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Abstract. In this paper we show that the set of all mild solutions of the Cauchy problem
for a functional-differential inclusion in a separable Banach space E of the form

x′(t) ∈ A(t)x(t) + F (t, xt)

is an Rδ-set. Here {A(t)} is a family of linear operators and F is a Carathéodory type multi-
function. We use the existence result proved by V. V. Obukhovskĭı [22] and extend theorems on
the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskĭı [32].

Introduction. Beginning in the seventies the multivalued Cauchy problem in abstract
spaces has been studied by many authors; we mention the existence theorems obtained
by Chow and Schuur [6], Muhsinov [20], De Blasi [8], Anichini and Zecca [3], Sentis [26],
Pavel and Vrabie [25], Tostonogov [27] and [28] and Kisielewicz [16]. The first approach
to the structure of the solution set was by Davy [7] in the finite dimensional case. He
proved that the set S of solution is a continuum in C([0, T ],Rn). Later Lasry and Robert
[18] showed that S is acyclic whenever F has compact and convex values and is Hausdorff
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upper semicontinuous (u.s.c). Subsequently Himmelberg and Van Vleck [13] proved that
S is a compact Rδ when F is (u.s.c.) and bounded. De Blasi and Myjak [9] extended
this result to the case where F is Carathéodory. Only recently has the analogous problem
been studied in abstract spaces. We note that in these studies the method of proof usually
tries to follow the technique for the result in finite dimensions, adding hypotheses which
guarantee the existence of solutions. In this way in 1982 Tostonogov first (see [29] and
[30]) generalized a theory of Davy, and later Papageorgiou [24] extended to separable
Banach spaces a result of Himmelberg and Van Vleck.

In this paper we show that the set of all mild solutions of the Cauchy problem for a
functional-differential inclusion in a separable Banach space E, of the form

x′(t) ∈ A(t)x(t) + F (t, xt),

where {A(t)} is a family of linear operators and F is a Carathéodory type multifunction
is a Rδ-set. In order to achieve the result we use an existence theorem due to Obukhovskĭı
([22]) and we extend theorems on the structure of the solution sets obtained by Papa-
georgiou [23] and Umanskĭı [32]. For other results on the structure of solution sets we
refer to the forthcoming survey of Dragoni, Macki, Nistri and Zecca [11].

1.Preliminaries. Let V andW be topological spaces; a multivalued map (multimap)
F : V ( W is said to be:

(a) upper semicontinuous (u.s.c.) if F−1(U) = {x ∈ V | F(x) ⊂ U} is an open subset
of V for every open U ⊆W ;

(b) continuous if F is u.s.c. and lower semicontinuous, i.e. F−1(D) is a closed subset
of V for every closed D ⊆W.

Let us note (see, for example [4]) that if an u.s.c. multimap F : V ( W has compact
values then the image F(K) of any compact set K ⊂ V is relatively compact.

Let E be an infinite-dimensional Banach space. A function β : 2E → R+ is said to be
a measure of noncompactness in E if

β(co Ω) = β(Ω)

for every Ω ∈ 2E , where co denotes the closure of the convex hull of the set (see, for
example, [1]).

The measure of noncompactness β is said to be:

(a) monotone if Ω1 ⊆ Ω2 implies β(Ω1) ≤ β(Ω2);
(b) algebraically semiadditive if β(Ω1 + Ω2) ≤ β(Ω1) + β(Ω2) for all Ω1,Ω2 ∈ 2E ;
(c) nonsingular if β(Ω ∪ {a}) = β(Ω) for all Ω ∈ 2E , a ∈ E ;
(d) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

One of the well-known examples of the measure of noncompactness possessing the
properties (a)–(d) is the Hausdorff measure of noncompactness

χ(Ω) = inf{ε > 0 | Ω has a finite ε-net}.
In what follows E will denote a separable Banach space.

Let us note the following properties of χ.
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Lemma 1.1. If B is a bounded linear operator in E then

χ(BD) ≤ ‖B‖ χ(D)

for any bounded D ⊂ E.

