GENERALIZATIONS OF COMPLEX ANALYSIS BANACH CENTER PUBLICATIONS, VOLUME 37 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

PAIRS OF CLIFFORD ALGEBRAS OF THE HURWITZ TYPE

WIESłAW KRÓLIKOWSKI

Institute of Mathematics, Polish Academy of Sciences, Łódź Branch Narutowicza 56, 90-136 Łódź, Poland

Abstract. For a given Hurwitz pair $[S(Q_S), V(Q_V), \circ]$ the existence of a bilinear mapping $\star : C(Q_S) \times C(Q_V) \to C(Q_V)$ (where $C(Q_S)$ and $C(Q_V)$ denote the Clifford algebras of the quadratic forms Q_S and Q_V , respectively) generated by the Hurwitz multiplication " \circ " is proved and the counterpart of the Hurwitz condition on the Clifford algebra level is found. Moreover, a necessary and sufficient condition for " \star " to be generated by the Hurwitz multiplication is shown.

1. Introduction. The general Hurwitz problem was studied e.g. by Lawrynowicz and Rembieliński [2-4]. They introduced the notions of "Hurwitz pairs" and "pseudo-Hurwitz pairs" and gave their systematic classification according to the relationship with real Clifford algebras. In the present work we show the existence of a bilinear mapping $\star: C(Q_S) \times C(Q_V) \to C(Q_V)$, where (S, V, \circ) is a given Hurwitz pair which makes the following diagram:

$$\begin{array}{c|c} S \times VV \xrightarrow{\circ (\text{Hurwitz multiplication})} V \\ \downarrow & \downarrow \\ i_S \times i_V \\ V \\ C(Q_S) \times C(Q_V) \xrightarrow{\star} C(Q_V) \end{array}$$

commutative.

(1)

Moreover, we prove that if such a mapping exists and satisfies the following "algebraic Hurwitz condition": $N(x_S \star y_V) = N(x_S)N(y_V)$ for any $x_S \in \Gamma_S$ and $y_V \in \Gamma_V$, where Γ denotes the Clifford group of the Clifford algebra C(Q) and N is a spinor norm, then \star is generated by the Hurwitz multiplication, i.e. $\star_{|S \times V} = \circ$. An example of a mapping \star which does not satisfy the N-norm condition is given. Since in the meantime the detailed proofs have appeared in [1], they are only sketched here.

1991 Mathematics Subject Classification: Primary 15A66, Secondary 30G35.

Research supported by the KBN grant PB 2 1140 91 01.

The paper is in final form and no version of it will be published elsewhere.

^[327]

2. Product of Clifford algebras generated by the Hurwitz multiplication. Let (S, V, \circ) be a Hurwitz pair. Suppose that the vector spaces S and V are equipped with non-degenerate quadratic forms Q_S and Q_V , respectively. We will only consider the elliptic and hyperbolic cases (see, e.g. [2-4]). In S and V we choose some bases (ϵ_{α}) and (e_j) with $\alpha = 1, \ldots, p = \dim S; j = 1, \ldots, n = \dim V$. Assume that $p \leq n$.

Let $C(Q_S)$ (resp. $C(Q_V)$) denote the Clifford algebra of (S, Q_S) (resp. (V, Q_V)). There are canonical injections $i_S: S \to C(Q_S)$ and $i_V: V \to C(Q_V)$. Then we get the diagram (2). It would be interesting to complete the diagram (2) by the suitable mapping $C(Q_S) \times C(Q_V) \to C(Q_V)$. Define the following mapping $\star : C(Q_S) \times C(Q_V) \to C(Q_V)$ by:

$$\int 1_S \star y_V :=$$

$$(2) \quad \begin{cases} 1_{S} \star y_{V} := y_{V}, \\ (\epsilon_{i_{1}} \dots \epsilon_{i_{r}}) \star (e_{j_{1}} \dots e_{j_{k}}) := \begin{cases} e_{j_{k}} \dots e_{j_{r+1}}(\epsilon_{i_{r}} \circ e_{j_{r}}) \dots (\epsilon_{i_{1}} \circ e_{j_{1}}), & r < k, \\ (\epsilon_{i_{r}} \circ e_{j_{r}}) \dots (\epsilon_{i_{1}} \circ e_{j_{1}}), & r = k, \\ \epsilon_{i_{r}} \circ [\epsilon_{i_{r-1}} \circ [\dots \circ [\epsilon_{i_{k+1}} \circ [\epsilon_{i_{k+1}} \circ [\epsilon_{i_{k}} \circ e_{j_{k}}) \dots (\epsilon_{i_{1}} \circ e_{j_{1}})] \dots], & r > k, \end{cases}$$

