GENERALIZATIONS OF COMPLEX ANALYSIS BANACH CENTER PUBLICATIONS, VOLUME 37 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

A VARIATIONAL METHOD FOR UNIVALENT FUNCTIONS CONNECTED WITH ANTIGRAPHY

JANINA MACURA

Institute of Mathematics, Silesian Technical University Kaszubska 23, PL-44-100 Gliwice, Poland

Abstract. The paper is devoted to a class of functions analytic and univalent in the unit disk that are connected with an antigraphy $e^{i\varphi}\overline{w} + i\rho e^{i\frac{\varphi}{2}}$. Variational formulas and Grunsky inequalities are derived. As an application there are given some estimations in the considered class of functions.

1. Introduction. H(U) denotes, as usual, the space of all functions analytic in the unit disk $U = \{z : |z| < 1\}$. Let $\rho \in \mathbb{R}$, $\varphi \in [0, 2\pi]$, $a \in \mathbb{C}$, and $\rho \neq 2 \text{Im}\{e^{-i\frac{\varphi}{2}}a\}$. $S_{a\rho\varphi}$ denotes the class of all functions that are analytic, univalent in the unit disk U and satisfy the conditions

(1)
$$f(0) = a \quad \text{and} \quad f(z_1) \neq e^{i\varphi}\overline{f(z_2)} + i\rho e^{i\frac{\varphi}{2}}, \quad z_1, z_2 \in U.$$

The class $S_{a\rho\varphi}$ is, in some sense, similar to the classes of Gel'fer, Bieberbach-Eilenberg, Grunsky-Shah and bounded functions. We can write the definitions of these classes in a common form as follows:

Let J be a class of all functions that are analytic and univalent in U and satisfy the conditions

$$f(0) = a$$
 and $w \in f(U) \Longrightarrow \omega(w) \notin f(U)$.

For a = 1 and $\omega(w) = -w J$ is the class of Gel'fer functions, for a = 0 and $\omega(w) = \frac{1}{w}$ - the class of Bieberbach-Eilenberg functions, for a = 0 and $\omega(w) = -\frac{1}{\overline{w}}$ - the class of Grunsky-Shah functions, for a = 0 and $\omega(w) = \frac{1}{\overline{w}}$ - the class of bounded functions, and finally for $\omega(w) = e^{i\varphi}\overline{w} + i\rho e^{i\frac{\varphi}{2}}$ - the class $S_{a\rho\varphi}$. Each of these homographies and antigraphies has the property that the inverse function is the same.

The class $S_{10\pi}$ coincides with the class of univalent functions with positive real part.

2. Variational formulas. Let $f \in S_{a\rho\varphi}$ and D = f(U). It is clear that the domain

1991 *Mathematics Subject Classification*: Primary 30 C 70; Secondary 30 C45. The paper is in final form and no version of it will be published elsewhere.

[21]

 ${\cal D}$ has the property

(2)
$$w \in D \Longrightarrow e^{i\varphi}\overline{w} + i\rho e^{i\frac{\varphi}{2}} \notin D$$

Using the Golusin's method we can derive the variational formula for the function f.

THEOREM 1. Let $f \in S_{a\rho\varphi}$, $z_0 \in U$. Then for sufficiently small ε there exists a function $f^* \in S_{a\rho\varphi}$ such that

$$(3) \quad f^*(z) = f(z) + \varepsilon \left\{ e^{i\alpha} \left[\frac{(f(z) - a)(f(z) - b)}{f(z) - f(z_0)} - \frac{(f(z_0) - a)(f(z_0) - b)}{z_0 f'^2(z_0)} \frac{zf'(z)}{z - z_0} \right] + e^{-i\alpha} \left[\frac{(f(z) - a)(f(z) - b)}{f(z) - e^{i\varphi} \overline{f(z_0)} - i\rho e^{i\frac{\varphi}{2}}} + \frac{\overline{(f(z_0) - a)(f(z_0) - b)}}{\overline{z_0} f'^2(z_0)} \frac{z^2 f'(z)}{1 - \overline{z_0} z} \right] \right\} + o(\varepsilon)$$

where $\frac{o(\varepsilon)}{\varepsilon} \to 0$, while $\varepsilon \to 0$, uniformly on compact subsets of U.

