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0. Introduction. The Lagrange singularity theory connects the Lagrange classifica-
tion of Lagrange immersions with the classification of families of functions, that is, gener-
ating families. (The theory of Hörmander, Arnol’d, Zakalyukin, . . ., [AGV]). Though there
exist detailed studies on singular Lagrange varieties (e.g. [A1], [A2], [DP], [G1], [G2], [J],
[Z]), the nice connection between Lagrange singularities and generating families seems to
break, in particular, when we try to classify generic Lagrange non-immersions or generic
isotropic mappings. Our attempt is then to study singularities of isotropic mappings in
the framework of singularity theory of differential mappings (Thom-Mather theory: e.g.
[T], [M2]), and to classify their generic singularities under the Lagrange equivalence.

In the singularity theory, the transversality theorem is a powerful tool to grasp generic
conditions for differentiable mappings, with respect to partial derivatives (see, for in-
stance, [M1], [M2]). In general, if we fix a space of mappings, a generic condition on a
mapping should be described by the transversality of the jet section of the mapping to
a stratification naturally defined in a jet space of sufficiently higher order. Then, “the
transversality theorem” claims the density of the subspace of mappings satisfying the
transversality condition, relatively to an appropriate topology on the space of mappings.
As a rule, the validity of “the theorem”, however, depends on the space of mappings.

Then, the purpose of this paper is to formulate explicitly and to prove the transver-
sality theorem for the space of isotropic mappings of corank at most one, endowed with
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the Whitney C∞ topology. The corank condition is necessary at least to assure the cor-
responding jet spaces are non-singular.

In what follows, all manifolds, mappings and differential forms are assumed to be of
class C∞.

Isotropic mappings arise naturally in symplectic geometry: Let X be a manifold of
dimension n, and M a symplectic manifold of dimension 2n with the symplectic form ω.
We call a mapping φ : X →M isotropic if the pull-back φ∗ω is equal to zero. An isotropic
immersion is called a Lagrange immersion (cf. [W]), and therefore an isotropic mapping
is regarded as a Lagrange immersion with singularities: A point x ∈ X is a singular point
of φ if the the rank of tangential mapping (φx)∗ : TxX → Tφ(x)M is less than n. We call
the dimension of the kernel of (φx)∗, the corank of the germ φx. By the corank of φ, we
mean the supremum of the corank of φx, x ∈ X.

Let JkI (X,M) stand for the set of k-jets jkφ(x) of isotropic map-germs φ : X,x →
M,φ(x), x∈X. Then, in general, JkI (X,M)⊂Jk(X,M) is not a submanifold. We denote
by Rk(X,M) the set of k-jets of isotropic map-germs of corank at most one. Then we
see that Rk(X,M) is a submanifold of Jk(X,M), and moreover the natural projection
πk,` : Rk(X,M)→ R`(X,M) is a submersion for ` ≤ k (Corollary 3.3).

We denote by C∞I (X,M)1 the set of isotropic mappings φ : X → M with corank
φ ≤ 1, endowed with the Whitney C∞ topology. For each φ ∈ C∞I (X,M)1, we consider
the jet extension jkφ : X → Rk(X,M).

This paper is devoted to proving the following transversality theorem:

Theorem 0.1. Let X be an n-manifold , M a symplectic 2n-manifold , k a non-negative
integer and U a locally finite family of submanifolds of Rk(X,M). Then the subspace TU
of C∞I (X,M)1, consisting of mappings φ such that the k-jet extension jkφ is transverse
to all elements of U , is dense in C∞I (X,M)1.

To apply Theorem 0.1 to the singularity theory of isotropic mappings, we need to
recall several fundamental notions.

Two isotropic map-germs φ : X,x → (M,ω) and φ′ : X ′, x′ → (M ′, ω′) are called
symplectically equivalent if there exist a diffeomorphism-germ σ : X,x → X ′, x′ and a
symplectic diffeomorphism-germ τ : M,φ(x) → M ′, φ′(x′), τ∗ω′ = ω, such that τ ◦ φ =
φ′ ◦σ. Remark that any Lagrange immersion-germs are symplectically equivalent to each
other.

In Lagrange singularity theory, it is also natural to consider a symplectic manifold
with a Lagrange fibration. The typical example is the cotangent bundle T ∗Q over an
n-manifold Q with the symplectic form ω = dθ, where θ is the canonical (Liouville) form
on T ∗Q, and with the Lagrange fibration π : T ∗Q→ Q.

For an isotropic mapping φ : X → T ∗Q, a Lagrange singular point x ∈ X of φ is a
point x with corank(π ◦ φ)x < n. Here we call corank (π ◦ φ)x, L-corank of φx. Then it
is clear that corankφx ≤ L-corankφx, and therefore, a singular point of φ is necessarily
a Lagrange singular point.

