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Abstract. Let L(z) be the Lie norm on Ẽ = Cn+1 and L∗(z) the dual Lie norm. We
denote by O∆(B̃(R)) the space of complex harmonic functions on the open Lie ball B̃(R) and
by Exp∆(Ẽ; (A,L∗)) the space of entire harmonic functions of exponential type (A,L∗). A
continuous linear functional on these spaces will be called a harmonic functional or an entire
harmonic functional. We shall study the conical Fourier–Borel transformations on the spaces of
harmonic functionals or entire harmonic functionals.

1. Introduction. Let

Kν(r) =
∫ ∞

0

exp(−r cosh t) cosh νt dt, 0 < r <∞,

be the modified Bessel function of degree ν ∈ R. K. Ii ([1]) and R. Wada ([5]) introduced
the function

(1) ρn(r) =



(n−1)/2∑
`=0

an,`r
`+1K`(r), if n is odd,

n/2∑
`=0

an,`r
`+1/2K`−1/2(r), if n is even,

1991 Mathematics Subject Classification: Primary 46F15; Secondary 32A25.
The paper is in final form and no version of it will be published elsewhere.

[95]



96 M. MORIMOTO AND K. FUJITA

where the constants an,`, ` = 0, 1, 2, · · · , [n/2], are determined uniquely by

(2)
∫ ∞

0

r2k+n−1ρn(r)dr =
N(k, n)k!Γ(k + (n+ 1)/2)22k

Γ((n+ 1)/2)
= C(k, n)

for k = 0, 1, 2, · · ·. If n is even, there is a polynomial Pn/2(r) of degree n/2 such that
ρn(r) = Pn/2(r)e−r; if n is odd, there is a polynomial P(n−1)/2(r) of degree (n − 1)/2
such that |ρn(r)| ≤

√
rP(n−1)/2(r)e−r. (See [5] for the details.) We shall call the function

ρn the Ii-Wada function.
Let E = Rn+1 and S = Sn be the unit sphere. For n = 2, 4, 6, · · ·, K. Ii considered the

integral transformation

F : f 7→ f̂(z) =
∫
S

exp(z · ω)f(ω)dS(ω)

for z ∈ M̃ , where M̃ = {z ∈ Ẽ; z2 ≡ z2
1 + z2

2 + · · · + z2
n+1 = 0} is the complex light

cone. He constructed a ”Plancherel” measure dM̃ on M̃ using ρn and proved that F is a
unitary transformation of L2(S) onto the Hilbert space

L2O(M̃) = {f ∈ O(M̃);
∫
M̃

|f(ζ)|2dM̃(ζ) <∞}.

R. Wada proved K. Ii’s results for any integer n ≥ 2 and considered F for analytic
functionals on the complex sphere S̃ = {z ∈ Ẽ; z2 = 1}.

In the sequel, we fix a complex number λ 6= 0. In [3] we studied the growth behavior
of homogeneous expansion of holomorphic functions and analytic functionals on M̃ and
proved that the Fourier–Borel transformation Fλ establishes the following topological
linear isomorphisms :

Fλ : O′(M̃(R)) ∼−→Exp∆(Ẽ; [A,L∗]), where A = |λ|R, and(3)

Fλ : Exp′(M̃ ; (A,L∗)) ∼−→O∆(B̃[R]), where R = A/|λ|.(4)

We shall show that the conical Fourier–Borel transformation F∆
λ establishes the fol-

lowing topological linear isomorphisms :

F∆
λ : O′∆(B̃(R)) ∼−→Exp(M̃ ; [A,L∗]), where A = |λ|R, and(5)

F∆
λ : Exp′∆(Ẽ; (A,L∗)) ∼−→O(M̃ [R]), where R = A/|λ|.(6)

By means of the Plancherel measure on M̃ , we shall construct a duality bilinear
form on Exp(M̃ ; (A,L∗)) × Exp(M̃ ; [1/A,L∗]) (Theorem 17). The first main theorem
(Theorem 18) asserts that this duality is related with the Poisson duality (Theorem 5)
of O∆(B̃(R)) and O∆(B̃[1/R]) via (5) and (4).