Proof. In order to find the variation of the function f we shall at first define such a variation w^* of the boundary ∂D that does not violate the property (2) for the domain D^* bounded by $w^*(\partial D)$. Define the function

(4)
$$w^*(w) = w + \varepsilon v(w),$$

where $\varepsilon > 0$, v(w) is a function analytic in the closure of such a domain Δ that contains ∂D and satisfies the condition

$$w \in \Delta \Longrightarrow e^{i\varphi}\overline{w} + i\rho e^{i\frac{\varphi}{2}} \in \Delta$$

and having the property

(5)
$$v(e^{i\varphi}\overline{w}+i\rho e^{i\frac{\varphi}{2}})=e^{i\varphi}\overline{v(w)}.$$

Following [3] one can prove that the function (4) is univalent for sufficiently small ε and $w^*(\partial D)$ is a boundary of a domain D^* having the property (2).

Let $P = \{z : r \le |z| < 1\}, r \in (0, 1)$ be such a ring that $f(P) \subset \Delta$. The function

$$F(z,\varepsilon) = w^*(f(z)) - a, \ z \in P$$

satisfies the assumptions of Golusin theorem [2] for the function f(z) - a. So the function f^* such that $f^*(U) = D^*$ and $f^*(0) = a$ has the form

(6)
$$f^*(z) = f(z) + \varepsilon \left\{ v(f(z)) - zf'(z)S(z) + zf'(z)\overline{S\left(\frac{1}{\overline{z}}\right)} \right\} + o(\varepsilon),$$

where S(z) is a principal part of the development into a Laurent series of the function $\frac{v(f(z))}{zf'(z)}$ and $\frac{o(\varepsilon)}{\varepsilon} \to 0$, while $\varepsilon \to 0$, uniformly on compact subsets of U. The function f^* belongs to the class $S_{a\rho\varphi}$ and is a variation of the function f.

Now, we define the function v(w) as follows

$$v(w) = (w-a)(w-b)\left(\frac{e^{i\alpha}}{w-w_0} + \frac{e^{-i\alpha}}{w-e^{i\varphi}\overline{w_0} - i\rho e^{i\frac{\varphi}{2}}}\right),$$

where $w_0 = f(z_0), z_0 \in U, b = e^{i\varphi}\overline{a} + i\rho e^{i\frac{\varphi}{2}}, \alpha$ is an arbitrary real number. It is clear that v(w) satisfies the condition (5). The variation (6) in this case takes the form (3).

We can also obtain other variational formulas. If $w_0 \notin \overline{D}$ and $e^{i\varphi}\overline{w_0} + i\rho e^{i\frac{\varphi}{2}} \notin \overline{D}$ then we have

(7)
$$f^*(z) = f(z) + \varepsilon \left\{ e^{i\alpha} \frac{(f(z) - a)(f(z) - b)}{f(z) - w_0} + e^{-i\alpha} \frac{(f(z) - a)(f(z) - b)}{f(z) - e^{i\varphi}\overline{w_0} - i\rho e^{i\frac{\varphi}{2}}} \right\} + o(\varepsilon),$$

where $\frac{o(\varepsilon)}{\varepsilon} \to 0$, while $\varepsilon \to 0$, uniformly on compact subsets of U.

Compositions of a function $f \in S_{a\rho\varphi}$ with univalent functions g such that g(0) = 0and $g(U) \subset U$ give other variations of f, for example:

(8)
$$f^*(z) = f(e^{i\varepsilon}z) = f(z) + i\varepsilon z f'(z) + o(\varepsilon), \ \varepsilon \in \mathbb{R}$$

and

(9)
$$f^*(z) = f(k_{\alpha}^{-1}((1-\varepsilon)k_{\alpha}(z))) = f(z) - \varepsilon z f'(z) \frac{e^{i\alpha} + z}{e^{i\alpha} - z} + o(\varepsilon),$$

where $k_{\alpha}(z) = \frac{z}{(1+e^{-i\alpha}z)^2}$, $\alpha \in \mathbb{R}$, $\varepsilon > 0$, and where $\frac{o(\varepsilon)}{\varepsilon} \to 0$, while $\varepsilon \to 0$, uniformly on compact subsets of U.