Our concern is to give a fundamental tool for classifying Lagrange singularities under
Lagrange equivalence: Two isotropic map-germs φ : X,x → T ∗Q and φ′ : X ′, x′ →
T ∗Q′ are called Lagrange equivalent if there exist a diffeomorphism-germ σ : X,x →
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X ′, x′ and a symplectic diffeomorphism-germ τ : T ∗Q,φ(x) → T ∗Q′, φ′(x′), covering a
diffeomorphism-germ Q→ Q′ such that τ ◦ φ = φ′ ◦ σ (see [AGV]).

By Darboux’s theorem, any isotropic map-germ X,x → M (resp. X,x → T ∗Q) is
symplectically (resp. Lagrange) equivalent to an isotropic map-germ Rn, 0 → T ∗Rn, 0,
where the symplectic form on T ∗Rn is given by ω = d(

∑n
i=1 pidqi).

Denote by I(n) the set of isotropic map-germs Rn, 0 → T ∗Rn, 0. Further denote by
Sk(n) (resp. Lk(n)) the group of k-jets of symplectic equivalence {(σ, τ)} (resp. Lagrange
equivalence) on I(n). We set Rk(n) = {jkφ(0) | φ ∈ I(n), corankφ ≤ 1}. Then Rk(n) is
a Sk(n)-invariant submanifold of the usual jet space Jk(n, 2n), (see Proposition 3.2).

Though the following modified form of the transversality theorem is in fact a special
case of Theorem 0.1, it is more useful in the classification problem of generic singularities
of isotropic mappings under the symplectic or the Lagrange equivalence.

Corollary 0.2. We fix non-negative integers n and k. Let U be a stratification of
Rk(n). Assume U is invariant under Sk(n) (resp. Lk(n)). We denote by Ũ the naturally
obtained stratification of Rk(X,M) (resp. Rk(X,T ∗Q)), for an n-manifold X and a sym-
plectic 2n-manifold M (resp. an n-manifold Q). Then, the subspace TU ⊂ C∞I (X,M)1

(resp. C∞I (X,T ∗Q)1) of isotropic mappings φ : X →M (resp. φ : X → T ∗Q) of corank
at most one such that the k-jet extension jkφ : X → Rk(X,M) (resp. Rk(X,T ∗Q)) is
transverse to Ũ , is dense, with respect to the Whitney C∞ topology.

Theorem 0.1 (resp. Corollary 0.2) implies the transversality theorem for Lagrange
immersions, which is an implicit base of the generic classification of Lagrange singularities
of Lagrange immersions [AGV].

As another application of Theorem 0.1 or Corollary 0.2, we see that, if n < 4, then
generic isotropic map-germs φ : Rn, 0 → T ∗Rn, 0 of corank one are of L-corank (=
corankπ ◦ φ) one (Corollary 3.6).

Moreover we see that, in fact, there exists a generic isotropic map-germ φ : R4, 0 →
T ∗R4, 0 of corank one and of L-corank 2 (Proposition 3.9). This type of singularities
is regarded as a degeneration of the Lagrange singularities of type D±4 of Lagrange im-
mersions. However, we need other techniques to obtain concrete normal forms of the
singularities of this type.

In §1, we study the structure of isotropic mappings under both symplectic and La-
grange equivalences. The results obtained are used to the proof of Theorem 0.1, as well
as they are interesting in theirselves.

The notion of jet is essential for the usual singularity theory. We give in §2 some
simple descriptions of jet-spaces for the counterpart of the singularity theory of isotropic
mappings.

We prove Theorems 0.1 in §3, using the results of §§1 and 2. We also give a simple
consequence from Theorem 0.1 and Corollary 0.2.

For brevity, we denote by En the R-algebra of map-germs Rn, 0→ R, and by mn the
unique maximal ideal consisting of map-germs Rn, 0→ R, 0.

The author would like to thank S. Janeczko for kindly giving him the opportunity to
write down this paper, and S. Izumiya, T. Morimoto and T. Ohmoto for valuable com-
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ments. This work has been completed during the author’s stay at the University of Liv-
erpool; he would like to express his gratitude especially to J. W. Bruce and C. T. C. Wall
for their hospitality.

1. Isotropic mappings. Let φ0∈I(n) and φs (s∈R`, 0) be an isotropic deformation
of φ0. By definition, we are assuming that Φ = (φs, s) : Rn ×R`, 0 → T ∗Rn ×R`, 0 is
a C∞ map-germ, and that φ∗sω = 0, for all s ∈ R`, 0, and, of course, when s = 0, φs is
equal to the given φ0.

Let x = (x1, . . . , xn) denote the coordinate system of Rn, q = (q1, . . . , qn) the co-
ordinate system of the base space of T ∗Rn, and (p; q) = (p1, . . . , pn; q) the associated
canonical coordinate with the Liouville form θ =

∑n
i=1 pidqi. Then ω = dθ.

