GENERALIZATIONS OF COMPLEX ANALYSIS BANACH CENTER PUBLICATIONS, VOLUME 37 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

PROPERTIES OF AN ABSTRACT PSEUDORESOLVENT AND WELL-POSEDNESS OF THE DEGENERATE CAUCHY PROBLEM

IRINA V. MELNIKOVA

Department of Mathematics, Ural State University Pr. Lenina 51, 620083 Ekaterinburg, Russia

Abstract. The degenerate Cauchy problem in a Banach space is studied on the basis of properties of an abstract analytical function, satisfying the Hilbert identity, and a related pair of operators A, B.

1. We consider in a Banach space X an operator-valued function of complex variable $R(\lambda) \in \mathcal{B}(X)$, satisfying the Hilbert identity:

(1)
$$\forall x \in X \ R(\lambda)R(\mu)x = \frac{R(\mu) - R(\lambda)}{\lambda - \mu}x, \quad \lambda, \mu \in \Omega \subset \mathbb{C}.$$

For such function ker $R(\lambda) =: \mathcal{K}$ and range $R(\lambda) =: \mathcal{R}$ do not depend on λ [1]. If $\mathcal{K} = \{0\}$, then the function $R(\lambda)$ is called by resolvent, if $\mathcal{K} \neq \{0\}$ - pseudoresolvent. For the case when $R(\lambda)$ is resolvent, from (1) the equality follows:

(2)
$$\lambda - R^{-1}(\lambda) = \mu - R^{-1}(\mu) =: A,$$

 $D(A) = \mathcal{R} \text{ and } R(\lambda) = R_A(\lambda).$

Let V(t) be an exponentially bounded operator-function $(||V(t)|| \le Le^{\omega t})$ and

(3)
$$r_n(\lambda) := \int_0^\infty \lambda^n e^{-\lambda t} V(t) dt,$$

(the integral exists in the Bochner sense). In [2] it was proved, that $r_0(\lambda)$ satisfies (1) for $\operatorname{Re} \lambda > \omega$, iff V(t) satisfies the semigroup relation:

$$(4) V(t+s) = V(t)V(s), t, s \ge 0,$$

 $r_n(\lambda), n \in \mathbb{N}$, satisfies (1); iff

(V1)
$$\frac{1}{(n-1)!} \int_0^s [(s-r)^{n-1}V(t+r) - (t+s-r)^{n-1}V(r)]dr =$$

1991 *Mathematics Subject Classification*: Primary 46C20; Secondary 32G81. The paper is in final form and no version of it will be published elsewhere.

[151]

$$= V(t)v(s), \qquad s, t \ge 0; V(0) = 0.$$

Relation (4) is taken as the basis in the definition of continuous semigroups (see, for example, [1], [3], [4]), relation (V1) – in the definition of *n*-times integrated semigroups [2].

DEFINITION 1. A one-parameter family of bounded operators $\{U(t), t \ge 0\}$ is called strongly continuous semigroup (or C_0 -semigroup) if the following conditions hold:

(U1) $U(t+h) = U(t)U(h), \quad t,h \ge 0;$

(U2) U(0) = f;

(U3) U(t) is strongly continuous with respect to $t \ge 0$.

DEFINITION 2. Let $n \in \mathbb{N}$. A one-parameter family of bounded linear operators $\{V(t), t \geq 0\}$ is called *n*-times integrated exponentially bounded semigroup if (V1) and the following conditions hold

(V2) V(t) is strongly continuous with respect to $t \ge 0$;

(V3) $\exists K > 0, \omega \in \mathbb{R} : ||V(t)|| \le \lambda \exp(\omega t), t \ge 0.$

DEFINITION 3. Semigroup $\{V(t), t \ge 0\}$ is called *nondegenerate* if $(V4) \forall t \ge 0V(t)x = 0 \Longrightarrow x = 0.$

A C_0 -semigroup is called 0-times integrated semigroup. Operator $A = \lambda - R^{-1}(\lambda)$, $D(A) = \mathcal{R}$ is called the generator of semigroup.

