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Abstract. The classical orthogonal polynomials defined on intervals of the real line are
related to many important branches of analysis and applied mathematics. Here a method is
described to generalise this concept to polynomials defined on higher dimensional spaces using
Bi-Axial Monogenic functions.

The particular examples considered are Gegenbauer polynomials defined on the interval
[−1, 1] and the Gegenbauer functions of the second kind which are weighted Cauchy integral
transforms over this interval of these polynomials. Related polynomials are defined which are
orthogonal on the unit ball Bp ≡ {~x ∈ Rp; |~x| ≤ 1} using Bi-Axial Monogenic generating
functions on Rm. Then corresponding generalised Gegenbauer functions of the second kind are
defined using generalised weighted Bi-Axial Monogenic Cauchy transforms of these polynomials
over Bp.

These generalised Gegenbauer functions of first and second kind reduce to the standard
case when p = 1 and are solutions of related second order differential equations which become
identical in the one dimensional case.

1. Gegenbauer functions. The Gegenbauer polynomials

C(α)
n (x) ; n = 0, 1, 2, . . . ; α > −1

2
have the orthogonality property

(1.1)
∫ 1

−1

C(α)
n (x)C(α)

m (x)(1− x2)α−
1
2 dx = 0 ; m 6= n .
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They satisfy the second order differential equation

(1.2) (1− x2)−α+ 1
2
d

dx

{
(1− x2)α+ 1

2
d

dx
C(α)
n (x)

}
+ n(n+ 2α)C(α)

n (x) = 0 .

They may be defined from a Rodrigues formula

(1.3) C(α)
n (x) =

(−)nΓ(α+ 1
2 )Γ(n+ 2α)

2nn!Γ(2α)Γ(α+ n+ 1
2 )(1− x2)α−

1
2

dn

dxn
[(1− x2)α−

1
2+n]

and have the generating function corresponding to the relation

(1.4) (1 + z2)−α = (1 + x2)−α
∞∑
n=0

[
−iy

(1 + x2)
1
2

]n
C(α)
n

[
x

(1 + x2)
1
2

]
where z = x+ iy. We see that this generating function, written in a non-standard form,
is the analytic continuation of [1 + x2]−α from the real axis to general z = x+ iy.

Finally Gegenbauer functions of the second kind are given by

(1.5) Q(α)
n (z) =

1
2

(z2 − 1)−α+
1
2

∫ 1

−1

(1− t2)α−
1
2C

(α)
n (t)dt

(z − t)
n = 0, 1, 2, . . . ; α > −1

2

and satisfy the same second differential equation (1.2) as the C(α)
n (x).

2. Bi-axial monogenic functions. An important class of monogenic functions in
Rm is that defined over bi-axially symmetric domains [8].

The approach is to consider functions on Rm taking values in a complex Clifford
algebra A. The generating vectors of the Clifford algebra A are {e`; ` = 1, . . . ,m}
satisfying the defining relations,

(2.1) e`ej + eje` = −2δj`e0; j, ` = 1, . . . ,m ,

where e0 is the unit element in A.
To every point in Rm there corresponds a vector in the algebra

(2.2) ~x =
m∑
`=1

x`e` .

The function f on an open set Ω of Rm taking values in A is said to be left monogenic
when

(2.3) ∂~xf ≡
m∑
`=1

e`
∂f

∂x`
= 0, ∀x ∈ Ω .

We consider the splitting Rm = Rp + Rq and denote a general element ~x of Rm by

(2.4) ~x = ~x1 + ~x2 = ρ1~ω1 + ρ2~ω2

where ρ1 = |~x1| , ρ2 = |~x2| and ~x1 ∈ Rp, ~x2 ∈ Rq.
Then any suitable Clifford valued function f(~x1, ~x2) on Rm will have the expansion

(2.5) f(~x1, ~x2) =
∞∑
k=0

∞∑
`=0

fk,`(ρ1, ρ2)Pk,`(~x1, ~x2)
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where Pk,`(~x1, ~x2) are bi-axial spherical monogenics defined by Jank and Sommen [7]
They have the property of being homogeneous of degree k in ~x1, ` in ~x2 and

(2.6) ∂~x1Pk,`(~x1, ~x2) = ∂~x2Pk,`(~x1, ~x2) = 0 .