Since φ∗sω = dxφ
∗
s(
∑n
i=1 pidqi) = 0, there exists a family of (generating) functions es

uniquely up to the addition of a function of s such that dxes = φ∗s(
∑n
i=1 pidqi), where dx

means the exterior derivative with respect to x. Then we have

des =
n∑
i=1

pi ◦ φs d(qi ◦ φs) +
∑̀
j=1

(rj)sdsj ,

for some function-germs (rj)s ∈ En. If we set

Φ̃ = (φs; rs, s) : Rn ×R`, 0→ T ∗Rn+`,

then Φ̃ is isotropic and it is a lift of Φ with respect to the projection π : T ∗Rn+` →
T ∗Rn ×R` defined by π(p, q; r, s) = (p, q, s). As easily verified, any isotropic lifts of Φ
are Lagrange equivalent to Φ̃. We call Φ̃ an isotropic unfolding of φ0. Then we have the
following fundamental fact:

Proposition 1.1. Let φ : Xn, x0 → M2n, φ(x0) be an isotropic map-germ of corank
k. Then φ is symplectically equivalent to an isotropic unfolding of a φ0 ∈ I(k) of corank
k.

P r o o f. From symplectic linear algebra, it is easy to see that there exist symplectic
coordinates (p1, . . . , pn; q1, . . . , qn) of M,φ(x0) such that (qk+1, . . . , qn)◦φ is a submersion.
Then (xk+1, . . . , xn) = (qk+1, . . . , qn)◦φ is a part of a coordinate system x = (x1, . . . , xn)
of Rn, 0. If we set s = (xk+1, . . . , xn), and φ0 = (p1, . . . , pk; q1, . . . , qk) ◦ φ|s=0, then φ is
an isotropic unfolding of φ0.

By the same proof as Proposition 1.1, we have

Proposition 1.2. Let φ : Xn, x0 → T ∗(Qn), φ(x0) be an isotropic map-germ. Assume
the L-corank of φ (= corankπ ◦ φ) is equal to k. Then φ is Lagrange equivalent to an
isotropic unfolding of a φ0 ∈ I(k) of L-corank k.

Similarly we have the following, which is needed in §3.

Proposition 1.3. Let φλ : Xn, xλ → M2n, φλ(xλ) (resp. T ∗(Qn), φλ(xλ)) be an `-
parameter C∞ family of isotropic map-germs. Assume the corank of φ0 (res. the L-corank
of φ0, i.e. the corank of π ◦φ0) is equal to k. Then φλ is symplectically (resp. Lagrange)
equivalent by an `-parameter family of symplectic (resp. Lagrange) equivalences to an
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`-parameter family of isotropic unfoldings of an `-parameter family φ′λ of elements in
I(k) with corankφ′0 = k (resp. L-corankφ′0 = k).

By Proposition 1.1 (resp. 1.2), in particular, an isotropic map-germ of corank one
(resp. of L-corank one) is symplectically (resp. Lagrange) equivalent to an isotropic
unfolding of a map-germ φ : R, 0 → T ∗R, 0. Remark that φ is automatically isotropic,
since any 2-forms vanish on R, 0, and, by the same reason, any deformation (φs, s) :
R ×Rn−1, 0 → T ∗R ×Rn−1, 0 is also isotropic. Simply write φs(t) = (P (t, s), Q(t, s)),
t ∈ R, 0. Then the corresponding isotropic unfolding is given by Φ̃ = (φs; r, s), where

rj =
∂

∂sj

( t∫
0

P
∂Q

∂t
dt

)
− P ∂Q

∂sj
=

t∫
0

(
∂P

∂sj

∂Q

∂t
− ∂P

∂t

∂Q

∂sj

)
dt, 1 ≤ j ≤ n− 1.

Thus the description of isotropic map-germs of corank one (resp. of L-corank one) is
easily handled: In fact the local symplectic classification of generic isotropic mappings of
corank one is given in [I1], [Z]. (See also [G2].) Further the local Lagrange classification
of generic isotropic mappings of L-corank one will be given in [I3].

To describe the structure of isotropic map-germs of corank one under Lagrange equiv-
alence, we introduce the following notation:

Let I, J be a decomposition of {1, . . . , n−1}: I∪J = {1, . . . , n−1},#I+#J = n−1.
We fix a system of coordinates (pI , qJ , t) of Rn, 0, where where pI = (pi)i∈I and so on.
Then, for a pair of functions u, v ∈ En, we define a map-germ φI,J [u, v] : Rn, 0 →
T ∗Rn, 0, by

pI ◦ φI,J [u, v] = pI ,

pJ ◦ φI,J [u, v] =
t∫

0

(
∂u

∂qJ

∂v

∂t
− ∂u

∂t

∂v

∂qJ

)
dt, pn ◦ φI,J [u, v] = u.

qI ◦ φI,J [u, v] =
t∫

0

(
∂u

∂t

∂v

∂pI
− ∂u

∂pI

∂v

∂t

)
dt,

qJ ◦ φI,J [u, v] = qJ , qn ◦ φI,J [u, v] = v.

Then φI,J [u, v] is isotropic, of corank one and of L-corank #I.
We need in §3 the following, which generalize Propositions 1.1, 1.2 and 1.3.

Proposition 1.4. Let φλ (λ ∈ R`, 0) be an `-parameter family of elements in I(n)
with corankφ0 ≤ 1. Then the family φλ is Lagrange equivalent to φI,J [uλ, vλ], for some
decomposition I, J of {1, . . . , n − 1} and for some uλ, vλ with uλ(0) = vλ(0) = 0 (by a
one-parameter family of Lagrange equivalences (σλ, τλ)).

