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The aim of this paper is to give the proofs of those results that in [4] were only
announced, and, at the same time, to propose some possible developments, indicating
some of the most significant open problems.

We first fix some notation. Throughout the sequel, (T,F , µ) is a σ-finite non-atomic
measure space, (E, ‖ · ‖) is a real Banach space, whose Borel family is denoted by B(E),
and p is a real number in [1,+∞[.

For simplicity, we denote by X the usual space Lp(T,E) of (equivalence classes of)
strongly measurable functions u : T → E such that

∫
T
‖u(t)‖pdµ < +∞, equipped with

the norm ‖u‖X = (
∫
T
‖u(t)‖pdµ)1/p. X∗ will denote the topological dual of X.

Moreover, we denote by A(T × E) the set of all functions f : T × E → R such that,
for each u ∈ X, the function t→ f(t, u(t)) belongs to L1(T ). If f ∈ A(T × E), we put

Φf (u) =
∫
T

f(t, u(t))dµ

for all u ∈ X.
We denote by E(T ×E) the set of all F ⊗B(E)-measurable functions f : T ×E → R

which are upper semicontinuous in x (x ∈ E).
We denote by G(T × E) the set of all functions f : T × E → R for which there are

α ∈ L1(T ), γi ∈ ]0, 1[ and βi ∈ Lp/(p−γi)(T ) (i = 1, . . . , k) such that

−α(t) ≤ f(t, x) ≤ α(t) +
k∑
i=1

βi(t)‖x‖γi

for almost every t ∈ T and for every x ∈ E.
We denote by V(X) the family of all sets V ⊆ X such that

V = {u ∈ X | Ψ(u) = Φg(u)}
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where Ψ ∈ X∗, g ∈ A(T × E) and Φg is Lipschitzian on X, with Lipschitz constant
strictly smaller than ‖Ψ‖X∗ .

Finally, we denote by I(T × E) the set of all functions f ∈ A(T × E) such that

−∞ < inf
u∈X

Φf (u) = inf
u∈V

Φf (u)

for every V ∈ V(X).
The main result of [4] was the following

Theorem 1 ([4], Theorem 1). Let E be separable and µ be complete. Then, one has

E(T × E) ∩ G(T × E) ⊆ I(T × E).

We now prove

Theorem 2 ([4], Theorem 3). Let γ ∈ ]0, 1[ , v ∈ Lγ(T,E) and β ∈ Lpγ/(p−γ)(T ).
Then, for every V ∈ V(X), one has

inf
u∈V

∫
T

‖v(t)− β(t)u(t)‖γdµ =
∫
β−1(0)

‖v(t)‖γdµ.

P r o o f. For each (t, x) ∈ T × E, put

f(t, x) = ‖v(t)− β(t)x‖γ .

It is readily seen that the function f belongs to E(T × E) ∩ G(T × E), and that the
functional Φf is Hölder continuous in X, with exponent γ. So, by Remark 3 of [4] and
Theorem 1, f belongs to I(T × E). Therefore, it remains to show that

inf
X

Φf =
∫
β−1(0)

‖v(t)‖γdµ.

To this end, fix ε > 0 and choose δ > 0, L ∈ F , with µ(L) < +∞, so that∫
S

‖v(t)‖γdµ < ε

for every S ∈ F satisfying µ(S ∩ L) < δ. Next, pick n ∈ N in such a way that

µ(L \ (β−1(0) ∪B)) < δ,

where

B =
{
t ∈ L

∣∣∣∣ |β(t)| ≥ 1
n

}
∩ {t ∈ L | ‖v(t)‖ ≤ n}.

Finally, define u : T → E by putting

u(t) =


v(t)
β(t)

if t ∈ B,

0 if t ∈ T \B.
Clearly, u ∈ X and

Φf (u) <
∫
β−1(0)

‖v(t)‖γdµ+ ε,

as desired.
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R e m a r k 1. Theorem 2 tells us, in particular, that, when γ∈ ] 0, 1 [ and µ(T ) < +∞,
each member of the family V(X) is dense in Lγ(T,E), equipped with the usual metric.
From this, in turn, we re-obtain at once the well-known fact that the topological dual of
Lγ(T,E) reduces to zero. Indeed, let Ψ be a continuous linear functional on Lγ(T,E).
Then, the restriction of Ψ to X belongs to X∗, and so the set V = {u ∈ X | Ψ(u) = 0}
belongs to V(X). Consequently, owing to what above, V is dense in Lγ(T,E), and hence,
by continuity, Ψ vanishes identically there.

