
GENERALIZATIONS OF COMPLEX ANALYSIS
BANACH CENTER PUBLICATIONS, VOLUME 37

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1996

A VARIATIONAL METHOD FOR UNIVALENT
FUNCTIONS CONNECTED WITH ANTIGRAPHY

JANINA MACURA

Institute of Mathematics, Silesian Technical University
Kaszubska 23, PL-44-100 Gliwice, Poland

Abstract. The paper is devoted to a class of functions analytic and univalent in the unit
disk that are connected with an antigraphy eiϕw + iρei

ϕ
2 . Variational formulas and Grunsky

inequalities are derived. As an application there are given some estimations in the considered
class of functions.

1. Introduction. H(U) denotes, as usual, the space of all functions analytic in the
unit disk U = {z : |z| < 1}. Let ρ ∈ R, ϕ∈ [0, 2π], a ∈ C, and ρ 6= 2Im{e−i

ϕ
2 a}. Saρϕ

denotes the class of all functions that are analytic, univalent in the unit disk U and satisfy
the conditions

(1) f(0) = a and f(z1) 6= eiϕf(z2) + iρei
ϕ
2 , z1, z2 ∈ U.

The class Saρϕ is, in some sense, similar to the classes of Gel’fer, Bieberbach-Eilenberg,
Grunsky-Shah and bounded functions. We can write the definitions of these classes in a
common form as follows:

Let J be a class of all functions that are analytic and univalent in U and satisfy the
conditions

f(0) = a and w ∈ f(U) =⇒ ω(w) 6∈ f(U).

For a = 1 and ω(w) = −w J is the class of Gel’fer functions, for a = 0 and ω(w) = 1
w

– the class of Bieberbach-Eilenberg functions, for a = 0 and ω(w) = − 1
w – the class

of Grunsky-Shah functions, for a = 0 and ω(w) = 1
w – the class of bounded functions,

and finally for ω(w) = eiϕw + iρei
ϕ
2 – the class Saρϕ. Each of these homographies and

antigraphies has the property that the inverse function is the same.
The class S10π coincides with the class of univalent functions with positive real part.

2. Variational formulas. Let f ∈ Saρϕ and D = f(U). It is clear that the domain
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D has the property

(2) w ∈ D =⇒ eiϕw + iρei
ϕ
2 6∈ D.

Using the Golusin’s method we can derive the variational formula for the function f .

Theorem 1. Let f ∈Saρϕ, z0 ∈ U . Then for sufficiently small ε there exists a function
f∗ ∈ Saρϕ such that

f∗(z) = f(z) + ε

{
eiα
[

(f(z)− a)(f(z)− b)
f(z)− f(z0)

− (f(z0)− a)(f(z0)− b)
z0f ′2(z0)

zf ′(z)
z − z0

]
+(3)

+e−iα
[

(f(z)− a)(f(z)− b)
f(z)− eiϕf(z0)− iρeiϕ2

+
(f(z0)− a)(f(z0)− b)

z0f ′2(z0)
z2f ′(z)
1− z0z

]}
+ o(ε)

where o(ε)
ε → 0, while ε→ 0, uniformly on compact subsets of U .

P r o o f. In order to find the variation of the function f we shall at first define such a
variation w∗ of the boundary ∂D that does not violate the property (2) for the domain
D∗ bounded by w∗(∂D). Define the function

(4) w∗(w) = w + εv(w),

where ε > 0, v(w) is a function analytic in the closure of such a domain ∆ that contains
∂D and satisfies the condition

w ∈ ∆ =⇒ eiϕw + iρei
ϕ
2 ∈ ∆

and having the property

(5) v(eiϕw + iρei
ϕ
2 ) = eiϕv(w).

Following [3] one can prove that the function (4) is univalent for sufficiently small ε and
w∗(∂D) is a boundary of a domain D∗ having the property (2).