Bi-axial monogenic functions are monogenic functions of the form

(2.7) f(~x1, ~x2) ≡ fk,`(ρ1, ρ2)Pk,`(~x1, ~x2) .

An example of this class are the Generalised Cauchy transforms of scalar function g(λ),

Λ(1)
k,`(g)(~x) =

1
ωp

∫
Rp

[~x1 + ~x2 − ~u]g(λ)Pk,`(~η, ~x2)dp~u
|~x1 + ~x2 − ~u|m+2`

(2.8)

Λ(2)
k,`(g)(~x) =

1
ωp

∫
Rp

[~x1 + ~x2 − ~u]~ηg(λ)Pk,`(~η, ~x2)dp~u
|~x1 + ~x2 − ~u|m+2`

(2.9)

where ~u = λ~η, |~η| = 1 and ωp is the area of the unit sphere in p-dimensions. It may be
shown that these transforms are Bi-axial monogenic functions of the form (2.7) [3].

This paper is a review of recent studies of Bi-axial monogenic functions jointly with
F. Sommen and details of proofs may be found in the quoted references.

3. Bi-axial Gegenbauer functions. One way to generalise the polynomials C(α)
n (x)

is to start from Rodrigues formula (1.3) as was done by Cnops, [5].
On the other hand, one can start from the generating function definition of these

polynomials [1,2]. We see that the generating function given by (1.4) is analytic except
for z2 real and less than or equal to minus one and tends to (1 + x2)−α as y → 0. In the
bi-axial case we define generalised Gegenbauer polynomials through a generating function
of the form (2.7),

f(~x) = fk,`(ρ1, ρ2)Pk,`(~x1, ~x2)

such that as ρ2 → 0,

(3.1) f(~x) ≈ (1 + ρ2
1)−[α+k+`+(p+q)/2−1]ρk1ρ

`
2Pk,`(~ω1, ~ω2) .

Now the R.H.S. has a unique monogenic extension to domains with ρ2 6= 0 [F. Sommen:
Lecture Notes, Ghent] and we have shown [2] that it may be written in the form

f(~x) = (1 + ρ2
1)−[α+k+`+(p+q)/2−1] ×(3.2)

∞∑
j=0

[
1

1 + ρ2
1

]j/2
C

(α)
j;p,q;k,`

[
~x1

(1 + ρ2
1)

1
2

]
~xj2Pk,`(~x1, ~x2)

where setting

(3.3) ~u = ~x1/(1 + ρ2
1)

1
2

then for j = 0, 1, 2, . . .

C
(α)
2j;p,q;k,`(~u) =

(−)j(α+ k + `+ p/2 + q/2− 1)j(k + p/2)j
(`+ q/2)jΓ(j + 1)

(3.4)

×2F1(α+ k + `+ p/2 + q/2 + j − 1,−j; k + p/2; −~u2 )
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C
(α)
2j+1;p,q;k,`(~u) =

(−)j(α+ k + `+ p/2 + q/2− 1)j+1(k + 1 + p/2)j
(`+ q/2)j+1Γ(j + 1)

(3.5)

×~u2F1(α+ k + `+ p/2 + q/2 + j,−j; k + p/2 + 1; −~u2 ) .

The C(α)
n;p,q;k,`(~u) are polynomials of degree n in ~u and reduce to standard Gegenbauer

polynomials when p = q = 1, k = ` = 0 as does the generating function f(~x).
It may be shown from the monogenicity of the generating function (3.2) that there is

a corresponding Rodrigues formulae,

C
(α)
2j;p,q;k,`

[
~x1

(1 + ρ2
1)

1
2

]
Pk,`(~x1, ~x2)(3.6)

=
(−)j(1/2)j

(2j)!(`+ q/2)j
(1 + ρ2

1)α+q/2+p/2+k+`−1+j

×(∂~x1)2j [(1 + ρ2
1)−(α+q/2+p/2+k+`−1)Pk,`(~x1, ~x2)] .

