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1. Introduction. Let Ω be a bounded open subset of Rn, n≥1. Assume that a(x, u)
is a Carathéodory function satisfying

(1.1) 0 < α ≤ a(x, u) ≤ β a.e. x ∈ Ω, ∀u ∈ R

where α, β are two positive constants. For f ∈ H−1(Ω), g ∈ H1(Ω) we would like to
consider here the problem

(1.2)

−
∂

∂xi

(
a(x, u)

∂u

∂xi

)
= f in Ω,

u− g ∈ H1
0 (Ω).

We use the summation convention and we refer to [GT] or [KS] for the definition of the
Sobolev spaces used throughout the paper.

First, under the above assumptions, using a fixed point argument of Schauder type,
it is very easy to show that (1.2) admits a solution (see for instance [CM]). We would
like to investigate here the question of uniqueness. More precisely we would like to prove
the following result:

Theorem 1. Assume that for some positive constant C one has

(1.3) |a(x, u)− a(y, u)| ≤ C|x− y| ∀u ∈ R, ∀x, y ∈ Ω

or

(1.4) |a(x, u)− a(x, v)| ≤ C|u− v| ∀u, v ∈ R, a.e. x ∈ Ω

then the problem (1.2) has a unique solution (| | denotes the usual euclidean norm in
Rp). If (1.3), (1.4) fail then uniqueness can fail even if u→ a(x, u) is Hölder continuous
of any order.
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R e m a r k 1.1. Loosely speaking uniqueness holds if and only if either |∇xa(x, u)| or
∂a(x, u)/∂u are uniformly bounded. In fact, it has been pointed out to us by P. Bénilan
that ∇xa(x, u) ∈ L2(Ω) is enough to insure here uniqueness.

This kind of problems were considered before by several authors (see [CC], [CM], [M],
[T]), however, even in this simple case the picture was not yet complete. In particular,
no counterexample seems to be known.

2. The proof of uniqueness. Let us first consider the case where (1.3) holds. Then
set

(2.1) A(x, s) =
s∫

0

a(x, t)dt.

If u ∈ H1(Ω) then it is clear that

(2.2) A(x, u(x)) ∈ H1(Ω).

Moreover, in the distributional sense one has

(2.3)
∂

∂xi
A(x, u) = a(x, u)

∂u

∂xi
+

u(x)∫
0

∂a(x, t)
∂xi

dt.

Then let us prove:

Proposition 2.1. Assume that (1.3) holds. Then (1.2) has a unique solution.

P r o o f. Let us denote by u, v two solutions of (1.1). By subtraction we get

(2.4) − ∂

∂xi

(
a(x, u)

∂u

∂xi
− a(x, v)

∂v

∂xi

)
= 0 in Ω.

But thanks to (2.3) this reads also

(2.5) − ∂

∂xi

(
∂

∂xi
(A(x, u)−A(x, v))−

u(x)∫
v(x)

∂a(x, t)
∂xi

dt

)
= 0 in Ω.

If f is a function we denote by [f > 0] the set defined by [f > 0] = {x ∈ Ω | f(x) > 0}
and we use similar notation for [0 < f ≤ ε]. Then we have

Lemma 2.1. For any ξ ∈ C1(Ω)

(2.6)
∫

[u−v>0]

[
∂

∂xi
(A(x, u)−A(x, v))−

u(x)∫
v(x)

∂a(x, t)
∂xi

dt

]
∂ξ

∂xi
dx = 0.

Let us postpone for the time being the proof of this lemma. Then, integrating by
parts in (2.6) we obtain (recall that A(x, u)−A(x, v) ∈ H1

0 (Ω))∫
[u−v>0]

A(x, u)−A(x, v)
∂2ξ

∂x2
i

+
∫

v(x)

u(x) ∂a(x, t)
∂xi

dt
∂ξ

∂xi
dx

which reads also

(2.7)
∫

[u−v>0]

u(x)∫
v(x)

[
a(x, t)

∂2ξ

∂x2
i

+
∂a(x, t)
∂xi

∂ξ

∂xi

]
dtdx = 0.
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Then, choosing ξ = eγx1 in (2.7), we have for γ large enough and by (1.3)

(2.8) a(x, t)
∂2ξ

∂x2
i

+
∂a(x, t)
∂xi

∂ξ

∂xi
≥ eγx1(γ2α− Cγ) > 0

and then in order for (2.7) to hold, [u− v > 0] must have measure 0. This leads to u ≤ v
and reversing the role of u and v to u = v.

