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Université de Caen
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Abstract. It will be shown that the Stone–Weierstrass theorem for Clifford-valued functions
is true for the case of even dimension. It remains valid for the odd dimension if we add a stability
condition by principal automorphism.

Introduction. Recall the classical Stone–Weierstrass theorem: let Y be a metric
space, C(Y ; R) the set of all continuous functions from Y in R, B ⊂ C(Y ; R) a subset
such that B contains the constant function 1 and separates the points of Y . Then the
algebra AB(Y ; R), generated by B is dense in C(Y ; R) for the topology of the uniform
convergence on every compact.

It is well-known that if one substitutes the field R by C, then an additional hypothesis
is needed, namely: B should be stable with respect to complex conjugation. In case we
are omitting this hypothesis and if we take, for example, Y to be an open subset of C
and Y = {1, z}, then we will get the algebra of holomorphic functions.

Let us mention that the case of functions taking values in the quaternion field is
known [2] and it is analogous to the real case.

Here, we will investigate the situation when R is replaced by Rp,q — a universal
Clifford algebra of Rn, n = p+ q, with a quadratic form of signature (p, q). This study
is motivated by the theory of monogenic functions [1]. The present paper is organized as
follows: in Section 1 we will recall some notations usually employed in Clifford algebras.
Section 2 will deal with some elements of combinatorics. The essential part of the paper
is Section 3 in which we give a formula allowing to compute the scalar part of a given
Clifford number. As an application of this formula, we are able to prove in Section 4 the
following Stone–Weierstrass theorem for C(Y ; Rp,q):

Theorem. Let Y be a metric space and C(Y ; Rp,q) the set of all continuous functions
from Y to Rp,q. Let B ⊂ C(Y, Rp,q) be such that B contains the constant function 1
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and separates the points of Y . If p + q is odd , suppose in addition that B is stable with
respect to the principal automorphism ∗. Then, the algebra AB(Y ; Rp,q), generated byB,
is dense in C(Y ; Rp,q) for the topology of uniform convergence on compact sets.

1. Notations. In a Clifford algebra Rp,q = C0 ⊕ C1 ⊕ . . . ⊕ Cn,with n = p + q,
the spaces C0, C1, . . . , Cn are supposed to be of respective basis {1}, {e1, e2, . . . , en},
{eij}i<j , . . . , {ei1...ik}i1<i2<···<ik , . . . , {e1.2...n}, where (i1, . . . , ik) is a multiindex with
i1, . . . , ik ∈ {1, . . . , n}, 1 ≤ i1 < . . . < ik ≤ n. The algebra obeys to the laws:

e2i = 1, i = 1, . . . , p,
e2i = −1, i = p+ 1, . . . , n,
eiej = −ejei, i 6= j,
ei1...ik = ei1ei2 · · · eik , for i1 < i2 < . . . < ik.

We will make use of the decomposition of a Clifford number a in its scalar (real) part
〈a〉0, its 1-vector 〈a〉1 ∈ C1, its bivector part 〈a〉2 ∈ C2, etc . . . up to its pseudo-scalar
part 〈a〉n ∈ Cn, i.e:

a = 〈a〉0 + 〈a〉1 + · · ·+ 〈a〉n,

where,
〈a〉k =

∑
J
|J|=k

aJ eJ .

J = (j1, . . . , jk) is a multiindice and |J | = k, eJ = ej1 · · · ejk .
Recall that the principal involution ∗ , the anti-involution ∗ and the reversion ∼ act

on a ∈ R0,n as follows:

a∗ =
n∑
k=0

(−1)k〈a〉k

a∗ =
n∑
k=0

(−1)
k(k+1)

2 〈a〉k

a∼ =
n∑
k=0

(−1)
k(k−1)

2 〈a〉k

Now, define

ei =
{
ei, if 1 ≤ i ≤ p
−ei, if p+ 1 ≤ i ≤ p+ q

and eJ = ejk · · · ej1 .

2. Some combinatorics. Let us study the partition of the set {1, . . . , n} in two
strictly ordered subsets: I = {i1, . . . , ik} and J = {j1, . . . , jp}. As for as the relative
position of J with respect to I is concerned, we have different possible cases: J ∩ I = φ ;
just one jα belongs to I; . . . ; ` among the j′αs belong to I; . . . ; the largest possible number
of j′αs belongs to I. It is easy to compute the cardinals of the corresponding sets:



STONE–WEIERSTRASS THEOREM 191

For the first case, the cardinal is Cpn−k C
sup{0,p−(n−k)}
k . If just one jα belongs to I,

then we will have Cp−1
n−k C

sup{0,p−(n−k)}+1
k and so on . . . In the last case, we will get

C0
n−k C

inf{p,k}
k .

Now, recall the following result which is well-known in classical probability theory [3]:

Lemma 1. For every k, 0 ≤ k ≤ n:

inf{p,k}∑
`=sup{0,p−(n−k)}

Cp−`n−k C
`
k = Cpn.

In fact, this lemma will not be used here, but its elementary proof, which will be given
below, is a source of inspiration for the next result (Lemma 2).

P r o o f. For every k, 0 ≤ k ≤ n, one has (1+x)n−k(1+x)k = (1+x)n, which involves
k∑
`=0

(1 + x)n−k C`k x
` =

n∑
p=0

Cpn x
p,

and again:
k∑
`=0

n−k∑
n=0

Cnn−k x
n C`k x

` =
n∑
p=0

Cpnx
p.

Let us set n + ` = p, i.e. n = p − `. Then the double sum is equal to

k∑
`=0

n−k+`∑
p=`

Cp−`n−k C
`
kx

p =
n∑
p=0

inf{p,k}∑
`=sup{0,p−(n−k)}

Cp−`n−k C
`
k x

p.