Moreover , if φ0 = τ ◦ φI,J [u, v] ◦ σ−1, then we can choose (uλ, vλ, σλ, τλ) so that
(u0, v0, σ0, τ0) = (u, v, σ, τ).

P r o o f. Notice that, for the case of Lagrange immersions, a similar result is well-
known (cf. [AGV]).

First we see φλ is Lagrange equivalent to φ′λ of the following form:

φ′λ : (pI , qJ , t) 7→ (pI , pJ , pn; qI , qJ , qn),
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for some fixed decomposition I, J of {1, . . . , n−1}, where pJ , pn, qI , qn are function-germs
of (pI , qJ , t;λ) with pJ |t=0 = pn|t=0 = qI |t=0 = pn|t=0 = 0.

Then there exists function-germ e′ of (pI , qJ , t;λ) with e′|t=0 = 0 and

d(pI ,qJ ,t)e
′ = pIdqI + pJdqJ + pndqn = d(pIqI)− qIdpI + pJdqJ + pndqn.

Set e = e′ − pIqI . Then d(pI ,qJ ,t)e = −qIdpI + pJdqJ + pndqn. Thus we have

∂e

∂pI
= −qI + pn

∂qn
∂pI

,
∂e

∂qJ
= pJ + pn

∂qn
∂qJ

,
∂e

∂t
= pn

∂qn
∂t

,

and we see e =
∫ t
0
pn(∂qn/∂t)dt. Hence

qI = − ∂e

∂pI
+ pn

∂qn
∂pI

=
t∫

0

(
∂pn
∂t

∂qn
∂pI
− ∂pn
∂pI

∂qn
∂t

)
dt,

pJ =
∂e

∂qJ
− pn

∂qn
∂qJ

=
t∫

0

(
∂pn
∂qJ

∂qn
∂t
− ∂pn

∂t

∂qn
∂qJ

)
dt.

If we set uλ = pn(·, λ) and vλ = qn(·, λ), then we have the required result.

2. Isotropic jets. Recall that I(n) denotes the set of isotropic map-germs Rn, 0→
T ∗Rn, 0. Set Jk(n) = {jkφ(0) | φ : Rn, 0→ T ∗Rn, 0} = Jk(n, 2n). A k-jet z ∈ Jk(n) is
called isotropic if z = jkφ(0) for some φ ∈ I(n). We denote by JkI (n) the set of isotropic
k-jets in Jk(n), for k = 1, 2, . . . ,∞.

Our problem in this section is to study the structure of the set JkI (n) of isotropic
k-jets.

We denote by Sk(n) (resp. Lk(n)) the group of pairs (jkσ(0), jkτ(0)) of k-jets of a
diffeomorphism-germ σ : Rn, 0 → Rn, 0 and a symplectic (resp. Lagrange, i.e. fiber-
preserving symplectic) diffeomorphism-germ τ : T ∗Rn, 0 → T ∗Rn, 0. Naturally Sk(n),
therefore Lk(n) acts on Jk(n). Then JkI (n) is a Sk(n)-invariant, therefore Lk(n)-invariant
subset of Jk(n).

We introduce an auxiliary notion:

Definition 2.1. A map-germ φ : Rn, 0 → T ∗Rn, 0 is called `-isotropic (` = 1, 2, . . .
. . . ,∞) if φ∗ω ∈ m`

nΩ, that is, j`−1(φ∗ω)(0) = 0, where Ω denotes the En-module of
germs of differential 2-form on Rn, 0. A jet z ∈ Jk(n) is called `-isotropic if z = jkφ(0)
for some `-isotropic φ.

Now set Jk`−I(n) = {z ∈ Jr(n) | z is `-isotropic}. Then we have a sequence of sets:

Jk(n) ⊃ Jk1−I(n) ⊃ . . . ⊃ Jkk−I(n) ⊃ Jkk+1−I(n) ⊃ . . . ⊃ Jk∞−I(n) ⊃ JrI (n).

Then it is easy to see the following lemmata:

Lemma 2.2. Jk`−I(n) is algebraic (resp. semi-algebraic) if ` ≤ k (resp. k < ` <∞).

Lemma 2.3. J1
1−I(n) = J1

I (n), which is identified with the set of linear isotropic map-
pings Rn → T ∗Rn. Moreover J1

I (n) ⊂ HomR(Rn,R2n) ∼= R2n2
is a quadratic hypersur-

face with SingJ1
I (n) = {linear isotropic mappings of corank ≥ 2}. ([G1], [A2]. See also

Example 2.4 below.)
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Set Σi(n) = {j1φ(0) ∈ J1(n) | corank φ = i} and Σi(n) = {j1φ(0) ∈ J1(n) | L-corank
φ = i}.

The natural projection πk,` : Jk(n) → J`(n) (k ≥ `) induces πk,` : JkI (n) → J`I (n).
Denote the inverse image π−1

k,1(Σi(n)) (resp. π−1
k,1(Σi(n))) ⊂ Jk(n) also by Σi(n) (resp.