P r o o f o f t h e l e m m a. Let us denote by ( )+ the positive part of a function, by
min[ , ] the minimum of two functions. Remark then that for ξ ∈ C1(Ω), ε > 0,

min[(A(x, u)−A(x, v))+/ε, 1] · ξ ∈ H1
0 (Ω).

Thus, multiplying (2.5) by the above function and integrating over Ω we deduce (for
simplicity we set below A(x, u) = A(u)),

(2.9)
∫
Ω

[
∂

∂xi
(A(u)−A(v))−

u(x)∫
v(x)

∂a(x, t)
∂xi

dt

]
min[(A(u)−A(v))+/ε]

∂ξ

∂xi
dx

= −
∫

[0<A(u)−A(v)≤ε]

[
∂

∂xi
(A(u)−A(v))−

u(x)∫
v(x)

∂a(x, t)
∂xi

dt

]
∂

∂xi

(
A(u)−A(v)

ε

)
ξ dx.

Let us denote by χA the characteristic function of the set A. By (1.1) one has

[0 < u− v] = [0 < A(u)−A(v)].

So, when ε→ 0

min[(A(u)−A(v))+/ε, 1]→ χ[0<u−v] a.e. in Ω.

It follows, by the Lebesgue convergence theorem, that the first integral in (2.9) converges
to ∫

[0<u−v]

[
∂

∂xi
(A(u)−A(v))−

u(x)∫
v(x)

∂a(x, t)
∂xi

dt

]
∂ξ

∂xi
dx.

Now, we claim that for ξ ≥ 0

lim
ε→0

∫
[0<A(u)−A(v)≤ε]

[
∂

∂xi
(A(u)−A(v))−

u(x)∫
v(x)

∂a(x, t)
∂xi

dt

]
∂

∂xi

(
A(u)−A(v)

ε

)
ξ dx ≥ 0.

Indeed, this integral reads also

(2.10)
1
ε

∫
[0<A(u)−A(v)≤ε]

|∇(A(u)−A(v))|2ξ dx

−
∫

[0<A(u)−A(v)≤ε]

u(x)∫
v(x)

∂a(x, t)
∂xi

dt
∂

∂xi

(
A(u)−A(v)

ε

)
ξ dx

≥ −
∫

[0<A(u)−A(v)≤ε]

u(x)∫
v(x)

∂a(x, t)
∂xi

dt
∂

∂xi

(
A(u)−A(v)

ε

)
ξ dx
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≥ −1
ε

∫
[0<A(u)−A(v)≤ε]

u(x)∫
v(x)

|∇a(x, t)|dt|∇(A(u)−A(v))|ξ dx.

Now, by (1.3) one has for some constant C
u(x)∫
v(x)

|∇a(x, t)|dt ≤ C(u(x)− v(x)).

Moreover, when u ≥ v one has

α(u(x)− v(x)) ≤
u(x)∫
v(x)

a(x, t)dt = A(u)−A(v).

Hence on [0 < A(u)−A(v) ≤ ε]
u(x)∫
v(x)

|∇a(x, t)|dt ≤ C

α
(A(u)−A(v)) ≤ C

α
ε

and the last integral in (2.10) is bounded from below by

−C
α

∫
[0<A(u)−A(v)≤ε]

|∇(A(u)−A(v))| ξ dx

which goes to 0 with ε.
Collecting the above results and letting ε→ 0 in (2.9) we obtain for ξ ∈ C1(Ω), ξ ≥ 0∫

[u−v>0]

[
∂

∂xi
(A(x, u)−A(x, v))−

u(x)∫
v(x)

∂a(x, t)
∂xi

dt

]
∂ξ

∂xi
dx ≤ 0.

Changing ξ into M − ξ for M large enough such that M − ξ ≥ 0 leads to (2.6) for any
ξ ∈ C1(Ω).

Let us now turn to the case where (1.4) holds. In fact, we would like to use here a
slightly more general assumption. Indeed let us set

(2.11) ωa(t) = sup
x∈Ω, |u−v|≤t

|a(x, u)− a(x, v)|

and let us assume

(2.12)
∫

0+

ds

ωa(s)
= +∞.