Lemma 1.2. If Ω ⊆ C([a, b];E) is bounded and equicontinuous then

ϕ(Ω) := sup
t∈[a,b]

χ(Ω(t)) = χc(Ω),

where Ω(t) = {y(t) | y ∈ Ω} and χc is the Hausdorff measure of noncompactness in
C([a, b];E).

The following statement expressing the continuity property of the measure of non-
compactness can be easily verified.

Lemma 1.3. Let β be a monotone, nonsingular and regular measure of noncompactness
in E and {Kn}, n = 1, 2, . . . is the sequence of nonempty closed subsets of E such that
Kn+1 ⊆ Kn, n = 1, 2, . . . and β(Kn)→ 0 while n→∞. Then

K =
⋂
n≥1

Kn

is a nonempty compact set.

A multifunction G : [a, b] ( E with compact values is said to be measurable if it
satisfies any of the following two equivalent conditions:

(i) the set G−1(U) is measurable for every open U ⊆ E;
(ii) there exists the sequence {gn}∞n=1 of measurable functions gn : [a, b] → E such

that G(t) = {gn(t)}∞n=1 for all t ∈ [a, b] (see, for example, [5]).
By the symbol S1

G we will denote the set of all Bochner integrable selectors of the
multifunction G : [a, b] ( E, i.e.

S1
G = {g ∈ L1([a, b], E) | g(t) ∈ G(t) a.e.}.

If S1
G 6= ∅ then the multifunction G is called integrable and∫

I
G(s) ds :=

{∫
I
g(s) ds

∣∣∣∣ g ∈ S1
g

}
for every measurable set I ⊆ [a, b]. Clearly if G is measurable and integrably bounded
(i.e. there exists α ∈ L1

+([a, b]) such that ‖G(t)‖ := max{‖y‖ | y ∈ G(t)} ≤ α(t) a.e.)
then G is integrable.

We will need also the following property (see [22]).

Lemma 1.4. Let the multifunction G : [a, b] ( E with bounded values be integrable,
integrably bounded and

χ(G(t)) ≤ γ(t) a.e. on [a, b],

where γ ∈ L1
+([a, b]). Then

χ

(∫
I
G(s) ds

)
≤
∫
I
γ(s) ds
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for every measurable set I ⊆ [a, b]. In particular , if G is measurable and integrably
bounded then

χ(G( · )) ∈ L1
+([a, b])

and

χ

(∫
I
G(s) ds

)
≤
∫
I
χ(G(s)) ds.

At last, recall that a metric space is an Rδ-set if it may be represented as an inter-
section of a decreasing sequence of compact contractible sets (see [14]). Every Rδ-set is
acyclic. For the definition of acyclic set see e.g. [21].

2. Results. Let E be a separable Banach space; for T > 0, τ > 0 let us denote
D = C([−τ, T ];E), C = C([−τ, 0];E). For x ∈ D and t ∈ [0, T ] the function xt ∈ C is
defined by the relation xt(θ) = x(t+ θ).

We will consider the Cauchy problem for the functional-differential inclusion of the
form

x′(t) ∈ A(t)x(t) + F (t, xt), t ∈ [0, T ](1)

x(t) = x0(t), t ∈ [−τ, 0](2)

for a given initial function x0 ∈ C under the following assumptions.

(A) {A(t)}t∈[0,T ] is a family of closed linear, not necessarily bouneded operators in
E generating a strongly continuous evolution operator K : ∆ → L(E) where
∆ = {(t, s) ∈ [0, T ] × [0, T ] | 0 ≤ s ≤ t ≤ T} and L(E) is a space of all bounded
linear operators in E (see [17], [19]). We will suppose also that K is continuous
with respect to the norm of the space L(E) while s < t.

Let Kv(E) denote the collection of all nonempty compact convex subsets of E.
We will suppose that the multimap F : [0, T ] × C → Kv(E) satisfies the following

conditions:

(F1) for every c ∈ C the multifunction F ( · , c) : [0, T ] → Kv(E) has a measurable
selection;

(F2) for a.e. t ∈ [0, T ] the multimap F (t, · ) : C → Kv(E) is u.s.c.;
(F3) ‖F (t, c)‖ ≤ α(t) + β(t)‖c‖C for every c ∈ C and a.e. t ∈ [0, T ] where α, β ∈

L1
+([0, T ]);

(F4) for every nonempty bounded equicontinuous set D ⊂ C we have

χ(F (t,D)) ≤ k(t)ϕ(D) a.e. t ∈ [0, T ]

where χ is the Hausdorff measure of noncompactness in E; ϕ is the measure of
noncompactness in C defined in Lemma 1.2 and k ∈ L1

+([0, T ]).