So, an exponentially bounded semigroup by the Laplace transform definies the function $R(\lambda)$, satisfying to (1) and conditions:

(5)
$$\exists l > 0, \ \omega \in \mathbb{R} : \left| \left| \frac{d^k}{d\lambda^k} \left(\frac{R(\lambda)}{\lambda^n} \right) \right| \le \frac{Lk!}{(\lambda - \omega)^{k+1}}, \quad k = 0, 1, \dots \right|$$

(For case n = 0(5) are the conditions of Miyadera-Feller-Phillips-Hille-Yosida, or MFPHY-conditions).

2. Arendt [2] extended on arbitrary Banach space X the abstract criterion for Laplace transform.

THEOREM (Arendt-Widder). Let $n \in \{0\} \cup \mathbb{N}$, $R(\lambda) : (\omega, \infty) \to X$. The condition (5) is equivalent to existence of a function $V(t) : [0, \infty) \to X$, satisfying V(0) = 0, and

(6)
$$\lim_{\delta \to 0} \sup_{h \le \delta} h^{-1} ||V(t+h) - V(t)|| \le L e^{\omega t}, \quad t \ge 0,$$

such, that

(7)
$$R(\lambda) = \int_0^\infty \lambda^{n+1} e^{-\lambda t} V(t) dt.$$

Moreover, $R(\lambda)$ has an analytic extention to $\{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > \omega\}$, which is given by (7).

By virtue of this theorem and results on the connection between well-posedness of the Cauchy problem

(CP)
$$\frac{du(t)}{dt} = Au(t), \ t \ge 0, \ u(0) = x,$$

and existence of semigroup (see, for example [1-4]) we have

THEOREM 1. Let $n \in \{0\} \cup \mathbb{N}$, $A \in \mathcal{L}(X < X)$. The following statements are equivalent: (I) For $R(\lambda) = R_A(\lambda)$ condition (5) is fulfilled;

(II) A is the generator of (n + 1)-times integrated semigroup with property (6);

(III) (CP) is (n+1)-well-posed, that is: for any $x \in D(A^{n+2})$ unique solution, such that

$$||u(t)|| \le Le^{\omega t} ||x||_{n+1}, \qquad ||x||_{n+1} = \sum_{i=0}^{n+1} ||A^i x||$$

exists. If $\overline{D(A)} = X$, then (CP) *n*-well-posed.

Existence of a resolvent in $\Omega = \{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > \omega, |\operatorname{Im}\lambda| < L\exp(r/n\operatorname{Re}\lambda)\}$ and fulfilment in Ω of the estimates (MFPHY)-type are equivalent to existence of a local *n*-times integrated semigroup $\{V(t), 0 \leq t < T\}, T > r$ [5], [6]. If for $R(\lambda) > \omega$ only operator $(A - \lambda)^{-1}C$, called by *C*-resolvent ($C \in \mathcal{B}(X)$) is an invertible operator) satisfies to conditions:

$$||(\lambda - A)^{-k}C|| \le L(R(\lambda) - \omega)^{-k}, \qquad k = 0, 1, \dots$$

then C-semigroup with operator A exists [7], the Cauchy problem (CP) is only C-wellposed and for such (CP) regularizator, connected with C-semigroups, may be constructed [8].

3. Let now $R(\lambda)$ be a pseudoresolvent, such that $||\lambda R(\lambda)||$ is bounded. Then like [1, section VIII], the following proposition on construction of ker R and range R may be proved.

PROPOSITION 1. For any $x \in X_1 := \overline{R}$, $\lambda R(\lambda) x \to_{\lambda \to \infty} x$, $\mathcal{K} \cap X_1 = \{0\}$, $X_1 \oplus \mathcal{K} = \overline{X_1 \oplus \mathcal{K}}$ is the subspace in X. For a reflexive space X, $X = X_1 \oplus \mathcal{K}$.

