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Abstract. Integral equations of the form (2) below, dual to (1) are studied from the point
of view of finding their effective solutions, the results being given in Section 1. The results are
applied in Section 2 for solving nonlocal problems for the polyharmonic functions in the half
plane.

Introduction. In [5a] solutions of certain nonlocal problems for elliptic differential
equations are reduced to the classical Wiener-Hopf integral equation and dual integral
equations of convolution type. Effective solutions of such equations are well known [3],
[7]. These equations are generalized by many investigators. A highly detailed survey of
them can be found in [3], where some generalized integral equations are solved effectively
and some of them are investigated in the sense of solvability. In [5b] the nonlocal problems
for elliptic differential equations are reduced to integral equations of the form

(1) ϕ(x) +
∫ ∞

0

[k(x− t) +mk(x+ t)]ϕ(t)dt = f(x), x > 0,

and its solutions are constructed in quadratures when m2 = 1, of course for m = 0 too,
as the classical Wiener-Hopf equation. The general form of equation (1) is considered in
[2], [6].

Dual integral equations

ϕ(x) +
∫

R
[k1(x− t) + p1(x+ t)]ϕ(t)dt = f1(x), x > 0,(2)

ϕ(x) +
∫

R
[k2(x− t) + p2(x+ t)]ϕ(t)dt = f2(x), x < 0,
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are written in [1], but cases of their effective solutions are not indicated there. The case
k1 = k2, p1 = p2 is the simplest and using Fourier integral transform their solution can
be written immediately [7]. It is interesting to note that in our applications just such
equations are obtained when the solutions are represented explicitly.

1. Dual integral equations. Let L2H be the class of square integrable and Holder-
continuous functions on the real axis R. The class of functions, whose Fourier integral
transforms on R belong to the class L2H, will be denoted by FL2H.Some nonlocal
problems for poliharmonic functions in the halfplane considered below are reduced to the
dual integral equations of the form

ϕ(x) +
1√
2π

∫
R
ϕ(t)[k1(x− t) +mk1(x+ t)]dt = f1(x), x > 0,(3)

ϕ(x) +
1√
2π

∫
R
ϕ(t)[k2(x− t) +mk2(x+ t)]dt = f2(x), x < 0,

where m 6= 0 is a real constant, ϕ(x) is an unknown function and k1, k2, f1, f2 are given
functions belonging to FL2H. When m = 0 the solution of (3) is represented effectively
in [3] using the Fourier integral transform and the Riemann boundary value problem for
one piecewise holomorphic function of one complex variable. As above was noted, in the
case k1 = k2 equations (3) are the simplest ones. Thus we assume later on that

(4) m 6= 0, k1 6= k2.

We shall see in the sequel that for m2 = 1 the equations (3) can be solved effectevely.
This case is just needed for our applications. Solution of (3). Let f̂(x) be the Fourier
integral transform of f(x) ∈ FL2H:

(5) f̂(x) ≡ Fx[f(t)] =
1√
2π

∫
R
f(t)eixtdt, x ∈ R.

As is well known, for the convolution f ? k is true the equalities:

Fx[f ? k] = f̂(x)k̂(x)(6)

Fx[
1√
2π

∫
R
k(x+ t)f(t)dt] = k̂(x)f̂(−x)

equations (3) rewrite as

(7) ϕ(x) +
1√
2π

∫
R
ϕ(t)[k1(x− t) +mk1(x+ t)]dt = f1(x) + f−(x)

ϕ(x) +
1√
2π

∫
R
ϕ(t)[k2(x− t) +mk2(x+ t)]dt = f2(x) + f+(x), x ∈ R,

where f+(x), f−(x) are the additional unknown rightsided and leftsided functions, re-
spectively: f+(x) = 0 for x < 0 and f+(x) 6= 0 for x > 0; f−(x) is defined vice versa. It
is easy to see (for example, [3]) that

(8) Fx[f+(t)] = F+(x), Fx[f−(t)] = F−(x), x ∈ R
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are the boundary values of some function F (z), (z = x+ iy), holomorphic in the upper
halfplane y > 0 and in the lower halfplane y < 0, respectively.