for $1 \le r \le p, 1 \le i_1 < \ldots < i_r \le p; 1 \le k \le n, 1 \le j_1 < \ldots < j_k \le n$. Then, the required mapping $\star : C(Q_S) \times C(Q_V) \to C(Q_V)$ is defined by the bilinear extension of (2).

Remark. If (S, Q_S) is a Euclidean vector space then all $\|\epsilon_i\|^2 > 0$. In this case the Clifford algebras $C(Q_S)$ and $C(Q_V)$ are considered to be real. But, if (S, Q_S) is a pseudo-Euclidean vector space then there are some $\epsilon_{i_1}, \ldots, \epsilon_{i_r}, 1 \leq r \leq p$, such that $\|\epsilon_{i_s}\|^2 < 0, 1 \le s \le r$. This time the Clifford algebras have to be treated as complex ones.

PROPOSITION. \star is a well defined bilinear mapping. Moreover, $\star_{|S \times V} = \circ$, the Hurwitz multiplication, i.e. the diagram (1) is commutative.

LEMMA. Let $x_S \in \Gamma_S$ and $y_V \in \Gamma_V$, where Γ_S (resp. Γ_V) denotes the Clifford group in $C(Q_S)$ (resp. $C(Q_V)$) and let N_S, N_V be the spinor norms in $C(Q_S)$ and $C(Q_V)$, respectively. Then

(3)
$$N_V(x_S \star y_V) = N_S(x_S)N_V(y_V)$$

THEOREM. Let S and V be real vector spaces equipped with non-degenerate quadratic forms Q_S and Q_V , respectively. Denote by $C^{\mathbb{C}}(Q_S)$ (resp. $C^{\mathbb{C}}(Q_V)$) the complex Clifford algebras of (S, Q_S) (resp. (V, Q_V)). Suppose that there is a bilinear mapping $\star : C^{\mathbb{C}}(Q_S) \times$ $C^{\mathbb{C}}(Q_V) \to C^{\mathbb{C}}(Q_V)$ satisfying the condition (3). Then \star is generated by the Hurwitz multiplication, i.e. $\star_{|S \times V} = \circ$, where $\circ : S \times V \to V$ is a bilinear mapping such that $||s \circ v||_V = ||s||_S ||v||_V$ for all $s \in S$ and $v \in V$.

Proof. Let $s \in S \subset \Gamma_S$ and $v \in V \subset \Gamma_V$. By definition of N we have

(4)
$$N_V(s \star v) = N_S(s)N_V(v) = \|s\|_S^2 \|v\|_V^2 \in \mathbb{R}.$$

Let (e_1, \ldots, e_n) be an orthogonal base in V. Suppose

$$s \star v = a_0 + \sum_{i=1}^n a^i e_i + \sum_{l=2}^n \sum_{i_1 < \dots < i_l} a_l^{i_1 \dots i_l} e_{i_1} \dots e_{i_l}$$

Then

$$N(s \star v) = a_0^2 + \sum_{i=1}^n (a^i)^2 Q_V(e_i) + \sum_{l=2}^n \sum_{i_1 < \dots < i_l} (a_l^{i_1 \dots i_l})^2 Q_V(e_{i_1}) \dots Q_V(e_{i_l}) + R(e_1, \dots, e_n),$$

where

$$R(e_1, \dots, e_n) = \sum b^i e_i + \sum_{i < j} b^{ij} e_i e_j + \dots + \sum_{i_1 < \dots < i_m} b^{i_1 \dots i_m} e_{i_1} \dots e_{i_m} + b e_1 \dots e_n.$$