3. Schiffer equation. $S_{a\rho\varphi}$ is a normal family of functions. It becomes compact if we add the constant function g = a. The family of functions close to the function $f \in S_{a\rho\varphi}$ that we have just constructed is rich enough to consider the maximal problem in the class $S_{a\rho\varphi}$. Let ψ be a complex, continuous functional defined over $S_{a\rho\varphi}$. Suppose that $\operatorname{Re}\{\psi\}$ has a Fréchet derivative at the point $f \in S_{a\rho\varphi}$. Then there exists a functional $L_f \in H'(U)$ such that

(10)
$$\operatorname{Re}\{\psi(f^*)\} = \operatorname{Re}\{\psi(f)\} + \varepsilon \operatorname{Re}\{L_f(h)\} + o(\varepsilon),$$

for every function

$$f^*(z) = f(z) + \varepsilon h(z) + o(\varepsilon),$$

such that $h \in H(U)$, $\frac{o(\varepsilon)}{\varepsilon} \to 0$, while $\varepsilon \to 0$, uniformly on compact subsets of U.

THEOREM 2. Let ψ be a complex functional defined and continuous over the class $S_{a\rho\varphi}$ and let $\operatorname{Re}\{\psi\}$ have a Fréchet derivative L_f at the point $f \in S_{a\rho\varphi}$. If $\operatorname{Re}\{\psi\}$ attains its maximal value in the class $S_{a\rho\varphi}$ at f then f satisfies the equation

(11)
$$\frac{(\zeta f'(\zeta))^2}{(f(\zeta) - a)(f(\zeta) - b)} A(f(\zeta)) = B(\zeta),$$

where A(w) and B(z) are given by the formulas:

(12)
$$A(w) = L_f\left(\frac{(f(z)-a)(f(z)-b)}{f(z)-w}\right) + L_f\left(\frac{(f(z)-a)(f(z)-b)}{f(z)-e^{i\varphi}\overline{w}-i\rho e^{i\frac{\varphi}{2}}}\right),$$
$$B(\zeta) = L_f\left(\frac{\zeta z f'(z)}{z-\zeta}\right) + \overline{L_f(z f'(z))} - \overline{L_f\left(\frac{z f'(z)}{1-\overline{\zeta}z}\right)},$$

 $r < |\zeta| < 1, r \in (0,1)$. The function $B(\zeta)$ is an analytic function in the ring $P_r = \{\zeta : r < |\zeta| < \frac{1}{r}\}$, is real and non-positive on ∂U .

Proof. If the functional $\operatorname{Re}\{\psi\}$ attains at $f \in S_{a\rho\varphi}$ its maximal value and f^* has the form (3) then (10) leads to

$$\frac{(z_0 f'(z_0))^2}{(f(z_0) - a)(f(z_0) - b)} A(f(z_0)) = B(z_0),$$

where A(w) and $B(\zeta)$ are given by the formulas (12). Combining (8) with (10) and (9) with (10) and using the fact that f is maximal we conclude that $B(\zeta)$ is real and non-positive on ∂U , which completes the proof.

As a consequence of applying the variational formula (7) to (10) we have the following theorem:

THEOREM 3. Let ψ and f satisfy the assumptions of the previous theorem, A be such a function meromorphic in \mathbb{C} that $A \neq 0$. If w_0 and $e^{i\varphi}\overline{w_0} + i\rho e^{i\frac{\varphi}{2}}$ are not in f(U) then at least one of these points is on the boundary $\partial f(U)$. Particularly the set $\mathbb{C} - (f(U) \cup h(U))$, where $h(z) = e^{i\varphi}\overline{f(z)} + i\rho e^{i\frac{\varphi}{2}}$ has no interior points.