Applying the Fourier integral transform to (7) and take into consideration (6) and
(8), we shall receive the system of equations

[1 + k̂1(x)]ϕ̂(x) +mk̂1(x)ϕ̂(−x) = f̂1(x) + F−(x)(9)

[1 + k̂2(x)]ϕ̂(x) +mk̂2(x)ϕ̂(−x) = f̂2(x) + F+(x). x ∈ R

By force of the conditions (4)

(10) D(x) = m[k̂2(x)− k̂1(x)] 6= 0.

Thus, by (9) one can define uniquely ϕ̂(x) and ϕ̂(−x).
Replace −x by x in the expression of ϕ̂(−x) and equate it to ϕ̂(x) defined from (9),

then we shall obtain the boundary condition for piecewise holomorphic function F (z):
m

D(x)
[k̂2(x)F−(x)− k̂1(x)F+(x)] =(11)

=
1

D(−x)
[(1 + k̂1(−x))F+(−x)− (1 + k̂2(−x))F−(−x)] + g1(x), x ∈ R,

where g1(x) is the known function defined by f̂1 and f̂2.
Consider two piecewise holomorphic functions:

(12) F1(z) =
{
F (z), y > 0,
F (−z), y < 0

and

(13) F2(z) =
{
F (−z), y > 0,
F (z), y < 0.

Thus

F+
1 (x) = F+(x), F−1 (x) = F+(−x), F+

2 (x) = F−(−x), F−2 (x) = F−(x).

Then (11) and the equality, obtained from (11), where x is replaced by −x, can be written
in the form

mk̂1(x)
D(x)

F+
1 (x)− 1 + k̂2(−x)

D(−x)
F+

2 (x) =(14)

−1 + k̂1(−x)
D(−x)

F−1 (x) + +
mk̂2(x)
D(x)

F−2 (x)− g1(x)

1 + k̂1(x)
D(x)

F+
1 (x)− mk̂2(−x)

D(−x)
F−2 (x) = −mk̂1(−x)

D(−x)
F−1 (x)+

+
1 + k̂2(x)
D(x)

F−2 (x)− g1(−x), x ∈ R.

Thus, we have the Riemann problem for two piecewise holomorphic functions F1(z) and
F2(z). This system can not in general be solved effectively. But fortunately, when m2 = 1
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it can be done so. We shall consider just this case. Let

(15) D1(x) ≡ 1 + k̂1(x) + k̂2(−x)
D(x)D(−x)

6= 0, x ∈ R.

Then the system (14) can be rewritten in an equivalent form

F+
1 (x) =

1
D1(x)

[
1

D(−x)
F−1 (x) +

1 + k̂2(x) + k̂2(−x)
D(x)D(−x)

F−2 (x)

]
+ d1(x),(16)

F+
2 (x) =

1
D1(x)

[
1 + k̂1(−x) + k̂1(x)

D(x)D(−x)
F−1 (x)− 1

D(x)
F−2 (x)

]
+ d2(x), x ∈ R.

where d1, d2 are given functions.
It is easy to obtain the following Riemann boundary value problem for one piecewise

holomorphic function, taking into consideration (10) and (16): In the case m = 1

(17) F+
1 (x) + F+

2 (x) = G(x)
[
F−1 (x) + F−2 (x)

]
+ g(x), x ∈ R,

and in the case m = −1

(18) F+
1 (x)− F+

2 (x) = G(x)
[
F−1 (x)− F−2 (x)

]
+ g(x), x ∈ R,

where

(19) G(x) =
1 + k̂2(x) + k̂1(−x)

1 + k̂2(−x) + k̂1(x)