Let P = {z : r ≤ |z| < 1}, r ∈ (0, 1) be such a ring that f(P ) ⊂ ∆. The function

F (z, ε) = w∗(f(z))− a, z ∈ P

satisfies the assumptions of Golusin theorem [2] for the function f(z)−a. So the function
f∗ such that f∗(U) = D∗ and f∗(0) = a has the form

(6) f∗(z) = f(z) + ε

{
v(f(z))− zf ′(z)S(z) + zf ′(z)S

(
1
z

)}
+ o(ε),

where S(z) is a principal part of the development into a Laurent series of the function
v(f(z))
zf ′(z) and o(ε)

ε → 0, while ε → 0, uniformly on compact subsets of U . The function f∗

belongs to the class Saρϕ and is a variation of the function f .
Now, we define the function v(w) as follows

v(w) = (w − a)(w − b)
(

eiα

w − w0
+

e−iα

w − eiϕw0 − iρei
ϕ
2

)
,

where w0 = f(z0), z0 ∈ U , b = eiϕa + iρei
ϕ
2 , α is an arbitrary real number. It is clear

that v(w) satisfies the condition (5). The variation (6) in this case takes the form (3).
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We can also obtain other variational formulas. If w0 6∈ D and eiϕw0 + iρei
ϕ
2 6∈ D then

we have

f∗(z) = f(z) + ε

{
eiα

(f(z)− a)(f(z)− b)
f(z)− w0

+(7)

+e−iα
(f(z)− a)(f(z)− b)
f(z)− eiϕw0 − iρei

ϕ
2

}
+ o(ε),

where o(ε)
ε → 0, while ε→ 0, uniformly on compact subsets of U .

Compositions of a function f ∈ Saρϕ with univalent functions g such that g(0) = 0
and g(U) ⊂ U give other variations of f , for example:

(8) f∗(z) = f(eiεz) = f(z) + iεzf ′(z) + o(ε), ε ∈ R

and

(9) f∗(z) = f(k−1
α ((1− ε)kα(z))) = f(z)− εzf ′(z)e

iα + z

eiα − z
+ o(ε),

where kα(z) = z
(1+e−iαz)2 , α ∈ R, ε > 0, and where o(ε)

ε → 0, while ε→ 0, uniformly on
compact subsets of U .

3. Schiffer equation. Saρϕ is a normal family of functions. It becomes compact if we
add the constant function g = a. The family of functions close to the function f ∈ Saρϕ
that we have just constructed is rich enough to consider the maximal problem in the
class Saρϕ. Let ψ be a complex, continuous functional defined over Saρϕ. Suppose that
Re{ψ} has a Fréchet derivative at the point f ∈ Saρϕ. Then there exists a functional
Lf ∈ H ′(U) such that

(10) Re{ψ(f∗)} = Re{ψ(f)}+ εRe{Lf (h)}+ o(ε),

for every function
f∗(z) = f(z) + εh(z) + o(ε),

such that h ∈ H(U), o(ε)
ε → 0, while ε→ 0, uniformly on compact subsets of U .

Theorem 2. Let ψ be a complex functional defined and continuous over the class Saρϕ
and let Re{ψ} have a Fréchet derivative Lf at the point f ∈ Saρϕ. If Re{ψ} attains its
maximal value in the class Saρϕ at f then f satisfies the equation

(11)
(ζf ′(ζ))2

(f(ζ)− a)(f(ζ)− b)
A(f(ζ)) = B(ζ),

where A(w) and B(z) are given by the formulas:

A(w) = Lf

(
(f(z)− a)(f(z)− b)

f(z)− w

)
+ Lf

(
(f(z)− a)(f(z)− b)
f(z)− eiϕw − iρeiϕ2

)
,(12)

B(ζ) = Lf

(
ζzf ′(z)
z − ζ

)
+ Lf (zf ′(z))− Lf

(
zf ′(z)
1− ζz

)
,

r < |ζ| < 1, r ∈ (0, 1). The function B(ζ) is an analytic function in the ring Pr = {ζ :
r < |ζ| < 1

r}, is real and non-positive on ∂U .
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P r o o f. If the functional Re{ψ} attains at f ∈ Saρϕ its maximal value and f∗ has
the form (3) then (10) leads to

(z0f ′(z0))2

(f(z0)− a)(f(z0)− b)
A(f(z0)) = B(z0),

where A(w) and B(ζ) are given by the formulas (12). Combining (8) with (10) and
(9) with (10) and using the fact that f is maximal we conclude that B(ζ) is real and
non-positive on ∂U , which completes the proof.