C
(α)
2j+1;p,q;k,`

[
~x1

(1 + ρ2
1)

1
2

]
Pk,`(~x1, ~x2)(3.7)

=
(−)j+1(1/2)j+1

(2j + 1)!(`+ q/2)j+1
(1 + ρ2

1)α+q/2+p/2+k+`−1/2+j

×(∂~x1)2j+1[(1 + ρ2
1)−(α+q/2+p/2+k+`−1)Pk,`(~x1, ~x2)] .

for j = 0, 1, 2 . . ..
These polynomials then have the corresponding orthogonality property∫

Rp

Pk1,`1(~x1, ~x2)C(α)
n;p,q;k1,`1

[
~x1

(1 + ρ2
1)

1
2

]
C

(α)
j;p,q;k2,`2

[
~x1

(1 + ρ2
1)

1
2

]
(3.8)

×Pk2,`2(~x1, ~x2)(1 + ρ2
1)−[α+p/2+q/2+(k1+k2+`1+`2)/2]dp~x1

= 0

when k1 6= k2 and or `1 6= `2 or n 6= j.
These orthogonality properties reduce to the standard ones for Gegenbauer polyno-

mials when k1 = k2 = `1 = `2 = 0 and p = q = 1.
These generalised Gegenbauer polynomials also have the Rodrigues representation

C
(α)
2j;p,q;k,`(~x1)Pk,`(~x1, ~x2) =

(−)j( 1
2 )j(α+ q/2 + p/2 + k + `− 1)j

(`+ q/2)j(α+ q/2 + `+ j)jΓ(2j + 1)
(3.9)

× (1 + ~x2
1)−[α+q/2+`−1](∂~x1)2j [(1 + ~x1)α+q/2+`+2j−1Pk,`(~x1, ~x2 )]

and

C
(α)
2j+1;p,q;k,`(~x1)Pk,`(~x1, ~x2) =

(−)j( 1
2 )j+1(α+ q/2 + p/2 + k + `− 1)j+1

(`+ q/2)j+1(α+ q/2 + `+ j)j+1Γ(2j + 2)
(3.10)

× (1 + ~x2
1 )−[α+q/2+`−1](∂~x1)2j+1[(1 + ~x1)α+q/2+`+2jPk,`(~x1, ~x2 )]

for j = 0, 1, 2, . . ..
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This follows from the fact that these polynomials are related to the axial Gegenbauer
polynomials C(α)

n;p,k(~x1) defined in [5]. In fact the C(α)
n;p,q,k,`(~x1) are just constant scalar

multiples of C(α+q/2+`−1)
n;p,k (~x1) .

4. Bi-Axial Gegenbauer functions of the second kind. The bi-axial Gegenbauer
polynomials satisfy the second order differential equation [4],

(1 + ~x2
1 )−(α+q/2+`−1)∂~x1

{
(1 + ~x2

1 )α+q/2+`∂~x1

[
C

(α)
n;p,q;k,`(~x1)Pk,`(~x1, ~ω2)

]}
(4.1)

= β(n, α+ q/2 + `− 1, k)C(α)
n;p,q;k,`(~x1)Pk,`(~x1, ~ω2)

where

β(n, α, k) = n(2α+ n+ p+ 2k) ; n = 0, 2, 4, . . .(4.2)

= (2α+ n+ 1)(n+ p+ 2k − 1) ; n = 1, 3, 5, . . . .(4.3)

In analogy to the standard case, we will construct bi-axial Gegenbauer functions of the
second kind which give the second independent solution of these equations. The approach
is to consider generalised Cauchy transforms of the bi-axial Gegenbauer polynomials
defined in the previous section (as in the standard case).

It may be noted from (3.4), (3.5) that C(α)
2j;p,q;k,`(~u) is a scalar valued function whilst

C
(α)
2j+1;p,q;k,`(~u) is vector valued. We may then define the transforms

Λ(α)
n;p,q;k,`(~x) =

1
ωp

∫
Bp

[~x1 + ~x2 − ~u](1 + ~u2)α+q/2+`−1C
(α)
n;p,q;k,`(~u)Pk,`(~u, ~x2)

|~x1 + ~x2 − ~u|m+2`
dp~u(4.4)

n = 0, 1, 2, . . .