Thus G(∞) = G(−∞) = 1 and by force of (15) G(x) 6= 0, x ∈ R
Hence, as is well known [4], by these conditions piecewise holomorphic functions

F1(z) + F2(z) and F1(z) − F2(z) will be defined in quadratures. After this, defining
F2(z) with the help of F1(z) and putting it in the first condition of (16), we shall obtain
again the Riemann boundary value problem for one piecewise function F1(z). Therefore
both functions F1(z) and F2(z) will be defined perfectly. Next, F (z) will be defined by
(12)(13) and ϕ̂(x) by equations (9). Hence, the solution of the dual integral equations (3)
ϕ(x) will be defined by ϕ̂(x) using the inverse Fourier transform formula.

2. Nonlocal problems for polyharmonic functions in the halfplane. Let D be
a halfplane (y > 0) and u(x, y) be a regular solution of the equation

(20) ∆nu = 0, (n ≥ 1).

P r o b l e m 1 . Define in D the function u(x, y) vanishing at infinity by the (n− 1)
conditions on R

(21) vk(x, 0) ≡ ∂ku

∂yk
|y=0= fk(x), k = 0, 1, . . . , l − 1, l + 1, . . . n− 1,

and, besides, the following nonlocal conditions:

vl(x, 0) = vl(x, h1) +mvl(−x, h1) + fl(x), x > 0(22)

vl(x, 0) = vl(x, h2) +mvl(−x, h2) + fl(x), x < 0,
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where h1 6= h2 are positive constants, m2 = 1, l is fixed 0 ≤ l ≤ n− 1, all fk(x) ∈ FL2H.
The case h1 = h2 is very simple and the solution can be written easily.

P r o b l e m 2 . Define in D the function u(x, y) vanishing at infinity by the n − 1
boundary conditions on R

(23) vk(x, 0) ≡ ∆ku |y=0= fk(x), x ∈ R, k = 0, 1, . . . , l − 1, l + 1, . . . , n− 1,

and for vl(x, 0) have the nonlocal conditions of the form (22).

P r o b l e m 3 . Define in D the function u(x, y) vanishing at infinity by the boundary
conditions (21) on R and, besides, the nonlocal conditions:

vl(x, 0) = fl(x), x < 0(24)

vl(x, 0) = vl(x, h) +mvl(−x, h) + fl(x), x > 0,

where h > 0 is given constant, fl(x) is given function too.

Note that the case m = 0 were considered in [5a] and the problem is solved explicitely.
Solution of the problem 1. First of all we need the solution of the classical problem

for (20) in D when on R is given (21) for all k = 0, 1, . . . , n− 1. It can be written in the
form (see, for example, [5a]):

(25) u(x, y) =
yn

(n− 1)!

n−1∑
k=0

(−1)kCk
(n−1)

∂k

∂yk

[
Pfn−1−k

y

]
,

where

(26) Pf(x) =
y

π

∫
R

f(t)dt
(t− x)2 + y2

,

and for u(x, y) to vanish at infinity the given functions should satisfy the following integral
conditions:

(27)
∫

R
tlfk(x)dx = 0, l = 0, 1, . . . , 2(m− 1), k = 1, 2, . . . n− 1.

where k = 2m, or k = 2m − 1. The above problems for any l can be solved by the
same technique. That is why it is sufficient to consider the case l = 0. Thus, all fk(x)
(k = 1, 2, . . . n− 1, x ∈ R are known and u(x, 0) = f0(x) is the unknown function.
If the latter function is defined, the solution of the problem 1 will be represented in the
form (25). By virtue of (22) and (25), for unknown function f0(x) ≡ ϕ(x), x ∈ R one
can easily obtain dual integral equations of the form (3), where

(28) kj(x) =
hn

j (−1)n−1

(n− 1)!π
∂n−1

∂yn−1

[
1

x2 + y2

]
|y=hj

, j = 1, 2;x ∈ R.