Σi(n)).
Now, to study (first order) singularities or Lagrange singularities of isotropic map-

pings, set ΣiI(n) = Σi(n) ∩ J1
I (n) (resp. Σj,I(n) = Σj(n) ∩ J1

I (n)). Further set Σij,I(n) =
ΣiI(n)∩Σj,I(n) (i ≤ j). We freely regard ΣiI(n), Σj,I(n) and Σij,I(n) as subsets in JkI (n)
for arbitrary k.

Remark that Σ0
I(n) is the set of jets of Lagrangian immersions Rn, 0→ T ∗Rn, 0.

Example 2.4. To describe J1
I (n), we set V =HomR(Rn,Cn) ∼= Mn(C), the space of

complex square matrices of size n. We denote by 〈·, ·〉 the standard Hermitian structure
on Cn, and by [·, ·] the standard symplectic structure on Cn; [u, v] = Im〈u, v〉, u, v ∈ Cn.
Then J1

I (n) is identified with the set W ⊂ V of linear isotropic mappings. We define a
polynomial map ρ : V →Alt(n) by ρ(`)(u, v) = [`u, `v], u, v ∈ Rn. where Alt(n) is the
space of skewsymmetric bilinear forms Rn ×Rn → R. Then we see W = ρ−1(O) and
therefore W is a real algebraic subset of V . Further we see that ρ is submersive along
Σ0
I(n)∪Σ1

I(n). Hence Sing(W ) is contained in
⋃n
j=2 ΣjI(n). Furthermore each ΣiI(n) is a

submanifold of V of dimension (1/2){n(3n+ 1)− i(3i+ 1)}, 0 ≤ i ≤ n. (See [I2]).

Now we pick up a wider domain than Σ0
I(n) in JkI (n):

Rk(n) = {jkφ(0) ∈ JkI (n) | corankφ ≤ 1} = Σ0
I(n) ∪ Σ1

I(n),

which is open in JkI (n).

Example 2.5. Let n=2. The ambient space J1(2)=J1(2, 4) is identified with R8, by
setting q1 =ax+by, q2 =cx+dy; p1 =αx+βy, p2 =γx+δy, where (x, y) is the coordinate
of R2. Then J1

I (2) is given by αb−βa+γd−δc = 0. Thus dim J1
I (2) = 7 and Sing J1

I (2) =
{0}. Set Σ̄1

I(2) = Σ1
I(2)∪Σ2

I(2). This is defined by αb−βa+γd−δc = ad−bc=αδ−βγ=0,
which is of dimension 5 and SingΣ̄1

I(2) = {0}. Further set Σ̄1,I(2) = Σ1,I(2) ∪ Σ2,I(2).
Then Σ̄1,I(2) is defined by αb − βa + γd − δc = ad − bc = 0, which is of dimension 6
and SingΣ̄1,I(2) = {a = b = c = d = 0}. Now set X0 = J1

I (2), X1 = J1(2) ∩ {ad − bc =
0} = Σ̄1,I(2), X2 = X1 ∩ {αδ − βγ = 0} = Σ̄1

I(2), X3 = {a = b = c = d = 0} = Σ2,I(2),
X4 = X2 ∩X3 = Σ2,I(2) ∩ Σ̄1

I(2) = Σ1
2,I(2) ∪ {O}, and X7 = {O} = Σ2

I(2). Further set
U0 = X0−X1, U1 = X1−(X2∪X3), U2 = X2−X4, U3 = X3−X4, U4 = X4−X7 = Σ1

2,I(2).
Then {U0, U1, U2, U3, U4} is the stratification of R1(2) by the orbits of L1(2), and we see
codimUj = j.

The following is the key to study the structure of Rk(n):

Proposition 2.6. Jkk−I(n) ∩ (Σ0(n) ∪ Σ1(n)) = Rk(n).

P r o o f. Consider the natural action of Sk(n) on Jk(n) preserving JkI (n) and Jk`−I(n).
Assume z is a k-isotropic k-jet and corank z ≤ 1. Then, by Proposition 1.1, there exist
polynomials P1, . . . , Pn and Qn of degree ≤ k such that z is (symplectically) equivalent
to jk(P ;x′, Qn)(0), where P = (P1, . . . , Pn) and x′ = (x1, . . . , xn−1). The map-germ
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φ = (P ;x′, Qn) is also k-isotropic, therefore, φ∗ω =
∑n−1
i=1 dPidxi + dPndQn ∈ mk

nΩ.
Comparing coefficients of dxi ∧ dxn, we have

∂Pi
∂xn

=
∂(Pn, Qn)
∂(xi, xn)

+ ρi, ρi ∈ mk
n (1 ≤ i ≤ n− 1).

Set P̃i = Pi −
∫ xn

0
ρidxn, 1 ≤ i ≤ n − 1, P̃ = (P̃1, . . . , P̃n−1, Pn) and φ′ = (P̃ ;x′, Qn).