As a consequence of applying the variational formula (7) to (10) we have the following
theorem:

Theorem 3. Let ψ and f satisfy the assumptions of the previous theorem, A be such a
function meromorphic in C that A 6= 0. If w0 and eiϕw0 + iρei

ϕ
2 are not in f(U) then at

least one of these points is on the boundary ∂f(U). Particularly the set C−(f(U)∪h(U)),
where h(z) = eiϕf(z) + iρei

ϕ
2 has no interior points.

4. Grunsky inequalities. Defining the functional ψ in a special way we can obtain
the complete square on the left-hand side of (11) and then find a solution of this equation
in an implicit form. Such a functional leads also to Grunsky inequalities and then to some
simple estimations in the class Saρϕ. Let

ψ(f) = λ2 log
f ′(0)
a− b

+ 2λL
(

log
f(z)− a
z(f(z)− b)

)
+(13)

+L2

(
log

f(z)− f(ζ)
z − ζ

)
− |L|2

(
log(f(z)− eiϕf(ζ)− iρei

ϕ
2 )
)
,

where L is a functional from H ′(U) such that
L(1) = 0, L2(ϕ(z, ζ)) = L(L(ϕ(z, ζ))), |L|2(ϕ(z, ζ)) = L(L(ϕ(z, ζ))) for ϕ(z, ζ) analytic
in U × U , λ is an arbitrary real number.

The Fréchet derivative of Re{ψ} exists for every f ∈ Saρϕ and has the form

Re{Lf (h)} = Re

{
λ2 h

′(0)
f ′(0)

+ 2λL
(

(a− b)h(z)
(f(z)− a)(f(z)− b)

)
+ L2

(
h(z)− h(ζ)
f(z)− f(ζ)

)
−(14)

−|L|2
(

h(z)
f(z)− eiϕf(ζ)− iρeiϕ2

)
+ |L|2

(
eiϕh(ζ)

f(z)− eiϕf(ζ)− iρeiϕ2

)}
.

Theorem 4. If the functional (13 ) attains its maximal value at the point f ∈ Saρϕ
then f satisfies the equation

λ log
f(ζ)− a
ζ(f(z)− a)

+ L

(
log

f(z)− f(ζ)
z − ζ

)
− L

(
log(f(z)− eiϕf(ζ)− iρeiϕ2 )

)
+(15)

+L(log(1− ζz)) = λ log
f ′(0)
a− b

+ L

(
log

f(z)− a
z

)
− L(log(f(z)− b)).

The maximal value Re{ψ(f)} = −|L|2(log(1− ζz)).

P r o o f. Let f ∈ Saρϕ be a maximal function for the functional Re{ψ}. According to
the theorem 2 the function f satisfies the equation (11). In our case this equation has
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the form

(ζf ′(ζ))2
(
λ

a− b
(f(ζ)− a)(f(ζ)− b)

− L
(

1
f(z)− f(ζ)

)
+(16)

+e−iϕL

(
1

f(z)− eiϕf(ζ)− iρeiϕ2

) )2
= −B(ζ).

From the Caccioppoli-Kőthe integral representation of the functional from H ′(U) [1] and
from the fact that B(ζ) is non-positive on ∂U and from (16), following [4], we conclude
that the function

C(ζ) = λ
(a− b)ζf ′(ζ)

(f(ζ)− a)(f(ζ)− b)
− L

(
ζf ′(ζ)

f(z)− f(ζ)
− ζ

z − ζ

)
+

+L

(
eiϕζf ′(ζ)

f(z)− eiϕf(ζ)− iρeiϕ2
− 1

1− ζz

)
is analytic in U and has such a continuous continuation tu U that is real on ∂U . Further-
more, we notice that it is constant and this constant is equal to λ and we have

ζf ′(ζ)

(
λ

a− b
(f(ζ)− a)(f(ζ)− b)

− L
(

1
f(z)− f(ζ)

)
+(17)

+e−iϕL

(
1

f(z)− eiϕf(ζ)− iρeiϕ2

))
= λ− L

(
ζ

z − ζ

)
+ L

(
1

1− ζz

)
.