It is clear that condition (F1) is fulfilled if the multifunction F ( · , c) is measurable for
every c ∈ C. For x ∈ D let us denote by Hx the multifunction Hx : [0, T ]→ Kv(E) given
by Hx(t) = F (t, xt). From conditions (F1)–(F3) it follows that S1

Hx
6= ∅ for every x ∈ D

(see, for example, [30]).



TOPOLOGICAL STRUCTURE OF SOLUTION SET 163

Definition 2.1. A function x ∈ D is said to be a mild solution of the problem (1)–(2)
provided

x(t) = x0(t), t ∈ [−τ, 0],

x(t) = K(t, 0)x(0) +
∫ t

0

K(t, s)f(s) ds, t ∈ [0, T ],

where f ∈ S1
Hx
.

The following existence theorem was proved by V. V. Obukhovskĭı [22].

Theorem 2.1. Under assumptions (A), (F1)–(F4) the set ΣFx0
of all mild solutions of

the problem (1), (2) is nonempty and compact in D.

The main result of this paper is the following theorem describing the topological
structure of the set ΣFx0

.

Theorem 2.2. Under assumptions (A), (F1)–(F4) the set ΣFx0
is an Rδ-subset of D.

To prove this fact we need a few preliminaries. First of all, let us note that we may
assume, without loss of generality, that F satisfies the following estimation:

(F3’) ‖F (t, c)‖ ≤ γ(t) for every c ∈ C and a.e. t ∈ [0, T ] where γ ∈ L1
+([0, T ]).

In fact, let ‖ΣFx0
‖D ≤ M ; B(0,M) be a closed ball in the space C and ρ : C →

B(0;M) be a radial retraction. Then it is easy to see that the multimap F̂ : [0, T ]×C →
Kv(E), defined by F̂ (t, c) = F (t, ρc), satisfies conditions (F1), (F2), (F4) (note that ρ is
a Lipschitz map), the condition (F3′) with γ(t) = α(t)+β(t)M and the set ΣFx0

coincides
with the set of all mild solutions of the problem

x′(t) ∈ A(t)x(t) + F̂ (t, xt), t ∈ [0, T ];

x(t) = x0(t), t ∈ [−τ, 0].

Therefore in what follows we will suppose that the multimap F : [0, T ]×C → Kv(E)
satisfies the conditions (F1), (F2), (F4) and (F3’) instead of (F3).

Now let us prove the following proposition.

Lemma 2.1. Under assumptions (A), (F1)–(F4) there exists a nonempty compact con-
vex subset X ⊂ D such that :

(i) x(t) = x0(t), t ∈ [−τ, 0] for all x ∈ X;
(ii) K(t, 0)x0(0) +

∫ t
0
K(t, s)coF (s,Xs) ds ⊆ X(t), t ∈ [0, T ] where Xs = {xs | x ∈

X} ⊂ C.

P r o o f. Let us construct the decreasing sequence of closed convex sets {Xi}∞i=1 ⊂ D
by the following inductive process.

Let N ⊂ D, N = {x ∈ D | x(t) = x0(t), t ∈ [−τ, 0]} and

X0 = {x ∈ N | ‖x(t)‖ ≤M1, t ∈ [0, T ]}

where M1 = r (‖x0(0)‖+
∫ T

0
γ(s) ds), r = max

(t,s)∈∆
‖K(t, s)‖.



164 G. CONTI, V. OBUKHOVSKĬI AND P. ZECCA

Then Xn = Y n, n ≥ 1, where Y n ⊂ N and

Y n(t) = K(t, 0)x0(0) +
∫ t

0

K(t, x)coF (s,Xn−1
s ) ds.