Then jkφ′(0) = z and φ′ is isotropic. Hence z is isotropic; z ∈ JkI (n). So z ∈ JkI (n) ∩
(Σ0(n) ∪ Σ1(n)) = Rk(n).

The converse inclusion is clear.

Modifying the proof of Lemma 2.6, we have

Lemma 2.7. Let a : R`, 0 → Jk(n) be a C∞-map-germ with a(R`, 0) ⊂ Rk(n). Let
a(0) = jkφ(0) for some φ ∈ I(n). Then there exists a C∞ family φλ ∈ I(n), λ ∈ R`, 0,
such that jkφλ(0) = a(λ) and φ0 = φ.

In particular , for a C∞-curve zλ in Rk(n) through z0 = jkφ(0), φ ∈ I(n) (λ ∈ R, 0),
there exists a C∞ family φλ of I(n) with jkφλ(0) = zλ and φ0 = φ.

P r o o f. By Proposition 1.1, using a symplectic equivalence, we may assume φ is of
type (P ;x′, Qn), where P = (P1, . . . , Pn) and P1, . . . , Pn, Qn ∈ mn. Then there exist a
(not necessarily isotropic) deformation (Pλ, x′, Qnλ) of φ such that jk(Pλ, x′, Qnλ)(0) is
symplectically equivalent to a(λ) by a family of symplectic equivalences (σλ, τλ) with
(σ0, τ0). By the same procedure as in the proof of Proposition 2.6, we find an isotropic
deformation φ′λ = (P̃λ, x′, Q̃nλ) of φ such that jkφ′λ(0) = jk(Pλ, x′, Qnλ)(0). Applying
the inverse of (σλ, τλ) to φ′λ, we get the required family φλ.

R e m a r k 2.8. In general it seems natural to pose the following conjecture: For any
k < ∞, there exists ` = `(k) < ∞, such that Jk`−I(n) = JkI (n). Further, J∞∞−I(n) =
J∞I (n).

3. Transversality Theorem. We fix n ≥ 1. In this section, we denote by V k the
affine space Jk(n) = Jk(n, 2n) of k-jets of C∞ map-germs from Rn, 0 to T ∗Rn, 0. Besides,
we denote by Λk the vector space of (k− 1)-jets of closed 2-forms in Rn, 0. Remark that,
by Poincaré lemma, Λk is a vector subspace of the vector space of (k− 1)-jets of 2-forms
in Rn, 0 and it is equal to the space of (k−1)-jets of exact 2-forms in Rn, 0. Furthermore
we see

dimΛk = n+kCk n − n+k+1Ck+1 + 1.
We endow T ∗Rn = R2n with the standard symplectic form ω =

∑n
i=1 dpi∧dqi. Then

define the polynomial mapping ρ : V k → Λk by ρ(jkφ(0)) = jk−1(φ∗ω)(0).
First we show

Lemma 3.1. For a z ∈ V k, consider the tangent mapping ρ∗ : TzV k(∼= V k) →
Tρ(z)Λ

k(∼= Λk). If corank (z)≤1, then ρ∗ is surjective, that is, ρ is a submersion at z.

P r o o f. Set z = jkφ(0) and φ = (P,Q) = (P1, . . . , Pn;Q1, . . . , Qn). For a one-
parameter deformation φt = (P + tP̃ , Q+ tQ̃), we have

d(φ∗ω)/dt|t=0 =
∑
i

dP̃idQi −
∑
i

dQ̃idPi = d
(∑

i

(P̃idQi − Q̃idPi)
)
.
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Therefore ρ∗(P̃ , Q̃) = jk−1{d(
∑
i(P̃idQi− Q̃idPi))}(0). Then, to show ρ∗ is surjective, it

is sufficient to show that, for any one-form germ E on Rn, 0, there exist function-germs
P̃i, Q̃i, 1 ≤ i ≤ n, and e such that∑

i

(P̃idQi − Q̃idPi) = E + de.

Since the property that ρ∗ is surjective is Sk(n)-invariant, we may assume

Q = (x1, . . . , xn−1, u(x′, xn)),

where x′ = (x1, . . . , xn−1). Set E =
∑n
i=1Eidxi. If we set, in particular, Q̃ = 0 and

P̃n = 0, then the equation to solve turns out to
n−1∑
i=1

(P̃i − Ei − ∂e/∂xi)dxi − (En + ∂e/∂xn)dxn = 0.

First set e = −
∫ xn

0
Endxn. Then next set P̃i = Ei + ∂e/∂xi, i = 1, . . . , n− 1. Thus ρ∗ is

surjective if corank(z) ≤ 1.

Proposition 3.2. Rk(n) is a Sk(n)-invariant submanifold of V k = Jk(n, 2n). The
codimension of Rk(n) in V k is equal to dimΛk. Moreover the natural projection πk,k−1 :
Rk(n)→ Rk−1(n) is a surjective submersion (k ≥ 1).

Corollary 3.3. For an n-manifold X and a symplectic 2n-manifold M , the set
Rk(X,M) of k-jets jkφ(x) of isotropic map-germs φ : X,x → M of corank ≤ 1 is
a submanifold of Jk(X,M) of codimension dimΛk. Moreover , the natural projection
πk,k−1 : Rk(X,M)→ Rk−1(X,M) is a surjective submersion (k ≥ 1).