Clearly if (1.4) holds one has ωa(t) ≤ Ct and (2.12) holds.
Then we have:

Proposition 2.2. Assume that (2.11), (2.12) hold. Then (1.2) has a unique solution.

P r o o f. Let us denote again by u, v two solutions of (1.1). Then for ε > 0 let us set

(2.13) Fε =


x∫
ε

ds/ω(s)2 when x ≥ ε,

0 when x < ε,



UNIQUENESS FOR QUASILINEAR EQUATIONS 13

where for the sake of simplicity we have set ωa = ω (note that ω(t) > 0 when t > 0 unless
a is independent of u). From (2.4), multiplying by

(2.14) Fε(u− v) ∈ H1
0 (Ω)

and integrating by parts, we get

(2.15)
∫
Ω

(
a(x, u)

∂u

∂xi
− a(x, v)

∂v

∂xi

)
· ∂

∂xi
Fε(u− v) dx = 0.

This can be rewritten as

(2.16)
∫
Ω

a(x, u)
∂(u− v)
∂xi

· ∂

∂xi
Fε(u− v) dx

= −
∫
Ω

(a(x, u)− a(x, v))
∂v

∂xi
· ∂

∂xi
Fε(u− v) dx.

From (2.13) we deduce

(2.17)
∫

[u−v>ε]

a(x, u)
|∇(u− v)|2

ω2(u− v)
dx

= −
∫

[u−v>ε]

(a(x, u)− a(x, v))
ω2(u− v)

∂v

∂xi
· ∂

∂xi
(u− v) dx

≤
∫

[u−v>ε]

ω(u− v)
ω2(u− v)

|∇v||∇(u− v)| dx

=
∫

[u−v>ε]

|∇v| |∇(u− v)|
ω(u− v)

dx.

Hence by (1.1) and the Cauchy–Schwarz inequality we obtain

α
∫

[u−v>ε]

|∇(u− v)|2

ω2(u− v)
dx ≤

[ ∫
[u−v>ε]

|∇v|2 dx
] 1

2
[ ∫
[u−v>ε]

|∇(u− v)|2

ω2(u− v)
dx

] 1
2

from which it follows ∫
[u−v>ε]

|∇(u− v)|2

ω2(u− v)
dx ≤ 1

α2

∫
Ω

|∇v|2 dx.

Set

Gε =


x∫
ε

ds

ω(s)
when x ≥ ε,

0 when x < ε.
Then the above inequality reads∫

Ω

|∇Gε(u− v)|2 dx ≤ 1
α

∫
Ω

|∇v|2 dx.

Hence, by the Poincaré Inequality (see [BKS] for a similar argument), for some positive
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constant C ∫
Ω

|Gε(u− v)|2 dx ≤ C
∫
Ω

|∇v|2 dx.

Letting ε go to 0 we deduce by (2.12) that u ≤ v and the result follows by exchanging
the role of u and v.

So, we have established the part of Theorem 1 regarding uniqueness. Let us turn now
to the second part of this theorem.

3. A class of counterexamples. We are going to construct one dimensional coun-
terexamples. So, for Ω = (a1, a2) we will consider the problem

(3.1)
{
−(a(x, u)u′)′ = f in Ω,
u(a1) = A1, u(a2) = A2,

where a1, a2, A1, A2 are constants. Let us prove:

Proposition 3.1. Assume that (1.3), or (2.11), (2.12) fail , then (1.2) or (3.1) may
have several solutions even if u→ a(x, u) is Hölder continuous of any order γ, γ ∈ (0, 1)
i.e. even if

(3.2) |a(x, u)− a(x, v)| ≤ C|u− v|γ ∀u, v ∈ R, a.e. x ∈ Ω.

P r o o f. Let ω be a nondecreasing, continuous function such that

(3.3) ω(0) = 0, ω(t) > 0 ∀t > 0,
∫

0+

ds

ω(s)
< +∞,

(3.4) ω(t)/t is nonincreasing.

We are going to construct a counterexample to uniqueness of the type of (3.1) with an a
having a modulus of continuity ωa equivalent to ω. Set

(3.5) θ(s) =
s∫

0

ds

ω(s)
.