First of all, let us note that all Xn, n ≥ 1 are nonempty since Σx0 ⊂ Xn for all n ≥ 0.
Let us now show that all sets Xn, n ≥ 1 are equicontinuous. In fact, let y ∈ Xn, n ≥ 1

and t′, t′′ ∈ [0, T ], t′ < t′′. Then

‖y(t′′)− y(t′)‖ ≤‖K(t′′, 0)x0(0)−K(t′, 0)x0(0)‖

+
∫ t′

0

‖K(t′′, s)−K(t′, s)‖ · ‖f(s)‖ ds+
∫ t′′

t′
‖K(t′′, s)‖ · ‖f(s)‖ ds

where f ∈ S1
coF ( · ,Xn−1

( · ) )
. Hence

‖y(t′′)− y(t′)‖ ≤‖(K(t′′, 0)−K(t′, 0))x0(0)‖

+

t′∫
0

‖K(t′′, s)−K(t′, s)‖γ(s) ds+ r

t′′∫
t′

γ(s) ds

giving the desired equicontinuity.

Now let us consider on the set N the following measure of noncompactness

ψ(Ω) = sup
t∈[0,T ]

[
ϕ(Ωt) exp

(
−R

t∫
0

k(s) ds
)]

where ϕ is a measure of noncompactness in C defined in Lemma 1.2, R > r is an arbitrary
number and k is the function from the estimation (F4). It is easy to see that the measure
ψ is monotone and nonsingular. From the proved equicontinuity property it follows that
ψ is regular on subsets Xn, n ≥ 1.

Using Lemma 1.1 and the condition (F4) we have the following estimation

χ(K(t, s) coF (s,Xn−1
s )) ≤ ‖K(t, s)‖χ(coF (s,Xn−1

s ))

≤ rχ(F (s,Xn−1
s )) ≤ rk(s)ϕ(Xn−1

s )

≤ rk(s)ψ(Xn−1) exp
(
R

∫ s

0

k(θ) dθ
)

for all s ∈ [0, t].
By virtue of the condition (F3’) the multifunction

s ( K(t, s)F (s,Xn−1
s ), s ∈ [0, T ]

is integrably bounded and hence, using Lemma 1.4, we have for any t ∈ [0, T ]

χ(Y n(t)) = χ

(
K(t, 0)z(0) +

∫ t

0

K(t, s) coF (s,Xn−1
s ) ds

)
= χ

(∫ t

0

K(t, s) coF (s,Xn−1
s ) ds

)
≤ rψ(Xn−1)

∫ t

o

k(s) exp
(
R

∫ s

0

k(θ) dθ
)
ds



TOPOLOGICAL STRUCTURE OF SOLUTION SET 165

≤ (r/R)ψ(Xn−1) exp
(
R

t∫
0

k(s) ds
)
.

Therefore

χ(Y n(t)) exp
(
−R

∫ t

0

k(s) ds
)
≤ (r/R)ψ(Xn−1)

and

ψ(Y n) ≤ (r/R)ψ(Xn−1).

Finally, we have ψ(Xn) ≤ (r/R)ψ(Xn−1), n ≥ 1 and therefore ψ(Xn) −→
n→∞

0.

Applying Lemma 1.3 we obtain a compact set X =
⋂
n≥1

Xn which has the desired

properties.

Now consider a metric projection P : [0, T ]× C( C,

P (t, c) = {e ∈ Xt | ‖c− e‖ = dist(c,Xt)}

and a multimap F̃ : [0, T ] × C → Kv(E), defined by F̃ (t, c) = coF (t, P (t, c)). It is clear
that F̃ satisfies the properties (F3’) and (F4). Following the arguments of [32] one can
show that F̃ satisfies also (F1) and (F2). Therefore the set ΣF̃x0

of all mild solutions of
the problem

x′(t) ∈ A(t)x(t) + F̃ (t, xt), t ∈ [0, T ];

x(t) = x0(t), t ∈ [−τ, 0]
is nonempty. Moreover, the following statement is valid.

Lemma 2.2. ΣF̃x0
= ΣFx0

.