4. Grunsky inequalities. Defining the functional ψ in a special way we can obtain the complete square on the left-hand side of (11) and then find a solution of this equation in an implicit form. Such a functional leads also to Grunsky inequalities and then to some simple estimations in the class $S_{a\rho\varphi}$. Let

(13)
$$\psi(f) = \lambda^2 \log \frac{f'(0)}{a-b} + 2\lambda L \left(\log \frac{f(z)-a}{z(f(z)-b)} \right) + L^2 \left(\log \frac{f(z)-f(\zeta)}{z-\zeta} \right) - |L|^2 \left(\log(f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}) \right) + L^2 \left(\log \frac{f(z)-f(\zeta)}{z-\zeta} \right) + L^2 \left(\log(f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}) \right) + L^2 \left(\log(f(z)-e^{i\frac{\varphi}{2}}) \right) + L^2 \left(\log(f(z)$$

where L is a functional from H'(U) such that

 $L(1) = 0, L^2(\varphi(z,\zeta)) = L(L(\varphi(z,\zeta))), |L|^2(\varphi(z,\overline{\zeta})) = L(\overline{L(\varphi(z,\overline{\zeta}))})$ for $\varphi(z,\zeta)$ analytic in $U \times U, \lambda$ is an arbitrary real number.

The Fréchet derivative of $\operatorname{Re}\{\psi\}$ exists for every $f \in S_{a\rho\varphi}$ and has the form

(14)
$$\operatorname{Re}\{L_{f}(h)\} = \operatorname{Re}\left\{\lambda^{2}\frac{h'(0)}{f'(0)} + 2\lambda L\left(\frac{(a-b)h(z)}{(f(z)-a)(f(z)-b)}\right) + L^{2}\left(\frac{h(z)-h(\zeta)}{f(z)-f(\zeta)}\right) - \frac{1}{|L|^{2}\left(\frac{h(z)}{f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}}\right)} + |L|^{2}\left(\frac{e^{i\varphi}\overline{h(\zeta)}}{f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}}\right)\right\}.$$

THEOREM 4. If the functional (13) attains its maximal value at the point $f \in S_{a\rho\varphi}$ then f satisfies the equation

(15)
$$\lambda \log \frac{f(\zeta) - a}{\zeta(f(z) - a)} + L\left(\log \frac{f(z) - f(\zeta)}{z - \zeta}\right) - \overline{L\left(\log(f(z) - e^{i\varphi}\overline{f(\zeta)} - i\rho e^{i\frac{\varphi}{2}}\right)\right)} + \frac{1}{L\left(\log(1 - \overline{\zeta}z)\right)} = \lambda \log \frac{f'(0)}{a - b} + L\left(\log \frac{f(z) - a}{z}\right) - \overline{L\left(\log(f(z) - b)\right)}.$$

The maximal value $\operatorname{Re}\{\psi(f)\} = -|L|^2(\log(1-\overline{\zeta}z)).$

Proof. Let $f \in S_{a\rho\varphi}$ be a maximal function for the functional $\operatorname{Re}\{\psi\}$. According to the theorem 2 the function f satisfies the equation (11). In our case this equation has

the form

(16)
$$(\zeta f'(\zeta))^2 \left(\lambda \frac{a-b}{(f(\zeta)-a)(f(\zeta)-b)} - L\left(\frac{1}{f(z)-f(\zeta)}\right) + e^{-i\varphi} L\left(\frac{1}{f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}}\right) \right)^2 = -B(\zeta).$$

From the Caccioppoli-Kőthe integral representation of the functional from H'(U) [1] and from the fact that $B(\zeta)$ is non-positive on ∂U and from (16), following [4], we conclude that the function

$$C(\zeta) = \lambda \frac{(a-b)\zeta f'(\zeta)}{(f(\zeta)-a)(f(\zeta)-b)} - L\left(\frac{\zeta f'(\zeta)}{f(z)-f(\zeta)} - \frac{\zeta}{z-\zeta}\right) + \frac{1}{L\left(\frac{e^{i\varphi}\overline{\zeta f'(\zeta)}}{f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}} - \frac{1}{1-\overline{\zeta}z}\right)}$$

is analytic in U and has such a continuous continuation to \overline{U} that is real on ∂U . Furthermore, we notice that it is constant and this constant is equal to λ and we have