R e m a r k 3.4. The system {Rk} is regarded as the prolongation of the non-linear
first order partial differential equation: ω = 0 ([Go]).

P r o o f o f P r o p o s i t i o n 3.2. The first part is clear from Lemma 3.1 and Propo-
sition 2.6.

To see the second part, take z ∈ Rk(n) and a C∞ curve in Rk−1(n) through πk,k−1z ∈
Rk−1(n). Let jkφ(0) = z for a φ ∈ I(n). Then, by Lemma 2.7, this curve lifts to a C∞

deformation φλ of φ in I(n). Taking k-jets of φλ, we have a C∞ lifting of the curve
through z.

P r o o f o f T h e o r e m 0.1. We follow the standard argument to prove the transver-
sality theorem, for instance, as in §3 of [M1].

First of all we remark the following: The space C∞I (X,M) of isotropic mappings is
a Baire space with respect to the Whitney C∞ topology. Furthermore C∞I (X,M)1 ⊂
C∞I (X,M) is also a Baire space.

The proof of this fact is similar to that of Proposition 3.1 of [M1]: The point is that
the isotropic condition for a mapping is a local and closed condition about its one-jet
section. The second half is clear, because C∞I (X,M)1 is open in C∞I (X,M).

Then to show Theorem 0.1, it is sufficient to prove that, for each φ ∈ C∞I (X,M)1

and for each x0 ∈ X, there exist a manifold E, e0 ∈ E, and a continuous mapping
ϕ : (E, e0) → (C∞I (X,M)1, φ) such that the induced mapping Φ : E ×X → Rk(X,M)
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defined by Φ(e, x) = jk(ϕ(e))(x) is submersive at (e0, x0). (See Lemma 3.2 and the
argument in Proposition 3.3 of [M1].)

To complete this, we use the results in §§1 and 2 as follows: Denote by L(n) the group
of Lagrange equivalences on I(n). For each decomposition I, J of indices {1, . . . , n− 1},
we define a map Ψ : mn ×mn × L(n)→ I(n) by Ψ(u, v;σ, τ) = τ ◦ φI,J [u, v] ◦ σ−1. The
mapping Ψ induces a C∞ mapping Ψk : Jk(n, 2)×Lk(n)→ Rk(n) by Ψk(jku(0), jkv(0);
jkσ(0), jkτ(0)) = jk(Ψ(u, v;σ, τ))(0).

Then Ψk is a submersion: In fact, let (u, v, σ, τ) ∈ mn×mn×L(n), Ψ(u, v, σ, τ) = φ ∈
I(n) and z = jkφ(0) ∈ Rk(n). Let zλ be a smooth curve in Rk(n) through z. Then, by
Lemma 2.7, there exists a C∞-deformation φλ in I(n) of φ with jkφλ(0) = zλ. Then by
Proposition 1.4, there exist uλ, vλ, σλ, τλ such that Ψ(uλ, vλ;σλ, τλ)(= τλ ◦ φI,J [uλ, vλ] ◦
σ−1
λ ) = φλ and that (u0, v0, σ0, τ0) = (u, v, σ, τ). So we have

Ψk(jkuλ(0), jkvλ(0); jkσλ(0), jkτλ(0)) = zλ.

This means that any C∞ curve on Rk(n) through z has a C∞ lifting with respect to Ψk,
and therefore Ψk is a submersion.

We identify Jk(n, 2) with the space pf pairs of polynomials of n variables with degree
≤ k without constant terms. We set then E = Jk(n, 2)× Lk(n)×M .

Let φ ∈ C∞I (X,M)1 and x0 ∈ X. Then we have

φx0 = τ0 ◦ φI,J [u0, v0] ◦ σ−1
0 : X,x0 →M,φ(x0),

for a diffeomorphism-germ σ0 : Rn, 0 → X,x0, for a symplectic diffeomorphism-germ
τ0 : T ∗Rn, 0 → M,φ(x0), for a decomposition I, J of {1, 2, . . . , n − 1}, and for a pair of
elements u0, v0 ∈ En. (See Proposition 1.4.) Set e0 = (u0, v0, 1, φ(x0)), where 1 ∈ Lk(n)
is the unit, and construct ϕ : (E, e0)→ (C∞I (X,M)1, φ) by

ϕ(u, v;σ, τ ;m) = τ0 ◦ {b · Tm ◦ τ ◦ φI,J [u, v] ◦ σ−1 + (1− b)τ−1
0 ◦ φσ0} ◦ σ−1

0 ,

where b is a bump function on Jk(n, 2) × Lk(n) ×R2n ×Rn, which is equal to 1 near
the origin and is equal to 0 off a neighbourhood of the origin, and Tm : T ∗Rn → T ∗Rn

is the translation by τ−1
0 (m)− τ−1

0 (φ(x0)).
Then φ is clearly continuous and we have, near x0,

ϕ(u, v;σ, τ ;m) = τ0 ◦ Tm ◦ τ ◦ φI,J [u, v] ◦ σ−1 ◦ σ−1
0 .