P r o o f. In fact, let x ∈ ΣF̃x0
. Then

x(t) ∈ K(t, 0)x0(0) +
∫ t

0

K(t, s)F̃ (s, x(s)) ds

= K(t, 0)x0(0) +
∫ t

0

K(t, s)coF (s, P (s, xs)) ds

⊂ K(t, 0)x0(0) +
∫ t

0

K(t, s)coF (s,Xs) ds ⊂ X(t),

i.e. x ∈ X and P (t, xt) = {xt}. Then x(t) = K(t, 0)x0(0) +
∫ t

0
K(t, s)f(s) ds, where

f ∈ S1

F̃ ( · ,x( · ))
= S1

F ( · ,x( · ))
, hence x ∈ ΣFx0

.

The inclusion ΣFx0
⊂ ΣF̃x0

easily follows from the observation that ΣFx0
⊂ X.

Theorem 1.1 of [31] yields the following approximation result.

Lemma 2.3. There exists a sequence of multimaps {Fn}∞n=1, Fn : [0, T ]×C → Kv(E)
such that :

(i) each Fn, n ≥ 1 satisfies the property (F1);
(ii) each multimap Fn(t, · ) : C → Kv(E) is continuous for a.e. t ∈ [0, T ];
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(iii) F̃ (t, c) ⊂ . . . ⊂ Fn+1(t, c) ⊂ Fn(t, c) ⊂ coF (t,Xt), n ≥ 1;
(iv) F̃ (t, c) =

⋂
n≥1 Fn(t, c)

(v) for each n ≥ 1 there exists a selection gn(t, c) ∈ Fn(t, c) which is measurable in
t for every c ∈ C and locally Lipschitz in c in the sense that each c0 ∈ C has a
neighborhood U(c0) and constant k(c0) ≥ 1 such that

‖gn(t, c1)− gn(t, c2)‖ ≤ k(c0)γ(t)‖c1 − c2‖ for a.e. t ∈ [0, T ]

for c1, c2 ∈ U(c0) where γ(t) is the function from the estimation (F3’).

P r o o f o f T h e o r e m 2.2. From (i)–(iii) of Lemma 2.3 it follows that each Fn
satisfies the conditions (F1)–(F4) and hence each set ΣFn

x0
, n ≥ 1 is nonempty and

compact.
Let us fix n ≥ 1 and demonstrate that the set ΣFn

x0
is contractible. In fact, let xn ∈ ΣFn

x0

and for any τ ∈ [0, 1) the function zτn be a unique solution of the integral equation

(3) zn(t) = K(t, τT )xn(τT ) +
∫ t

τT

K(t, s)gn(s, zn(s)) ds.

The functions

wτn(t) =
{
xn(t) 0 ≤ t ≤ τT ,
zτn(t) τT ≤ t ≤ T

belong to ΣFn
x0
. Define the deformation h : [0, 1]× ΣFn

x0
→ ΣFn

x0
by the formula

h(τ, xn) =
{
wτn for 0 ≤ τ < 1,
xn for τ = 1.

Since the evolution operator K(t, s) is strongly continuous and the function gn is
locally Lipschitz, it is easy to see that the solutions of the problem (3) depend continuously
on (τ, xn), therefore the deformation h is continuous. But h(0, · ) = z0

n and h(1, · ) is the
identity, hence ΣFn

x0
is contractible.

Now let us show that

ΣF̃x0
=
⋂
n≥1

ΣFn
x0
.

It is clear that

ΣF̃x0
⊂
⋂
n≥1

ΣFn
x0
.

Let x ∈
⋂
n≥1

ΣFn
x0
, then for each n ≥ 1 we have

x(t) = K(t, 0)x0(0) +
∫ t

0

K(t, s)fn(s) ds

where fn ∈ S1
Fn( · ,x( · ))

. But from (iii) of Lemma 2.3 it follows that
⋃
n≥1 fn(t) is relatively

compact for a.e. t ∈ [0, T ] and, hence, we may assume, without loss of generality that

fn−→
w
f ∈ L1([0, T ];E)

(see [10]).
According to the Mazur’s Lemma (see, e.g. [12]) there exists a double sequence

{λik}∞ ∞
i=1 k=1 such that:
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(1)
∑∞
k=i λik = 1 for all i = 1, 2, . . . ;

(2) λik = 0 for all k ≥ k0(i);
(3) the sequence {f̃i}∞i=1, f̃i(t) =

∑∞
k=1 λikfk(t) converges to f with respect to the

norm of the space L1([0, T ];E). Passing to a subsequence, if necessary, we may set
that f̃i converges to f a.e. on [0, T ].