It is not difficult to obtain that

(29) Ft[kj(x)] =
hn

j (−1)n−1

(n− 1)!
√

2π
∂n−1

∂yn−1

[
e−|t|y

y

]
|y=hj , j = 1, 2; t ∈ R.

As the latter is an even function with respect to t, the conditions (17) and (18) will have
the simplest form:

(30) F+
1 (t) + F+

2 (t) = F−1 (t) + F−2 (t) + g(t), t ∈ R,
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or

(31) F+
1 (t)− F+

2 (t) = −(F−1 (t)− F−2 (t)) + g(t), t ∈ R,

The piecewise functions F1(z) + F2(z) or F1(z) − F2(z) by these conditions, as is well
known [4], are defined uniquely and written immediatly using Cauchy type integrals.
After this ϕ(x) will be defined uniquely too.

Solution of the problem 2. The solution of the classical problem for (20) in D when on
R is given (2.4) for all k = 0, 1, . . . , n− 1 can be written in the form (see, for example,
[5a])

(32) u(x, y) = Pf0 +
y

π

n−1∑
k=1

1
4k[(k − 1)!]2k

∫
R
fk(t)r2(k−1) ln r2dt

where r2 = (x− t)2 + y2, and for u(x, y) to vanish at infinity the given functions should
satisfy the conditions:

(33)
∫

R
tlfk(t)dt = 0, k = 1, 2, . . . , n− 1, l = 0, 1, . . . , 2(k − 1).

As in (23) we consider l = 0, it means that f0(x) ≡ ϕ(x) is unknown and by virtue of (23),
(32), it will be the solution of dual integral equations (3), where the kernels are defined
by (28) with k = 1. It means that in this case the piecewise functions F1(z) + F2(z) or
F1(z) − F2(z) will be defined again by the conditions (30)(31). Then it is understood
how to define f0(x).

Solution of problem 3. To solve this problem we need to define u(x, 0) for x > 0.
Taking into consideration (2.5), (25) for unknown function u(x, 0) ≡ ϕ(x), x > 0 one
can receive the integral equation of the form (1), where k(x) is defined by (28) with
hj = h. The solution of (1) when m2 = 1 is represented explicitly in [2], [6].

Note that for (20) in D one can consider various classical boundary conditions, for
example, when on R are given the quantities

∂lu

∂yl
|y=0= fl(x), l = 0, 1, . . . , k, ∆pu |y=0= fp(x), p = k + 1, . . . , n− 1

and corresponding nonlocal problems can be posed and solved quite analogous way as
above. For instance, biharmonic in D the function u(x, y) vanishing at infinity with the
conditions

(34)
∂u

∂y
|y=0= f0(x), ∆u |y=0= f1(x), x ∈ R,

will be defined as

(35) u(x, y) =
1

2π

∫
R

[
f0(t) ln[(x− t)2 + y2]− (x− t)f1(t)arctg

y

x− t

]
dt,

where f0, f1 by force of the condition at infinity must satisfy the equalities:

(36)
∫

R
f0(t)dt = 0,

∫
R
f1(t)tldt = 0, l = 1, 2.

Then, with the conditions

(37) u |y=0= f0(x),
∂∆u
∂y
|y=0= f1(x), x ∈ R
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will be defined as

(38) u(x, y) = pf0 +
y

4π

∫
R
f1(t)

[
y ln[(x− t)2 + y2] + 2(x− t)arctg

y

x− t

]
dt

where f1 must satisfy conditions (36) for l = 0, 1, 2.
Now, if in (34) or in (37) the first condition is replaced by the nonlocal conditions

of the form (22), then corresponding representations (35) or (38) will give us for the
unknown function f0(x), x ∈ R dual integral equations of the form (3). As f0(x) will
be defined with the help of f1(x), it is obvious, the condition (36) will be accomplished
if f1(x) must satisfy the corresponding supplementary condition. Thus, many interesting
problems can be solved by above considered way.
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