(17)
$$\zeta f'(\zeta) \left(\lambda \frac{a-b}{(f(\zeta)-a)(f(\zeta)-b)} - L\left(\frac{1}{f(z)-f(\zeta)}\right) + e^{-i\varphi} \overline{L\left(\frac{1}{f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}}\right)} \right) = \lambda - L\left(\frac{\zeta}{z-\zeta}\right) + \overline{L\left(\frac{1}{1-\overline{\zeta}z}\right)}.$$
Now it is easy to varify that

Now it is easy to verify that

(18)
$$\frac{(a-b)\zeta f'(\zeta)}{(f(\zeta)-a)(f(\zeta)-b)} = \zeta \frac{\partial}{\partial \zeta} \log \frac{f(\zeta)-a}{\zeta(f(\zeta)-b)},$$
$$\frac{\zeta f'(\zeta)}{f(z)-f(\zeta)} - \frac{\zeta}{z-\zeta} = -\zeta \frac{\partial}{\partial \zeta} \log \frac{f(z)-f(\zeta)}{z-\zeta},$$
$$\frac{e^{i\varphi}\overline{\zeta f'(\zeta)}}{f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}} = -\overline{\zeta} \frac{\partial}{\partial \overline{\zeta}} \log(f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}}),$$
$$\frac{1}{1-\overline{\zeta}z} = 1-\overline{\zeta} \frac{\partial}{\partial \overline{\zeta}} \log(1-\overline{\zeta}z).$$

Applying (18) to (17) we get

(19)
$$\lambda \log \frac{f(\zeta) - a}{\zeta(f(\zeta) - b)} + L\left(\log \frac{f(z) - f(\zeta)}{z - \zeta}\right) - \overline{L\left(\log(f(z) - e^{i\varphi}\overline{f(\zeta)} - i\rho e^{i\frac{\varphi}{2}})\right)} + \frac{1}{L\left(\log(1 - \overline{\zeta}z)\right)} = c,$$

where

$$c = \lambda \log \frac{f'(0)}{a-b} + L\left(\log \frac{f(z)-a}{z}\right) - \overline{L(\log(f(z)-b))}.$$

We shall prove that $\operatorname{Re}\{c\}=0$. Notice at first that it follows from the theorem 3 that the boundaries $\partial f(U)$ and $\partial h(U)$ have a common point ω . Then there exist two sequences (ζ_n^1) and (ζ_n^2) of points from U such that $f(\zeta_n^1) \to \omega$ and $h(\zeta_n^2) \to \omega$. Putting correspondingly J. MACURA

 ζ_n^1 and ζ_n^2 into (19) and passing to the limit we conclude that $\operatorname{Re}\{c\} = 0$ that is

(20)
$$\operatorname{Re}\left\{\lambda\log\frac{f'(0)}{a-b} + L\left(\log\frac{f(z)-a}{z}\right) - \overline{L(\log(f(z)-b))}\right\} = 0.$$

(19) leads also to another equation

(21)
$$\lambda L\left(\log\frac{f(\zeta)-a}{\zeta(f(\zeta)-b)}\right) + L^2\left(\log\frac{f(z)-f(\zeta)}{z-\zeta}\right) - |L|^2\left(\log(f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}})\right) + |L|^2(\log(1-\overline{\zeta}z)) = 0.$$

Finally adding (21) and (20) multiplied by λ , we obtain

$$\operatorname{Re}\left\{\lambda^{2}\log\frac{f'(0)}{a-b} + 2\lambda L\left(\log\frac{f(z)-a}{z(f(z)-b)}\right) + L^{2}\left(\log\frac{f(z)-f(\zeta)}{z-\zeta}\right) - |L|^{2}\left(\log(f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}})\right)\right\} = -|L|^{2}(\log(1-\overline{\zeta}z)),$$

which completes the proof. \blacksquare

The next theorem is not a simple consequence of the previous one because the class $S_{a\rho\varphi}$ is not compact.

THEOREM 5. If $\lambda \in \mathbb{R} - \{0\}$ then every $f \in S_{a\rho\varphi}$ satisfies the inequality

(22)
$$\operatorname{Re}\left\{\lambda^{2}\log\frac{f'(0)}{a-b} + 2\lambda L\left(\log\frac{f(z)-a}{z(f(z)-b)}\right) + L^{2}\left(\log\frac{f(z)-f(\zeta)}{z-\zeta}\right) - |L|^{2}\left(\log(f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}})\right)\right\} \leq -|L|^{2}(\log(1-\overline{\zeta}z)).$$

The equality occurs for some function $g \in S_{a\rho\varphi}$.

