation with a condition similar to (0.2) prescribed on a hypersurface
Γ in a bounded domain Ω was studied in [CY]. Sufficient condition for global existence
and finite time blow-up were established there and also some results on the blow-up rate
and blow-up set were proved.

5.9. Assume 0 < m, r <∞. The problem

(|u|m−1u)t =
N∑
i=1

(
|uxi |r−1uxi

)
xi

x ∈ Ω, t > 0,

∇ru · ν = f(u) x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), u0 ∈ L∞(Ω) ∪W 1
r+1(Ω),

where ∇ru = (|ux1 |r−1ux1 , . . . , |uxN |r−1uxN ) and

f(u)sign u ≤ L(|u|p + 1), L ≥ 0, 0 ≤ p <∞,

was studied in [Fo3]. It was shown that if

q > max
{

1,
N − 1
r

}
max{p− r, 0}

then there exists a positive function F ∈ C2(R2
+) depending solely on the data and q
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such that

‖u(t)‖L∞(Ω) ≤ F
(
‖u0‖L∞(Ω), ess sup

0≤τ≤t
◦
∫
∂Ω

|u(X, τ)|qdS
)

for a.e. t ∈ [0, T ] (F(x, y)→∞ if y →∞).
The global existence result was proved under the following assumptions:

p ≤ min{m, r} or r < p <
r(m+ 1)
r + 1

and p < p∗, where p∗ = r(m+ 2) if N = 1 and p∗ = r(N + max{p,m}+ 1)/N if N ≥ 2.
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