It just remains to identify the coefficients of xp. Now, we are in a position to formulate
and prove the following:

Lemma 2.

n∑
p=0

inf{p,k}∑
`=sup{0,p−(n−k)}

(−1)pk+` Cp−`n−k C
`
k =


0, if 1 ≤ k ≤ n− 1
0, if k = n, n even
2n, if k = n, n odd
2n, if k = 0.

P r o o f. Start from
(1 + (−1)kx)n−k(1 + (−1)k+1x)k =

=
k∑
`=0

(1 + (−1)kx)n−k(−1)(k+1)`C`kx
` =

=
k∑
`=0

n−k∑
n=0

(−1)kn Cnn−k x
n(−1)(k+1)` C`k x

` =

=
n∑
p=0

inf{p,k}∑
`=sup{0,p−(n−k)}

(−1)pk+` Cp−`n−k C`k x
p,
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because kn+ (k + 1)` = pk + `. Thus it is enough to set x = 1 and remark that:

(1 + (−1)k)n−k(1 + (−1)k+1)k =


2n, if k = 0
0, if 1 ≤ k ≤ n− 1
2n, if k = n, n odd
0, if k = n, n even

3. A formula for the real part of a ∈ Rp,q.

Lemma 3. For every multiindex J , we have eJ eJ = 1.

Lemma 4. Let I = (i1, . . . , ik), |I| = k. J = (j1, . . . , jp), |J | = p there is the
following equality

n∑
p=0

∑
|J|=p

eJeIe
J =

{ 2n if k = 0 or if k = n with n odd
0 in other cases

P r o o f. Decompose the sum ∑
|J|=p

ejeIe
J

following the relative position of J with respect to I. If J ∩ I = φ we have Cpn−kC
0
k such

possibilities and the anticommutation gives (−1)pk.
If only one jα ∈ I we have Cp−1

n−k C
1
k such possibilites and the anticommutation gives

(−1)(p−1)k (−1)k−1 and so on, . . . , if ` jα ∈ I we have C(p−`)k
n−k C`k such possibilities and

the commutation gives (−1)(p−`)k (−1)`(k−1).
The sum is equal to

inf{p,k}∑
`=sup{0,p−(n−k)}

(−1)(p−`)k (−1)`(k−1) Cp−`n−k C
`
keI

Thus we could apply lemma 2 and the result follows.

The next result is a formula for the scalar part of a Clifford number.

Theorem 1. Let a ∈ Rp,q. Then:
a) if n is even,

〈a〉0 =
1
2n

n∑
p=0

∑
|J|=p

eJae
J .

b) if n is odd ,

〈a〉0 =
1

2n+1

n∑
p=0

∑
|J|=p

eJa e
J +

1
2n+1

n∑
p=0

∑
|J|=p

eJa∗ e
J .

P r o o f. When a ∈ R0,n, then

a =
n∑
k=0

∑
|I|=k

aIeI ,
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where I = (i1, . . . , ik), 1 ≤ i1 < i2 < . . . < ik ≤ n. Take the sum
n∑
p=0

∑
|J|=p

eJa e
J =

∑
J

∑
I

aI eJ eI e
J .

Now, apply lemma 4:
a) if n is even, one gets:

n∑
p=0

∑
|J|=p

eJa e
J = 2n 〈a〉0,

b) if n is odd, one has:
n∑
p=0

∑
|J|=p

eJa e
J = 2n 〈a〉0 + 2n 〈a〉n.

But, in the case when n is odd, 〈a∗〉n = (−1)n 〈a〉n = −〈a〉n. Thus, we get the part
b) of the theorem.

R e m a r k . For n = 1, the preceding formula becomes to
4Re a = (a− iai) + (a− iai) in R0,1 = C with the classical notations of C.

For n = 2, this means that 4Re a = a− iai− jaj−kak in R0,2 = H with the classical
notations of H, [2].

4. The Stone–Weierstrass theorem for C(Y ; Rp,q).

Theorem 3. Let Y be a metric space and C (Y ; Rp,q) the set of continuous functions
from Y into Rp,q. Let B ⊂ C(Y ; Rp,q) be such that B contains the constant function 1
and separates the points of Y . When p+ q is even, nothing more is supposed. If p+ q is
odd , suppose B to be stable with respect to the principal involution ∗.

Then, the algebra AB(Y ; Rp,q), generated by B, is dense in C(Y ; Rp,q) for the topology
of uniform convergence on compact sets.

P r o o f. Set AB(Y ; R) for the subspace of AB(Y ; Rp,q) consisting of those func-
tions which take real values. This is a real algebra. Let AB(Y ; R)I be the subspace of
AB(Y ; Rp,q) consisting of the I-components of functions from AB(Y ; Rp,q). Thus, we
have fI = 〈f eI〉0 and AB(Y ; R)I ⊂ AB(Y ; R) by theorem 2.

In this way, AB(Y ; R) satisfies to the hypothesis of the classical Stone–Weierstrass
theorem for real functions. The algebra AB(Y ; R) is consequently dense in C(Y ; R).
Finally, one can conclude that:

AB(Y ; Rp,q) =
⊕
I

AB(Y ; R)eI

is dense in C(Y ; Rp,q).

5. A remark. It should be noted that the computation of the scalar part is strongly
related to formulas related to the Hestenes multivector derivative: see [4], chapter 2.

After presenting that work at the Banach Center Jan Cnops indicated to one of us a
shorter proof of formulas of theorem 1.
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