If $R(\lambda)$ is a pseudoresolvent with MFPHY-conditions, then by Arendt-Widder theorem it generates 1-time integrated (degenerate) semigroup V(t) with property (6), such that

(8)
$$R(\lambda) = \int_0^\infty \lambda e^{-\lambda t} V(t) dt.$$

For $x\in F:=\{x\in X: V(t)x\in C^1([0,\infty),X)\}$ we have

$$R(\lambda)x = \int_0^\infty e^{-\lambda t} V'(t)x dt$$

hence U(t)x := V'(t)x, $x \in F$, satisfies (U1). Due to (6) set F is closed, by definition FU(t) is strongly continuous on F, we call it by degenerate C_0 -semigroup. From semigroup property (U1) we have the projector

$$P := U^2(0) = U(0) : F \to Q := \text{range}U(0)$$

and the decomposition of F into the direct sum:

(9)
$$F = Q \oplus \ker(U(0)) = Q \oplus \mathcal{K}.$$

By Definition 1 $\tilde{U}(t) = U(t)|_Q$ is C_0 -semigroup with the generator G:

(10)
$$Gx = \lim_{t \to 0} \frac{\dot{U}(t)x - x}{t}, \qquad x \in D(G), \quad \overline{D(G)} = Q$$

4. For the case of a pseudoresolvent, as distinct from the case when $R^{-1}(\lambda)$ exists, we can't connect G with operator, defined by (2) and the Cauchy problem (CP). We show, that $R(\lambda)$ is a pseudoresolvent with MFPHY-conditions, then for any pair of operators $B, A : X \to E, E - a$ Banach space, such that $B \in \mathcal{B}(X, E)$, B is invertible on X_1 and $Ax = BGx, x \in D(G)$, the degenerate Cauchy problem

(DCP)
$$B\frac{du(t)}{dt} = Au(t), \quad t \ge 0, \quad u(0) = x, \quad \ker B \ne = \{0\},$$

is well-posed on \mathcal{R} .

DEFINITION 4. Let $A, B \in \mathcal{L}(X, E)$. (DCP) is called uniformly well-posed on $D \subseteq X$, if for any $x \in D$ a solution exists, is unique and

$$\forall \ T > 0 \ \exists L > 0 : \sup_{t \in [0,T]} ||u(t)|| \le L||x||.$$

It is easily seen that $D \subseteq \mathcal{M} = \{x \in D(A) : Ax \in rangeB\}.$

PROPOSITION 2. Let $A, B \in \mathcal{L}(X, E)$ such, that operator $(\lambda B - A)^{-1}B$ is bounded, $\lambda \in \Omega \subset C$. Then $(\lambda B - A)^{-1}B$ satisfies the Hilbert identity and

$$\mathcal{R} = range(\lambda B - A)^{-1}B = \mathcal{M}.$$

Proof. The proof of the resolvent identity is routine. We show $\mathcal{R} = \mathcal{M}$. Let $x \in \mathcal{R}$, then $x = (\lambda B - A)^{-1}By$, $y \in X$, hence $Ax = B(\lambda x - y)$, and $x \in \mathcal{M}$. Conversely, if Ax = By for some $y \in X$, then $(\lambda B - A)x = B(\lambda x - y)$ and $x \in \mathcal{R}$.

DEFINITION 5. Let X, E are Banach spaces. $A, B \in \mathcal{L}(X, E)$ are called generators of degenerate *n*-times integrated semigroup $\{V(t), t \ge 0\} \in \mathcal{B}(X, X)$ if A is closed, B – bounded and

$$R_{A,B}(\lambda) := (\lambda B - A)^{-1}B = \int_0^\infty \lambda^n e^{-\lambda t} V(t) dt, \qquad \text{Re}\lambda > \omega.$$

THEOREM 2. Let A, B be generators of degenerate (1-time) integrated semigroup V(t), satisfying (6), then

(11)
$$R_{A,B}(\lambda)V(t) = V(t)R_{A,B}(\lambda), \qquad t \ge 0, \text{ Re}\lambda > \omega;$$

(12)
$$tBx = BV(t)x - A \int_0^t V(s)xds, \qquad x \in X_1 \oplus \mathcal{K}, \ \mathcal{K} = \ker B;$$

(13)
$$B\frac{d}{dt}V'(t)x = AV'(t)x, \qquad x \in R(\lambda)(X_1).$$

V'(t) is degenerate C_0 -semigroup on $F = X_1 \oplus \mathcal{K}$.

Proof. Let $\lambda, \mu > \omega$, as $R(\lambda) = R_{A,B}(\lambda)$ is a pseudoresolvent, for any $x \in X$

$$\int_0^\infty \mu e^{-\mu t} V(t) R(\lambda) x dt = R(\mu) R(\lambda) x =$$
$$= R(\lambda) R(\mu) x = \int_0^\infty \mu e^{-\mu t} R(\lambda) V(t) x dt$$

and hence by uniqueness of the Laplace transform we have (11).