We now prove

Theorem 3 ([4], Theorem 4). Let E be separable and let f : T ×E → R be a function
which is measurable with respect to t and continuous with respect to x (t ∈ T , x ∈ E).
Moreover , assume that there exists some α ∈ L1(T ) such that

|f(t, x)| ≤ α(t)

for almost every t ∈ T and for every x ∈ E.
Then, for every V ∈ V(X), one has

(1) ]inf
X

Φf , sup
X

Φf [ ⊆ Φf (V ).

So, in particular , for each r ∈ ] infX Φf , supX Φf [ , the convex hull of the set Φ−1
f (r) is

dense in X.

P r o o f. Observe that both f and −f belong to E(T × E) ∩ G(T × E). Then, by
Remark 2 of [4] and Theorem 1, for every V ⊆ V(X), we have infX Φf = infV Φf and
supX Φf = supV Φf . By Theorem 2 of [3], the set V is a retract of X, and hence it is
connected. From this, clearly (1) follows. The second part of our conclusion follows, of
course, from a standard separation theorem for convex sets.

Before passing to another consequence of Theorem 2, we need the following two propo-
sitions:

Proposition 1. Let E be separable, let (Y, ‖ · ‖Y ) be another Banach space and
let ϕ : T × E → Y be a function which is strongly measurable with respect to t and
uniformly continuous with respect to x (t ∈ T , x ∈ E). Moreover , assume that , for some
r ∈ [1,+∞[ , there exists some α ∈ L1(T ) such that

‖ϕ(t, x)‖rY ≤ α(t)

for almost every t ∈ T and for every x ∈ E. Then, the Nemitski operator Nϕ : X →
Lr(T, Y ), defined by Nϕ(u)(t) = ϕ(t, u(t)) (u ∈ X, t ∈ T ), is uniformly continuous in X.

P r o o f. Given ξ > 0, consider the function ωξ : T → R defined by

ωξ(t) = sup{δ > 0 | ‖ϕ(t, x)− ϕ(t, y)‖rY ≤ ξ for each x, y ∈ E satisfying ‖x− y‖ < δ}.

The function ωξ is µ-measurable. Indeed, given any λ > 0 and chosen any countable
dense set D ⊆ E, we readily have

{t ∈ T | ωξ(t) ≥ λ} =
⋂

(x,y)∈D×D,‖x−y‖<λ

{t ∈ T | ‖ϕ(t, x)− ϕ(t, y)‖rY ≤ ξ}.
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Fix a set T0 ∈ F , with µ(T \ T0) = 0, such that, for each n ∈ N, the restriction of ω1/n

to T0 is measurable. Now, fix ε > 0 and η ∈ ]0, ε/2r[ . Pick δ1 > 0 and L ∈ F , with
µ(L) < +∞, in such a way that ∫

S

α(t) dµ < η

for every S ∈ F satisfying µ(S ∩ L) < δ1. Also, choose m,n ∈ N so that m > µ(L)/(ε−
2rη) and

µ
(
L \

(
ω−1

1
m

( ] 1
n
,+∞

[ )
∩ T0

))
<
δ1
2
.

Finally, pick δ ∈ ]0, δ1/(2np)[ . Now, let u, v ∈ X satisfy ‖u− v‖pX < δ. Put

S =
{
t ∈ L ∩ T0 | ‖u(t)− v(t)‖ < 1

n
< ω 1

m
(t)
}
.

Then, taken into account that µ(L \ S) < δ1, we have

‖Nϕ(u)−Nϕ(v)‖rLr(T,Y ) =
∫
T

‖ϕ(t, u(t))− ϕ(t, v(t))‖rY dµ

< 2r
∫

(T\L)∪(L\S)

α(t)dµ+
∫
S

‖ϕ(t, u(t))− ϕ(t, v(t))‖rY dµ

< 2rη +
µ(L)
m

< ε.

The proof is complete.

If h is a Gâteaux differentiable real function on E, we denote by h
′

its Gâteaux
derivative. We denote by C1(E) the space of all continuously Gâteaux differentiable real
functions on E.