which are of the form (2.8) for n even and of the form (2.9) for n odd and are monogenic
for Rm\Rp. We use these transforms in the following:

Definition. The bi-axial Gegenbauer functions of the second kind are given by

Q
(α)
n;p,q;k,`(~x1)Pk,`(~x1, ~ω2)(4.5)

≡ Lt
|~x2|→0

{
[−(~x1 + ~x2)2 − 1]−α+q/2+`

|~x2|`ωp

∫
Bp

(~x1 + ~x2 − ~u)(1 + ~u2)α+q/2+`−1

|~x1 + ~x2 − ~u|m+2`

× C
(α)
n;p,q;k,`(~u)Pk,`(~u, ~x2)

}
dp~u

where n, p, q, k, ` ∈ N : α > 0.

Taking the limit |~x2| → 0 and using the Rodrigues formula (3.9), (3.10)

Q
(α)
2j;p,q;k,`(~x1)Pk,`(~x1, ~ω1) =

(−)j(1/2)j(α+ q/2 + p/2 + k + `− 1)j
(`+ q/2)j(α+ q/2 + `+ j)jΓ(2j + 1)

(4.6)

×Θ(α)
2j;p,q;k,`(~x1)Pk,`(~x1, ~ω2)

Q
(α)
2j+1;p,q;k,`(~x1)Pk,`(~x1, ~ω1) =

(−)j(1/2)j+1(α+ q/2 + p/2 + k + `− 1)j+1

(`+ q/2)j+1(α+ q/2 + `+ j)j+1Γ(2j + 2)
(4.7)

×Θ(α)
2j+1;p,q;k,`(~x1)Pk,`(~x1, ~ω2)
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where

Θ(α)
n;p,q;k,`(~x1)Pk,`(~x1, ~ω2) =

[−~x2
1 − 1]−α+q/2+`

ωP
(4.8)

×
∫

Bp

(~x1 − ~u)(∂~u)n[(1 + ~u2)α+q/2+`−1+nPk,`(~u, ~ω2)]
|~x1 − ~u|m+2`

dp~u;

n = 0, 1, 2, . . . .

It may be demonstrated using the Funk-Hecke theorem [6] that the R.H.S. of (4.8) is
indeed proportional to Pk,`(~x1, ~ω2). Uing (4.7), (4.8), the following result may be proved
[4]:

Theorem. The bi-axial Gegenbauer functions Q
(α)
n;p,q;k,`(~x1)Pk,`(~x1, ~ω2) defined in

(3.4 ) for α > 0; p, q, k, ` ∈ N satisfy the differential equation

(− ~x2
1 − 1)`+q/2−α∂~x1

{
(−~x2

1 − 1)α−`−q/2+1∂~x1

[
Q

(α)
n,p,q;k,`(~x1)Pk,`(~x1, ~ω2)

]}
(4.9)

= γ(p, q, k, `, n)Q(α)
n;p,q;k,`(~x1)Pk,`(~x1, ~ω2) ; n = 0, 1, 2, . . .

where

(4.10) γ(p, q, k, `, 2j) = −(2α+ 2j)(m+ 2`+ 2k + 2j − 2)

and

(4.11) γ(p, q, k, `, 2j + 1) = −(2α+ +p+ 2k + 2j)(q + 2`+ 2j)

for j = 0, 1, 2, . . . and ~x1 ∈ Rp\Bp.

In the complex scalar case the Gegenbauer functions of the second kind satisfy the
same differential equation as the corresponding Gegenbauer polynomials. In the bi-axial
case the two sets of differential equations (4.1) and (4.9) are related but NOT identical.
However from their definitions (4.2), (4.3) and (4.10), (4.11)

(4.12) β(n, α+ q/2 + `− 1, k) = −γ(p, q, k, `, n)

for p = q = 1, k = ` = 0 so that in this case the equations satisfied by the bi-axial
Gegenbauer polynomials are the same as those for the bi-axial Gegenbauer functions of
the second kind. Therefore our results do agree with the standard complex variable case
since the latter corresponds to taking p = q = 1.

Acknowledgements. I would like to thank F. Sommen for introducing me to the
concept of Bi-axial monogenic functions and a fruitful collaboration with him in this area.
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