Then, θ is a one-to-one mapping from [0, T ] into [0, θ(T )] for any T > 0. Let us denote
by θ−1 its inverse. One has clearly

(3.6)
dθ

dy

−1

(y) = ω(θ−1(y)) ∀y > 0.

Let u be a smooth increasing function defined on (a1, a2), and such that u(a1) = A1 <

A2 = u(a2). Then, let us define v by

(3.7) v =
{
u+ θ−1(x− a1) in a neighbourhood of a1,
u+ θ−1(a2 − x) in a neighbourhood of a2,

v being smooth and such that

(3.8) v > u, v′ > 0 on (a1, a2).
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It is clear that such a definition is always possible. Now, let us define a(x, u) by setting

(3.9) a(x, u) =



1 if x 6∈ (a1, a2),
1 if x ∈ (a1, a2) and if u ≤ u(x),
u′(x)
v′(x)

if x ∈ (a1, a2) and if u ≥ v(x),

δ + (1− δ)u
′(x)
v′(x)

if x ∈ (a1, a2)

and if u = δu(x) + (1− δ)v(x).

It is clear that a defined that way is continuous in both variables x, u (note that u′(a1) =
v′(a2), u′(a2) = v′(a2)). Moreover, (1.1) holds.

From this choice of a one has obviously

(3.10) a(x, v)v′ = a(x, u)u′ = u′ on (a1, a2)

so that u and v are both solution to (3.1) with f = −u′′.
Now, for t small enough, there exists x close to a1 or a2 such that |u(x)− v(x)| = t,

then by (3.9),

a(x, u(x))− a(x, v(x)) = 1− u′(x)
v′(x)

=
v′(x)− u′(x)

v′(x)
.

But, in the neighbourhood of a1 or a2 one has (for instance for a1, and by (3.6))

(3.11) (v − u)′ = ω(θ−1(x− a1)) = ω(v − u)

and thus,

a(x, u(x))− a(x, v(x)) =
1

v′(x)
ω(v(x)− u(x)) =

1
v′(x)

ω(t).

So, for t small ωa(t) ≥ Cω(t) for some constant C, hence∫
0+

ds

ωa(s)
≤ 1
C

∫
0+

ds

ω(s)

and (2.12) fails. Of course, one can show that (1.3) fails as well.
In the case where (3.4) holds, let us now prove that, for some constant C, one has

also

(3.12) ωa(t) ≤ Cω(t).

For that, remark that if P denotes the projection of R onto [u(x), v(x)], i.e. if

(3.13) P (y) =

u(x) if y ≤ u(x),
y if y ∈ [u(x), v(x)],
v(x) if y ≥ v(x),

then, by definition of a one has

(3.14) a(x, y) = a(x, P (y)).

So, if we prove that

(3.15) |a(x, z)− a(x, z′)| ≤ Cω(|z − z′|) ∀z, z′ ∈ [u(x), v(x)], a.e. x ∈ Ω
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we will have (3.12) since from (3.14) it will follow

|a(x, u)− a(x, v)| = |a(x, P (u))− a(x, P (v))| ≤ Cω(|P (u)− P (v)|)(3.16)

≤ Cω(|u− v|) ∀u, v ∈ R, a.e. x ∈ Ω.

To prove (3.15) consider for δ, δ′ ∈ [0, 1]

(3.17) z = δu(x) + (1− δ)v(x), z′ = δ′u(x) + (1− δ′)v(x).

From (3.9) one has

(3.18) a(x, z)− a(x, z′) = (δ − δ′)[1− u′(x)/v′(x)]

and

(3.19) z − z′ = (δ − δ′)(u(x)− v(x)).

So, for x outside of neighbourhoods of a1 and a2 one has

(3.20) |a(x, z)− a(x, z′)| = |z − z′||1− u′(x)/v′(x)|/|u− v| ≤ C|z − z′|.

Let us fix some t0 > 0. Since by (3.4) the function ω(t)/t is nonincreasing, one has

(3.21) ω(t)/t ≥ ω(t0)/t0 ∀t ≤ t0
hence for some constant C

(3.22) ω(t) ≥ Ct ∀t ≤ t0.

It then follows from (3.20) that

(3.23) |a(x, z)− a(x, z′)| ≤ C ′ω(|z − z′|).