Proposition 2. Let E be reflexive and separable, let p > 1, and let f : T × E → R
be a function which is µ-measurable in t (t ∈ T ). Moreover , assume that , for some
ψ ∈ L

p
p−1 (T ) and for almost every t ∈ T , f(t, · ) ∈ C1(E), f

′

x(t, ·) is uniformly continuous
in E and

sup
x∈E
‖f
′

x(t, x)‖E∗ ≤ ψ(t).

Then, the functional Φf is Gâteaux differentiable in X, Φ
′

f is uniformly continuous, and
one has f

′

x( · , u( · )) ∈ Lp/(p−1)(T,E∗) and

(2) 〈Φ
′

f (u), v〉 =
∫
T

〈f
′

x(t, u(t)), v(t)〉dµ

for all u, v ∈ X. Furthermore, one has

(3) ‖Φ
′

f (u)‖X∗ =
(∫

T

‖f
′

x(t, u(t))‖
p

p−1
E∗ dµ

) p−1
p

for all u ∈ X.

P r o o f. Let u, v ∈ X be fixed. Choose any sequence {λn} in R \ {0} converging to
zero. For each n ∈ N, t ∈ T , put

hn(t) =
f(t, u(t) + λnv(t))− f(t, u(t))

λn
.
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Clearly, each function hn is µ-measurable, and, for almost every t ∈ T , the sequence
{hn(t)} converges to 〈f ′x(t, u(t)), v(t)〉. On the other hand, thanks to the mean-value
theorem, we have

sup
n∈N
|hn(t)| ≤ ψ(t)‖v(t)‖

a.e. in T . Then, by the dominated convergence theorem, we get

lim
n→∞

∫
T

hn(t) dµ =
∫
T

〈f
′

x(t, u(t)), v(t)〉 dµ.

Of course, this shows (2). The fact that f
′

x( · , u( · )) belongs to Lp/(p−1)(T,E∗) follows
from the nature of E (take into account that also E∗ is reflexive and separable) via Pettis’s
measurability theorem ([2], p. 42). The validity of (3) follows from standard reasonings
(see, for instance, [2], pp. 97–98). Finally, the uniform continuity of the operator Φ

′

f is
an easy consequence of Proposition 1, applied taking Y = E∗ and ϕ = f

′

x.

Now, we can prove

Theorem 4 ([4], Theorem 5). Let E be reflexive and separable, let p > 1, and let
f ∈ E(T × E) ∩ G(T × E). Moreover , assume that , for some ψ ∈ Lp/(p−1)(T ) and for
almost every t ∈ T , f(t, · ) ∈ C1(E), f

′

x(t, · ) is uniformly continuous in E and

sup
x∈E
‖f
′

x(t, x)‖E∗ ≤ ψ(t).

Then, for every V ∈ V(X), there exists a sequence {un} in V such that

lim
n→∞

Φf (un) = inf
u∈X

Φf (u)

and

lim
n→∞

∫
T

‖f
′

x(t, un(t))‖
p

p−1
E∗ dµ = 0.

P r o o f. Let V ∈ V(X). By Remark 2 of [4] and Theorem 1, there exists a sequence
{un} in V such that

lim
n→∞

Φf (un) = inf
X

Φf .

According to a consequence of Ekeland’s variational principle ([1], p. 259), we can then
find a sequence {vn} in X such that

lim
n→∞

‖un − vn‖X = 0

and

lim
n→∞

‖Φ
′

f (vn)‖X∗ = 0.

By Proposition 2, Φ
′

f is uniformly continuous, and hence we have

lim
n→∞

‖Φ
′

f (un)‖X∗ = 0.

An appeal to (3) completes the proof.

To conclude, we now state, under the form of conjectures, the open problems to which
we alluded at the beginning of the paper. We assume that E and µ are as in Theorem 1.



242 B. RICCERI

Conjecture 1. Let U ⊆ X be closed and such that infX Φf = infU Φf for every
f ∈ E(T × E) ∩ G(T × E). Then, there exists some V ∈ V(X) such that V ⊆ U .

Conjecture 2. There exists some function f : T ×E → R such that f ∈ G(T ×E) \
I(T × E) and −f ∈ E(T × E).
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