Proof. We shall prove that there exists a maximal function $f \in S_{a\rho\varphi}$ for the functional ψ given by the formula (13). This functional is continuous. It is also bounded from above. It follows from the fact that |f'(0)| is bounded, and $\frac{f-a}{f'(0)} \in S$ if $f \in S_{a\rho\varphi}$ (S - the class of all functions analytic and univalent in U with normalisation f(0) = f'(0) - 1 = 0), from Growth theorem, from the estimation

(23)
$$\operatorname{Re}\left\{L^{2}\left(\log\frac{g(z)-g(\zeta)}{z-\zeta}\right)\right\} \leq -|L|^{2}(\log(1-\overline{\zeta}z)), \text{ for } g \in S \ [2, p. 116],$$

and from the integral representation of the functional from H'(U). Suppose that $\lambda \neq 0$. The class $S_{a\rho\varphi}$ is a normal family. Using the fact that $\frac{f-a}{f'(0)} \in S$ if $f \in S_{a\rho\varphi}$ we can in a similar manner as in [4] prove that the functional (13) attains its maximal value at some $f \in S_{a\rho\varphi}$.

In the case $\lambda = 0$ the inequality (22) also holds but we do not know if there exists in $S_{a\rho\varphi}$ a function for which occurs the equality. However we can prove that this result cannot be improved. THEOREM 6. Each function $f \in S_{a\rho\varphi}$ satisfies the inequality

(24)
$$\operatorname{Re}\left\{L^{2}\left(\log\frac{f(z)-f(\zeta)}{z-\zeta}\right)-|L|^{2}\left(\log(f(z)-e^{i\varphi}\overline{f(\zeta)}-i\rho e^{i\frac{\varphi}{2}})\right)\right\}\leq \\\leq -|L|^{2}(\log(1-\overline{\zeta}z)).$$

This inequality cannot be improved.

Proof. Applying to (24) the following facts:

(i) there exists a function $\hat{f} \in S$ for which in (23) occurs equality,

(ii) each function from the class S can be approximated by bounded functions from S,

(iii) if $g \in S$ is a bounded function then for sufficiently small r > 0 the function $a + rg \in$ $S_{a\rho\varphi},$

it is easy to see that the left-hand side of (24) can be arbitrarily near the right-hand side, so this result is best possible.

5. Examples. To illustrate the theorems given above, consider two special functionals from H'(U). At first let the functional L have the form

$$L(g) = \sum_{m=1}^{N} \lambda_m \left[g(z_m) - g(0) \right], \text{ where } g \in H(U), \ z_1, \dots, z_N \in U, \lambda_1, \dots, \lambda_N \in \mathbb{C}.$$

Then (22) leads to the following inequality :

$$\operatorname{Re}\left\{\left(\lambda - \sum_{m=1}^{N} \lambda_{m}\right)^{2} \log \frac{f'(0)}{a-b} + 2\lambda \sum_{m=1}^{N} \lambda_{m} \log \frac{f(z_{m}) - a}{z_{m}(f(z_{m}) - b)} + \right. \\ \left. + \sum_{n,m=1}^{N} \lambda_{n} \lambda_{m} \log \frac{f(z_{m}) - f(z_{n})}{z_{m} - z_{n}} \frac{z_{n} z_{m} (a-b)}{(f(z_{n}) - a)(f(z_{m}) - a)} - \right. \\ \left. - \sum_{n,m=1}^{N} \lambda_{n} \overline{\lambda}_{m} \log \frac{f(z_{n}) - e^{i\varphi} \overline{f(z_{m})} - i\rho e^{i\frac{\varphi}{2}}}{a - e^{i\varphi} \overline{f(z_{m})} - i\rho e^{i\frac{\varphi}{2}}} \cdot \frac{a-b}{f(z_{n}) - b} \right\} \leq \\ \left. \leq - \sum_{n,m=1}^{N} \lambda_{n} \overline{\lambda}_{m} \log(1 - z_{n} \overline{z}_{m}), \right.$$