Let $x \in X$, $\operatorname{Re} \lambda > \omega$, then

$$\int_0^\infty \lambda^2 e^{-\lambda t} t B x dt = B x = (\lambda B - A) R(\lambda) x =$$
$$\int_0^\infty \lambda^2 e^{-\lambda t} B V(t) x dt - A \int_0^\infty \lambda e^{-\lambda t} V(t) x dt.$$

Let now $x \in \mathcal{R}$, $x = R(\lambda_0)y$, $y \in X$, then

$$||AV(t)x|| = ||AV(t)R(\lambda_0)y|| = ||AR(\lambda_0)V(t)y|| =$$

= ||\lambda_0BR(\lambda)V(t)y - BV(t)y|| \le L||B||e^{\omega t}(|\lambda_0|||x|| + ||y||),

that means the Laplace transform of AV(t)x is defined as A is closed we have

$$\int_0^\infty \lambda^2 e^{-\lambda t} t B x dt = \int_0^\infty \lambda^2 e^{-\lambda t} [BV(t)x - \int_0^t AV(s)x ds] dt$$

and

$$tBx = BV(t)x - A \int_0^t AV(s)xds, \qquad x \in \mathcal{R}$$

This equality is true for $x \in \overline{\mathcal{R}}$ and $x \in \ker B$ too, hence we have (12).

It was shown above, that $R(\lambda)$ in (8) satisfies MFPHY-conditions then U(t) = V'(t)is degenerate C_0 -semigroup on $F = Q \oplus \mathcal{K}$ and C_0 -semigroup on Q. For the generator of such semigroup D(G) is dense in Q, hence $F_1 := \{x \in X : \forall t \ge 0 \exists U'(t)x\}$ is dense in Q and since ker $B = \mathcal{K} \subset F_1$ we have $\overline{F_1} = F$. For $x \in F_1$

$$\lambda R(\lambda)x = \int_0^\infty \lambda e^{-\lambda t} U(t)x dt = U(0)x + \int_0^\infty \lambda e^{-\lambda t} U'(t)x dt,$$

and

(14)
$$\lim_{\lambda \to \infty} \lambda R(\lambda) x = U(0) x$$

Since operators $\lambda R(\lambda)$ are bounded, (14) is true for $x \in F$. Hence by Proposition 1 $Q \subset X_1$. Let $x \in R(\lambda)(X_1) =: \mathcal{R}_1$, $x = R(\lambda)y$, $y \in X_1$, we show (13) and $X_1 \subset Q$, hence $X_1 = Q$. For $y \in X_1$ (12) is true, we apply operator $(\lambda B - A)^{-1}$ to (12), having used (11) and the equality

$$(\lambda B - A)^{-1}Ay = \lambda(\lambda B - A)^{-1}By - y, \qquad y \in D(A),$$

we obtain

(15)
$$tx = V(t)x - \int_0^t V(s)(\lambda(\lambda B - A)^{-1}B - I)yds,$$

hence $x \in F$ and $\mathcal{R}_1 \subset F$. By Proposition 1 for $x \in \mathcal{R}$ $\lambda R(\lambda) x \to_{\lambda \to \infty} x$, hence $\overline{\mathcal{R}_1} = X_1$ and $X_1 \subset \overline{F} = F$, as $X_1 \cap \mathcal{K} = \{0\}, X_1 \subset Q, F = X_1 \oplus \mathcal{K}$.

By differentiating (15), applying operator B and differentiating once more we obtain (13).

THEOREM 3. Let $A, B \in \mathcal{L}(X, E)$ is closed, $B \in \mathcal{B}(X, E)$ and $R(\lambda) = (\lambda B - A)^{-1}B$ satisfies to MFPHY-conditions, then (DCP) is well-posed on $\mathcal{R}_1 = R(\lambda)(X_1)$.

Proof. Existence of the solution u(t) = U(t)x, $x \in \mathcal{R}_1$, follows from Theorem 2, uniqueness may be proved as in the nondegenerate case (see [3], [4]).

5. In view of Proposition 2, set \mathcal{R} coincides with maximal well-posedness class for (DCP): $\mathcal{R} = \mathcal{M}$. We establish conditions on the pseudoresolvent, connected with operators A, B, which assure (DCP) well-posedness on \mathcal{R} .