Now it is easy to verify that

(a− b)ζf ′(ζ)
(f(ζ)− a)(f(ζ)− b)

= ζ
∂

∂ζ
log

f(ζ)− a
ζ(f(ζ)− b)

,(18)

ζf ′(ζ)
f(z)− f(ζ)

− ζ

z − ζ
= −ζ ∂

∂ζ
log

f(z)− f(ζ)
z − ζ

,

eiϕζf ′(ζ)
f(z)− eiϕf(ζ)− iρeiϕ2

= −ζ ∂
∂ζ

log(f(z)− eiϕf(ζ)− iρei
ϕ
2 ),

1
1− ζz

= 1− ζ ∂
∂ζ

log(1− ζz).

Applying (18) to (17) we get

λ log
f(ζ)− a
ζ(f(ζ)− b)

+ L

(
log

f(z)− f(ζ)
z − ζ

)
− L

(
log(f(z)− eiϕf(ζ)− iρeiϕ2 )

)
+(19)

+L(log(1− ζz)) = c,

where

c = λ log
f ′(0)
a− b

+ L

(
log

f(z)− a
z

)
− L(log(f(z)− b)).

We shall prove that Re{c}=0. Notice at first that it follows from the theorem 3 that the
boundaries ∂f(U) and ∂h(U) have a common point ω. Then there exist two sequences (ζ1

n)
and (ζ2

n) of points from U such that f(ζ1
n)→ ω and h(ζ2

n)→ ω. Putting correspondingly
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ζ1
n and ζ2

n into (19) and passing to the limit we conclude that Re{c} = 0 that is

(20) Re
{
λ log

f ′(0)
a− b

+ L

(
log

f(z)− a
z

)
− L(log(f(z)− b))

}
= 0.

(19) leads also to another equation

λL

(
log

f(ζ)− a
ζ(f(ζ)− b)

)
+ L2

(
log

f(z)− f(ζ)
z − ζ

)
−(21)

−|L|2
(

log(f(z)− eiϕf(ζ)− iρei
ϕ
2 )
)

+ |L|2(log(1− ζz)) = 0.

Finally adding (21) and (20) multiplied by λ, we obtain

Re

{
λ2 log

f ′(0)
a− b

+ 2λL
(

log
f(z)− a
z(f(z)− b)

)
+ L2

(
log

f(z)− f(ζ)
z − ζ

)
−

−|L|2
(

log(f(z)− eiϕf(ζ)− iρei
ϕ
2 )
)}

= −|L|2(log(1− ζz)),

which completes the proof.

The next theorem is not a simple consequence of the previous one because the class
Saρϕ is not compact.

Theorem 5. If λ ∈ R− {0} then every f ∈ Saρϕ satisfies the inequality

Re

{
λ2 log

f ′(0)
a− b

+ 2λL
(

log
f(z)− a
z(f(z)− b)

)
+ L2

(
log

f(z)− f(ζ)
z − ζ

)
−(22)

−|L|2
(

log(f(z)− eiϕf(ζ)− iρei
ϕ
2 )
)}
≤ −|L|2(log(1− ζz)).

The equality occurs for some function g ∈ Saρϕ.

P r o o f. We shall prove that there exists a maximal function f ∈ Saρϕ for the func-
tional ψ given by the formula (13). This functional is continuous. It is also bounded from
above. It follows from the fact that |f ′(0)| is bounded, and f−a

f ′(0) ∈ S if f ∈ Saρϕ (S - the
class of all functions analytic and univalent in U with normalisation f(0) = f ′(0)−1 = 0),
from Growth theorem, from the estimation

(23) Re
{
L2

(
log

g(z)− g(ζ)
z − ζ

)}
≤ −|L|2(log(1− ζz)), for g ∈ S [2, p. 116],

and from the integral representation of the functional from H ′(U). Suppose that λ 6= 0.
The class Saρϕ is a normal family. Using the fact that f−a

f ′(0) ∈ S if f ∈ Saρϕ we can in a
similar manner as in [4] prove that the functional (13) attains its maximal value at some
f ∈ Saρϕ.