Since $N(s \star v)$ is a scalar then $R(e_1, \ldots, e_n)$ must vanish. The multiplication \star is bilinear so the coefficients a_0, a^i and $a_l^{i_1 \ldots i_l}$ are bilinear functions in s and v. Thus $N(s \star v)$ should be separated into two parts, first depending only on s and second only on v. Then we can write

$$a_0^2 + \sum_{i=1}^n (a^i)^2 Q_V(e_i) + \sum_{l=2}^n \sum_{i_1 < \dots < i_l} (a_l^{i_1 \dots i_l})^2 Q_V(e_{i_1}) \dots Q_V(e_{i_l})$$

= $||s||_S^2 ||v||_V^2$
= $||s||_S^2 [c_0^2 + \sum_{i=1}^n (c^i)^2 Q_V(e_i) + \sum_{l=2}^n \sum_{i_1 < \dots < i_l} (c_l^{i_1 \dots i_l}^2 Q_V(e_{i_1}) \dots Q_V(e_{i_l})]$

Thus, the following equality has to be satisfied:

$$c_0^2 + \sum_{i=1}^n (c^i)^2 Q_V(e_i) + \sum_{l=2}^n \sum_{i_1 < \dots < i_l} (c_l^{i_1 \dots i_l})^2 Q_V(e_{i_1}) \dots Q_V(e_{i_l}) = \sum_{i=1}^n (v^i)^2 Q_V(e_i).$$

The coefficients $c_0, c^i, c_l^{i_1...i_l}$ are linear in v so, by continuity, we can write

$$c_0(v) = c_{0j}v^j, \quad c^i(v) = c^i_jv^j, \quad c^{i_1\dots i_l}_l(v) = c^{i_1\dots i_l}_{lj}v^j.$$

Thus, for any $1 \leq j, k \leq n$ we get the identity

$$c_{0j}c_{0k} + \sum_{i=1}^{n} (c_j^i c_k^i - \delta_j^i \delta_k^i) Q_V(e_i) + \sum_{l=2}^{n} \sum_{i_1 < \dots < i_l} c_{lj}^{i_1 \dots i_l} c_{lk}^{i_1 \dots i_l} Q_V(e_{i_1}) \dots Q_V(e_{i_l}) \equiv 0.$$

Take an orthogonal transformation $R \in O(Q_V)$. In a new base e' = Re we have

$$c_{0j}c_{0k} + \sum_{i=1}^{n} (\tilde{c}_{j}^{i}\tilde{c}_{k}^{i} - \delta_{j}^{i}\delta_{k}^{i})Q_{V}(Re_{i}) + \sum_{l=2}^{n} \sum_{i_{1} < \ldots < i_{l}} \tilde{c}_{lj}^{i_{1}\ldots i_{l}}\tilde{c}_{lk}^{i_{1}\ldots i_{l}}Q_{V}(Re_{i_{1}})\ldots Q_{V}(Re_{i_{l}}) \equiv 0.$$

But $Q_V(Re_i) = Q_V(e_i)$. Then the new coefficients \tilde{c}_j and $\tilde{c}_{lj}^{i_1...i_l}$, obtained by the changing of the base, satisfy the same identity as the previous ones. This is possible if and only if

$$c_{0j} \equiv 0 \quad \text{for } j = 1, \dots, n,$$

$$c_j^i c_k^i - \delta_j^i \delta_k^i \equiv 0 \quad \text{for } 1 \le i, j, k \le n,$$

$$c_{lj}^{i_1 \dots i_l} \equiv 0 \quad \text{for } l = 2, \dots, n; \ 1 \le i_1 < \dots < i_l \le n; \ j = 1, \dots, n.$$

Thus, we get $s \star v = \|s\|_S \sum_{i=1,j=1}^n c_j^i v^j e_i \in V$ and $\|s\|_S^2 \|v\|_V^2 = N_V(s \star v) = \|s \star v\|_V^2$, so $\star_{|S \times V}$ satisfies the Hurwitz condition, as required.