Since, as verified above, Ψk is a submersion, Φ constructed from ϕ is a submersion at
(e0, x0).

R e m a r k 3.5. By the same method as in the proof of Theorem 0.1, we can show also
the multi-transversality theorem for isotropic mappings of corank at most one (cf. [M1]).

Lastly, we give a simple consequence of Theorem:

Corollary 3.6. Let n < 4. Then generic isotropic map-germs φ : Rn, 0 → T ∗Rn, 0
of corank one are of L-corank one.

For the proof of Corollary 3.6, we repeat the constructions in §1, in the first jet level.
Denote by J1(n−k,R1(k)) the space of 1-jets of map-germs Rn−k, 0→ R1(k) ⊂ J1(k).

Then define a mapping δ : J1(n − k,R1(k)) → R1(n) as follows: Let j1α(0) ∈ J1(n −
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k,R1(k)) with α : Rn−k, 0→ R1(k). Denote by A : Rn−k×Rk, 0→ T ∗Rk, 0 the induced
deformation. Then there exists e : Rn−k ×Rk, 0→ R such that des = A∗sθ, s ∈ Rn−k, 0.
If we assume e(0, s) = 0, then e is uniquely determined. From

de =
∑
i

pi ◦Asd(qi ◦As) +
∑
i

(∂e/∂si)dsi,

we define an isotropic map-germ B : Rn−k ×Rk, 0→ T ∗(Rn−k ×Rk), 0, by

pi ◦B = pi ◦A, qi ◦B = qi ◦A, ri ◦B = ∂e/∂si, si ◦B = si.

Clearly j1B(0) depends only on the one-jet j1α(0). Then set δ(j1α(0)) = j1B(0).
From δ, we define

∆ : J1(n− k,R1(k))× L1(n)→ R1(n)× L1(n)→ R1(n),

where the second mapping is the L1(n)-action on R1(n). Then we easily verify the fol-
lowing

Lemma 3.7. (1) ∆ is a submersion onto R1(n)− Σ̄k+1,I(n).
(2) ∆−1(Σj,I(n)) = Pr−1(Σj,I(k))× L1(n), 0 ≤ j ≤ k.
(3) ∆−1(Σ1

I(n)) = Pr−1(Σ1
I(k))× L1(n).

(4) codim Σj,I(n) = codim Σj,I(k) and codim Σ1
j,I(n) = codim Σ1

j,I(k), 0 ≤ j ≤ k.
Here Pr : J1(n− k,R1(k))→ R1(k) is the natural projection.

From Lemma 3.7 and Example 2.5, we have

Lemma 3.8. codim Σ1
2,I(n) = codim Σ1

2,I(2) = 4.

P r o o f o f C o r o l l a r y 3.6. By Theorem 0.1 (or Corollary 0.2) and Lemma 3.8,
a generic isotropic mapping of corank at most one has no singularity of type Σ1

2,I(n) if
n < 4. Therefore a generic isotropic map-germ of corank one is necessarily of L-corank
one, if n < 4.

We conclude this paper by showing the following:

Proposition 3.9. There exists a generic isotropic map-germ φ : R4, 0→ T ∗R4 such
that corankφ = 1 and L-corankφ = 2.

P r o o f. It is sufficient to show that there exists an isotropic map-germ φ ∈ I(4) of
corank one and of L-corank two such that the one-jet extension j1φ : R4, 0 → R1(4) is
transverse to Σ1

2,I(4) at 0: By any isotropic perturbations of φ, the Lagrange singular
point of type Σ1

2,I does not vanish.
On the other hand, by Example 2.5 and Lemma 3.7, we easily have the following

criterion for the transversality: Assume that φ ∈ I(4) is constructed from a two parameter
isotropic deformation (P1, P2, Q1, Q2) of an element of I(2) as in §1, where P1, P2, Q1, Q2

are function-germs of x, y, z, w, and z, w are regarded as parameters. If ∂P1/∂x(0) 6= 0,
then j1φ transversely intersects Σ1

2,I(4) at 0, if and only if the map-germ

f =
(
∂P1

∂x

∂P2

∂y
− ∂P2

∂x

∂P1

∂y
,
∂Q1

∂x
,
∂Q2

∂x
,
∂Q2

∂y

)
: R4, 0→ R4, 0

is of maximal rank.
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Then we define φ ∈ I(4), for instance, by

p1 = x, p2 = (1/2)y2, p3 = −(1/2)xy2, p4 = −(1/3)y3,

q1 = (1/2)(x2 + y2z), q2 = xz + yw + y2, q3 = z, q4 = w.

Remark that e = (1/3)x3 + (1/4)y4 + (1/2)xy2z + (1/6)y3w is a generating function of
φ. In this example, P1 = x, P2 = (1/2)y2, Q1 = (1/2)(x2 + y2z), Q2 = xz + yw + y2, and
therefore f = (y, x, z, w + 2y). Hence φ satisfies the required transversality condition.
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