In the case λ = 0 the inequality (22) also holds but we do not know if there exists
in Saρϕ a function for which occurs the equality. However we can prove that this result
cannot be improved.
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Theorem 6. Each function f ∈ Saρϕ satisfies the inequality

Re

{
L2

(
log

f(z)− f(ζ)
z − ζ

)
− |L|2

(
log(f(z)− eiϕf(ζ)− iρei

ϕ
2 )
)}
≤(24)

≤ −|L|2(log(1− ζz)).

This inequality cannot be improved.

P r o o f. Applying to (24) the following facts:
(i) there exists a function f̂ ∈ S for which in (23) occurs equality,
(ii) each function from the class S can be approximated by bounded functions from S,
(iii) if g ∈ S is a bounded function then for sufficiently small r > 0 the function a+ rg ∈
Saρϕ,
it is easy to see that the left-hand side of (24) can be arbitrarily near the right-hand side,
so this result is best possible.

5. Examples. To illustrate the theorems given above, consider two special functionals
from H ′(U). At first let the functional L have the form

L(g) =
N∑
m=1

λm [g(zm)− g(0)] , where g ∈ H(U), z1, . . . , zN ∈ U, λ1, . . . , λN ∈ C.

Then (22) leads to the following inequality :

Re

{(
λ−

N∑
m=1

λm

)2

log
f ′(0)
a− b

+ 2λ
N∑
m=1

λm log
f(zm)− a

zm(f(zm)− b)
+

+
N∑

n,m=1

λnλm log
f(zm)− f(zn)

zm − zn
znzm(a− b)

(f(zn)− a)(f(zm)− a)
−

−
N∑

n,m=1

λnλm log
f(zn)− eiϕf(zm)− iρei

ϕ
2

a− eiϕf(zm)− iρeiϕ2
· a− b
f(zn)− b

}
≤

≤ −
N∑

n,m=1

λnλm log(1− znzm),

where for f(zm)−f(zn)
zm−zn we take f ′(zm) in the case n = m.

Putting N = 1, λ = λ1 = 1, z1 = z in the above inequality we obtain the following
estimation:

|f ′(z)|∣∣∣f(z)− eiϕf(z)− iρeiϕ2
∣∣∣ ≤ 1

1− |z|2

and for z = 0 we have
|f ′(0)| ≤ |a− b|.

Considering the functional

L(g) =
N∑
m=1

λmg
′(zm), where g ∈ H(U), z1, . . . , zN ∈ U, λ1, . . . , λN ∈ C.
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and applying it to the inequality (22) we get

Re

{
λ2 log

f ′(0)
a− b

+ 2λ
N∑
m=1

λm

(
(a− b)f ′(zm)

(f(zm)− a)(f(zm)− b)
− 1
zm

)
+

+
N∑

n,m=1

λnλm

(
f ′(zm)f ′(zn)

(f(zm)− f(zn))2
− 1

(zm − zn)2

)
−

−
N∑

n,m=1

λnλm
eiϕf ′(zm)f ′(zn)

(f(zn)− eiϕf(zm)− iρeiϕ2 )2

}
≤

≤
N∑

n,m=1

λnλm
1

(1− znzm)2
.

Because lim
n→m

f ′(zm)f ′(zn)
(f(zm)− f(zn))2

=
1
6
{f(zm), zm}, where {f(zm), zm} denotes the

Schwarzian derivative, then in the case N = 1, z1 = z we have

Re

{
λ2 log

f ′(0)
a− b

+ 2λλ1

(
(a− b)f ′(z)

(f(z)− a)(f(z)− b)
− 1
z

)
+

1
6
λ2

1{f(z), z}−

−|λ1|2
eiϕ|f ′(z)|2

(f(z)− eiϕf(z)− iρeiϕ2 )2

}
≤ |λ1|2

1
(1− |z|2)2

.

For λ = 0 we get the following estimation:

|{f(z), z}| ≤ 6
(1− |z|2)2

− 6|f ′(z)|2∣∣∣f(z)− eiϕf(z)− iρeiϕ2
∣∣∣2 .
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