EXAMPLE. We now construct a bilinear map $\Box : C^{\mathbb{C}}(Q_S) \times C^{\mathbb{C}}(Q_V) \to C^{\mathbb{C}}(Q_V)$ which does not satisfy the condition (4). Choose some bases (ϵ_{α}) and (e_j) in S and V, respectively. Define

(5)
$$\begin{cases} 1_{S} \sqcup 1_{V} := e_{1} \dots e_{n}, \\ 1_{S} \Box (e_{i_{1}} \dots e_{i_{k}}) := e_{i_{1}} \dots e_{i_{k}}, \\ 1_{S} \Box (e_{1} \dots e_{n}) := 1_{V}, \\ (\epsilon_{j_{1}} \dots \epsilon_{j_{r}}) \Box (e_{i_{1}} \dots e_{i_{k}}) := \|\epsilon_{j_{1}}\| \dots \|\epsilon_{j_{r}}\|e_{i_{1}} \dots e_{i_{k}}, \\ (\epsilon_{j_{1}} \dots \epsilon_{j_{r}}) \Box 1_{V} := \|\epsilon_{j_{1}}\| \dots \|\epsilon_{j_{r}}\|e_{1} \dots e_{n}, \\ (\epsilon_{j_{1}} \dots \epsilon_{j_{r}} \Box (e_{1} \dots e_{n}) := \|\epsilon_{j_{1}}\| \dots \|\epsilon_{j_{r}}\|1_{V}, \end{cases}$$

where " $\widehat{\cdot}$ " is defined by

$$e_{i_1} \dots e_{i_r} := e_{j_1} \dots e_{j_s}$$
 with $j_1 < \dots < j_s$ and $(i_1, \dots, i_r, j_1, \dots, j_s) = (1, \dots, n)$.

The map $\Box : C^{\mathbb{C}}(Q_S) \times C^{\mathbb{C}}(Q_V) \to C^{\mathbb{C}}(Q_V)$ is defined by the bilinear extension of (5). It is easy to see that \Box does not satisfy the condition (4). Indeed, take $s \in S$ and $v \in V$. We have

$$s \Box v = s^{\alpha} v^{i} \epsilon_{\alpha} \Box e_{i} = s^{\alpha} v^{i} ||\epsilon_{\alpha}||_{S} e_{1} \dots \widehat{e}_{i} \dots e_{n} \notin V.$$

and

$$N_V(s \Box v) = s^{\alpha} s^{\beta} \|\epsilon_{\alpha}\|_S \|\epsilon_{\beta}\|_S (v^i)^2 Q_V(e_1) \dots \widehat{Q_V(e_i)} \dots O_V(e_n).$$

Suppose that $N_V(s \Box v) = N_S(s)N_V(v)$. Then we get

$$\sum_{\alpha,\beta} s^{\alpha} s^{\beta} \|\epsilon_{\alpha}\|_{S} \|\epsilon_{\beta}\|_{S} = \sum_{\alpha} (s^{\alpha})^{2} \|\epsilon_{\alpha}\|_{S}^{2},$$
$$\sum_{i} (v^{i})^{2} Q_{V}(e_{1}) \dots \widehat{Q_{V}(e_{i})} \dots Q_{V}(e_{n}) = \sum_{i} (v^{i})^{2} Q_{V}(e_{i}).$$

The above condition is equivalent to

$$\|\epsilon_{\alpha}\|_{S} = 0$$
 and $\|e_{1}\|_{V}^{2} \dots \|\widehat{e_{i}}\|_{V}^{2} \dots \|e_{n}\|_{V}^{2} = \|e_{i}\|_{V}^{2}$,

but this is impossible. \blacksquare

References

- [1] W. Królikowski, On Fueter-Hurwitz regular mappings, Dissertationes Math. 353 (1996).
- [2] J. Ławrynowicz and J. Rembieliński, Pseudo-Euclidean Hurwitz pairs and generalized Fueter equations, in: Clifford algebras and their applications in mathematical physics, Proc., Canterbury 1985, J. S. R. Chisholm and A. K. Common (eds.), Reidel, Dordrecht, 1986, 39–48.
- [3] -, -, On the composition of nondegenerate quadratic forms with an arbitrary index, Ann. Fac. Sci. Toulouse 10 (1989), 141–168.
- [4] —, —, Pseudo-Euclidean Hurwitz pairs and the Kałuża-Klein theories, J. Phys. A Math. Gen. 20 (1987), 5831–5848.

330