where for $\frac{f(z_m)-f(z_n)}{z_m-z_n}$ we take $f'(z_m)$ in the case n = m. Putting N = 1, $\lambda = \lambda_1 = 1$, $z_1 = z$ in the above inequality we obtain the following estimation:

$$\frac{|f'(z)|}{\left|f(z) - e^{i\varphi}\overline{f(z)} - i\rho e^{i\frac{\varphi}{2}}\right|} \le \frac{1}{1 - |z|^2}$$

and for z = 0 we have

$$|f'(0)| \le |a-b|$$

Considering the functional

M

$$L(g) = \sum_{m=1}^{N} \lambda_m g'(z_m), \text{ where } g \in H(U), \quad z_1, \dots, z_N \in U, \lambda_1, \dots, \lambda_N \in \mathbb{C}$$

J. MACURA

and applying it to the inequality (22) we get

$$\operatorname{Re}\left\{\lambda^{2}\log\frac{f'(0)}{a-b} + 2\lambda\sum_{m=1}^{N}\lambda_{m}\left(\frac{(a-b)f'(z_{m})}{(f(z_{m})-a)(f(z_{m})-b)} - \frac{1}{z_{m}}\right) + \sum_{n,m=1}^{N}\lambda_{n}\lambda_{m}\left(\frac{f'(z_{m})f'(z_{n})}{(f(z_{m})-f(z_{n}))^{2}} - \frac{1}{(z_{m}-z_{n})^{2}}\right) - \sum_{n,m=1}^{N}\lambda_{n}\overline{\lambda}_{m}\frac{e^{i\varphi}\overline{f'(z_{m})}f'(z_{n})}{(f(z_{n})-e^{i\varphi}\overline{f(z_{m})}-i\rho e^{i\frac{\varphi}{2}})^{2}}\right\} \leq \\ \leq \sum_{n,m=1}^{N}\lambda_{n}\overline{\lambda}_{m}\frac{1}{(1-z_{n}\overline{z_{m}})^{2}}.$$

Because $\lim_{n \to m} \frac{f'(z_m)f'(z_n)}{(f(z_m) - f(z_n))^2} = \frac{1}{6} \{f(z_m), z_m\}$, where $\{f(z_m), z_m\}$ denotes the Schwarzian derivative, then in the case $N = 1, z_1 = z$ we have

$$\operatorname{Re}\left\{\lambda^{2}\log\frac{f'(0)}{a-b} + 2\lambda\lambda_{1}\left(\frac{(a-b)f'(z)}{(f(z)-a)(f(z)-b)} - \frac{1}{z}\right) + \frac{1}{6}\lambda_{1}^{2}\{f(z),z\} - |\lambda_{1}|^{2}\frac{e^{i\varphi}|f'(z)|^{2}}{(f(z)-e^{i\varphi}\overline{f(z)}-i\rho e^{i\frac{\varphi}{2}})^{2}}\right\} \leq |\lambda_{1}|^{2}\frac{1}{(1-|z|^{2})^{2}}.$$

For $\lambda = 0$ we get the following estimation:

$$|\{f(z), z\}| \le \frac{6}{(1-|z|^2)^2} - \frac{6|f'(z)|^2}{\left|f(z) - e^{i\varphi}\overline{f(z)} - i\rho e^{i\frac{\varphi}{2}}\right|^2}.$$

References

- R. Caccioppoli, Sui funzionali lineari nel campo delle funzioni analitiche, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 13 (1931), 263–266.
- [2] G. M. Goluzin, Geometričeskaya teorya funkcii kompleksnogo peremennogo, Moskwa 1966, 68–109, 157–158.
- [3] H. Jondro, Sur une méthode variationnelle dans la famille des fonctions de Grunsky-Shah, Bull. Acad. Polon. Sci. 27 (1979), 541–547.
- [4] H. Jondro, Les inégalités du type de Grunsky pour les fonctions de la classe K, Ann. Polon. Math. 45 (1985), 43-53.
- [5] G. Schober, Univalent functions, Selected Topics, Lecture Notes in Mathematics 478, Springer-Verlag 1975.