THEOREM 4. Let $A, B \in \mathcal{L}(X, E)$, A is closed, B and $R(\lambda) = (\lambda B - A)^{-1}B$ for some λ are bounded. Then the following statements are equivalent.

- (I) (DCP) is uniformly well-posed on \mathcal{R} .
- (II) A, B are the generators of a degenerate C_0 -semigroup.
- (III) For $R(\lambda)$ MFPHY-conditions are fulfilled and $X = \mathcal{K} \oplus \mathcal{R}$.

Proof. (I) \Longrightarrow (II). Define on \mathcal{R} operators $\tilde{U}(t)$ as solution operators: for $x \in \mathcal{R}$ $\tilde{U}(t)x := u(t)$. Similarly to the nondegenerate case the operators $\tilde{U}(t)$ form a semigroup on $X_1 = \overline{\mathcal{R}}$ and satisfy the equality

(16)
$$(\lambda B - A)^{-1} \int_0^\infty \lambda^2 e^{-\lambda t} \tilde{U}(t) x dt = Bx, \qquad x \in X_1.$$

Operator $(\lambda B - A)$ is invertible for $\operatorname{Re} \lambda > \omega$: really, let $x \in \operatorname{ker}(\lambda B - A)$, then for $v(t) := \exp(\lambda t)x$ we have

$$Bv'(t) = \lambda Bv(t) = Av(t), \qquad v(0) = x$$

and $||v(t)|| = ||\tilde{U}(t)|| \le Le^{\omega t} ||x||, t \ge 0$. On the one hand $\ln ||v(t)||/t = \operatorname{Re}\lambda + \ln ||x||/t$, on the other $\ln ||v(t)/t \le \omega + \ln L||x||/t$, and $\operatorname{Re}\lambda \le \omega$. For generator of \tilde{U} from (16) follows:

$$(\lambda B - A)^{-1}Bx = (\lambda - G)^{-1}x, \qquad x \in X_1, \quad \operatorname{Re}\lambda > \omega,$$

operator $Px := (\lambda - G)(\lambda_0 B - A)^{-1}Bx$, $P : X \to X_1$ is projector in X and $U(t) := \tilde{U}(t)P$ is degenerate C_0 -semigroup.

(II) \Longrightarrow (III). It is not difficult to verify, that A, B are the generators of integrated semigroup $V(t) := \int_0^t U(t)dt$, satisfying (6). Hence by (8) MFPHY-conditions for $R(\lambda)$ are fulfilled and by Theorem 2 $X = F = \mathcal{K} \oplus X_1$.

(III) \Longrightarrow (I). If (III), then $R(\lambda)(X_1) = R(\lambda)(X) = \mathcal{R}$ and by Theorem 3 (I) follows.

In [6] some results on connection between properties of a pseudoresolvent and wellposedness of the differential inclusion: $u'(t) \in Ju(t), T \geq 0, u(0) = x$, where $J := B^{-1}A$ with $D(J) = \mathcal{M}$, are obtained by the technique of multivalued operators.

References

- [1] K. Yosida, Functional Analysis, Springer-Verlag, Berlin and New York, 1980.
- [2] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 59 pp.
- [3] S. G. Krein, Linear differential equations in a Banach space, Amer. Math. Soc., Providence, R.I., 1972.
- [4] V. K. Ivanov, I. V. Melnikova, and A. I. Filinkov, *Differential-operator equations and ill-posed problems*, Nauka, Moscow, 1994 [in Russian].
- [5] N. Tanaka and I. Miyadera, Exponentially bounded C-semigroups and integrated semigroups, Tokyo J. Math. 12, no. 1 (1989), 99-115.

- [6] I. V. Melnikova and M.A. Alshansky, Well-posedness of the Cauchy problem in a Banach space: regular and degenerate cases, J. Math. Sci., Plenum, 1994, to appear.
- [7] E. B. Davies and M. M. Pang, The Cauchy problem and a generalizations of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987), 181–208.
- [8] I. V. Melnikova and S.V. Bochkareva, C-semigroups and regularization of an ill-posed Cauchy problem, Russia Acad. Sci. Docl. Math. 47, no. 2 (1993), 228–232.