C ′ depends of course on the neigbourhoods of a1, a2 considered. Note also that a be-
ing bounded we need only to establish (3.23) for small values of |z − z′|. Now, in the
neighbourhood of a1 or a2, by (3.11), (3.18) one has

|a(x, z)− a(x, z′)| = |δ − δ′|
∣∣∣∣v′ − u′v′

∣∣∣∣ = |δ − δ′|ω(v − u)
v′

(3.24)

=
1
v′
|z − z′|
v − u

ω(v − u)

=
1
v′
ω(|z − z′|) |z − z

′|
ω(|z − z′|)

ω(v − u)
v − u

.

Using (3.4) and the fact that |z − z′| ≤ v − u we derive

|a(x, z)− a(x, z′)| ≤ 1
v′
ω(|z − z′|).

So, combining this with (3.23), we get for some constant C

(3.25) |a(x, z)− a(x, z′)| ≤ Cω(|z − z′|)

and (3.12) follows.
In particular, when ω(t) = tγ , γ ∈ (0, 1) (note that for such an ω (3.3), (3.4) hold)

(3.16) reads

|a(x, u)− a(x, v)| ≤ C|u− v|γ ∀u, v ∈ R, a.e. x ∈ Ω
which is (3.2). This completes the proof of proposition 3.1.



UNIQUENESS FOR QUASILINEAR EQUATIONS 17

R e m a r k 3.1. One can produce examples with more than two solutions by piling
up different functions v.

R e m a r k 3.2. When in (1.2) g = 0, it is still possible to produce examples of
nonuniqueness. For instance consider the construction we just made on (a1, a2) = (−1, 0)
and with 0 = A1 < A2. Then, symmetrise u and v on (0, 1). It is clear that we are pro-
ducing that way a counterexample to uniqueness on (−1, 1) with homogeneous boundary
data i.e. with g = 0.

4. Concluding remarks. In fact Theorem 1 can also be rephrased into a comparison
principle. More precisely we have:

Theorem 1. Assume that for some positive constant C one has

(1.3) |a(x, u)− a(y, u)| ≤ C|x− y| ∀u ∈ R, ∀x, y ∈ Ω

or

(1.4) |a(x, u)− a(x, v)| ≤ C|u− v| ∀u, v ∈ R, a.e. x ∈ Ω.

Let us denote by u1, u2 the solution to (1.2) corresponding respectively to the data (f1, g1),
(f2, g2). Then if f1 ≤ f2 and g1 ≤ g2, one has u1 ≤ u2. (f1 ≤ f2 is for instance taken in
the H−1 or in the measures sense).

P r o o f. In the case when (1.3) holds, (2.5) becomes

− ∂

∂xi

(
∂

∂xi
(A(x, u1)−A(x, u2))−

u1(x)∫
u2(x)

∂a(x, t)
∂xi

dt

)
≤ 0 in Ω.

So, one can establish (2.6) (with u, v replaced by u1, u2) as in section 2 and conclude the
same way that u1 ≤ u2.

In the case where (1.4) holds, since Fε(u1 − u2) ∈ H1
0 (Ω) and Fε(u1 − u2) ≥ 0, (2.16)

becomes∫
Ω

a(x, u1)
∂(u1 − u2)

∂xi
· ∂

∂xi
Fε(u1 − u2) dx

≤ −
∫
Ω

(a(x, u1)− a(x, u2))
∂u2

∂xi
· ∂

∂xi
Fε(u1 − u2) dx

and the proof is the same.
The situation is quite different for the problem−

∂

∂xi

(
a(x, u)

∂u

∂xi

)
+ λ(x)u = f in Ω,

u− g ∈ H1
0 (Ω).

where λ(x) is a positive function. Here uniqueness can hold even when both (1.3), (1.4)
fail. We refer the reader to [A], [AC].

With a similar technique uniqueness and nonuniqueness results are also available for
more general nonlinear problems as for instance variational inequalities associated to
nonlinear operators of the type considered here (see [CM], [M]), or systems (see [A],
[CFM]).
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It is also possible to consider the parabolic analogue of our problem i.e.
∂u

∂t
− ∂

∂xi

(
a(x, u)

∂u

∂xi

)
= f in Ω × (0, T ),

u− g ∈ H1
0 (Ω) t ∈ (0, T ), u(., 0) = u0.

In this situation uniqueness may also hold even if (1.3), (1.4) fail (see [Ar], [CR], [R]).
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