But it is clear that f̃i(t) ∈ Fi(t, xt) for a.e. t ∈ [0, T ] and hence from (iv) of Lemma 2.3
it follows that f ∈ S1

F̃ ( · ,x( · ))
.

For each t ∈ [0, T ] the map q →
∫ t

0
K(t, s)q(s) ds is a continuous linear operator from

L1([0, T ];E) into E. It remains continuous provided these spaces are endowed with weak
topologies. Therefore for each t ∈ [0, T ] the sequence{

K(t, 0)x0(0) +
∫ t

0

K(t, s)fn(s) ds
}

converges weakly to K(t, 0)x0(0) +
∫ t

0
K(t, s)f(s) ds. But since each number of this se-

quence is equal to x we have x ∈ ΣF̃x0
and hence

ΣF̃x0
=
⋂
n≥1

ΣFn
x0
.

Therefore ΣFx0
= ΣF̃x0

is an Rδ-set.

3. Example. The solutions set for the problem of a controlled heat transfer
in an isotropic rigid body. Let G ⊂ R3 be an open domain with a smooth boundary
∂G. The function z(t, y), z ∈ C([−τ, T ]; L2(G)) describes the temperature in the point
y ∈ G at the moment t ∈ [−τ, T ].

Let there be m sources of heat in the region G whose properties depend on the
temperature and whose densities are characterized by the functions ∆i(y, z),∆i : G ×
R → R, i = 1, . . . ,m. The intensity of the sources can be regulated by the controls
ui : [0, T ] → R, i = 1, . . . ,m. It is supposed that ui are measurable functions satisfying
the following feedback condition

(4) (u1(t), . . . , um(t)) ∈W (t, z(t− w(t), · ))

where w : [0, T ] → [0, τ ] is a continuous function, W : [0, T ] × L2(G) → Kv(Rm) is a
bounded multimap measurable in the first argument and continuous in the second one.

Let p : G→ R+ be the coefficient of heat conductivity. Then the controlled process of
heat transfer in the domain G can be described by the following relations (see [3], [22]):

∂z(t, y)
∂t

=
3∑
k=1

∂

∂yk
p(y)

∂

∂yk
z(t, y) +

m∑
i=1

ui(t)∆i(y, z(t, y));(5)

z(t, · )
∣∣∣∣
∂G

= 0, t ∈ [−τ, T ];(6)

z(t, · ) = x0(t), t ∈ [−τ, 0]; x0 ∈ C([−τ, 0]; L2(G)).(7)
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Assume that the functions ∆i satisfy for every i = 1, . . . ,m the following conditions:

(∆1) ∆i( · , z) : G→ R is measurable for all z ∈ R;
(∆2) |∆i(y, z)| ≤ αi(y) for all z ∈ R where αi ∈ L2

+(G);
(∆3) |∆i(y, z1) −∆i(y, z2)| ≤ ki|z1 − z2| for all zi, z2 ∈ R where ki doesn’t depend on

y ∈ G.

By standard methods (see, for example, [19], [4]) the problem (4)–(7) can be reduced
to a delay differential inclusion in a Banach space L2(G)

x′(t) ∈ Ax(t) + F (t, x(t), x(t− w(t)))

where x(t) is generated by the function z(t, · ), A is a differential operator and

F (t, x(t), x(t− w(t))) =
{
v ∈ L2(G) : v(y) =

∑
i=1

wi(t)∆i(y, x(t)(y)),

(w1(t), . . . , wm(t)) ∈W (t, x(t− w)) are measurable
}
.

It was shown in [22] that under the above conditions the multimap F satisfies the
assumptions (F1)–(F4) and, hence, by Theorem 2.2, we conclude that the set of all mild
solutions z(t, y) of the problem (4)–(7) form an Rδ-set in the space C([−τ, T ];L2(G)).
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