Similarly, we shall construct the Plancherel measure on E and a duality bilinear form
on Exp∆(Ẽ; (A,L∗)) × Exp∆(Ẽ; [1/A,L∗]) (Theorem 25). The second main theorem
(Theorem 26) asserts that this duality is related with the Cauchy duality (Theorem 11)
of O(M̃(R)) and O(M̃ [1/R]) via (3) and (6).

The second named author discovered the integral formulas of the inverse mapping of
these four transformations. Later, through our discussion her results have been rearranged
as stated in our main theorems.
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2. Complex harmonic functions on B̃(R). We recall some notations. We refer the
reader to [4] and [2] for general background of this section.

Let ‖x‖ be the Euclidean norm on E = Rn+1, n≥2. The cross norm L(z) on Ẽ = Cn+1

corresponding to ‖x‖ is the Lie norm defined by

L(z) = L(x+ iy) =
[
‖x‖2 + ‖y‖2 + 2

√
‖x‖2‖y‖2 − (x · y)2

]1/2
,

where z = x+ iy, x, y ∈ E and x · y = x1y1 +x2y2 + · · ·+xn+1yn+1. We denote by L∗(z)
the dual Lie norm:

L∗(z) = sup{|z · ζ|; L(ζ) ≤ 1}

=
1√
2

[
‖x‖2 + ‖y‖2 +

√
(‖x‖2 − ‖y‖2)2 + 4(x · y)2

]1/2
.

The open and the closed Lie balls of radius R with center at 0 are defined by

B̃(R) = {z ∈ Ẽ; L(z) < R}, 0 < R ≤ ∞,
B̃[R] = {z ∈ Ẽ; L(z) ≤ R}, 0 ≤ R <∞.

Let O(B̃(R)) be the space of holomorphic functions on B̃(R) with the topology of uniform
convergence on compact sets. We denote by

O∆(B̃(R)) = {f ∈ O(B̃(R)); ∆zf(z) = 0}

the space of complex harmonic functions on B̃(R), where

∆zf(z) =
(
∂2/∂z2

1 + ∂2/∂z2
2 + · · ·+ ∂2/∂z2

n+1

)
f(z).

For 0 ≤ R <∞ we put

O(B̃[R]) = ind lim{O(B̃(R′)); R′ > R},
O∆(B̃[R]) = ind lim{O∆(B̃(R′)); R′ > R}.

A continuous linear functional on O∆(B̃(R)) (resp., O∆(B̃[R])) is called a harmonic
functional on B̃(R) (resp., B̃[R]). We denote by O′∆(B̃(R)) (resp., O′∆(B̃[R])) the dual
space of O∆(B̃(R)) (resp., O∆(B̃[R])).

We denote by Pk(Ẽ) the space of k-homogeneous polynomials of n+ 1 variables with
complex coefficients. Denote by

Pk∆(Ẽ) = {f ∈ Pk(Ẽ); ∆zf(z) = 0}

the space of complex harmonic polynomials of degree k. The dimension of Pk∆(Ẽ) is given
by N(k, n) = (2k+n−1)(k+n−2)!/(k!(n−1)!). Let Pk,n(t) be the Legendre polynomial
of degree k and of dimension n+ 1. We put

P̃k,n(z, w) = (
√
z2)k(

√
w2)kPk,n((z/

√
z2) · (w/

√
w2)),

where z2 = z2
1 + z2

2 + · · ·+ z2
n+1. Then P̃k,n(z, w) is a symmetric polynomial in z and w,

which satisfies ∆zP̃k,n(z, w) = ∆wP̃k,n(z, w) = 0 and |P̃k,n(z, w)| ≤ L(z)kL(w)k.
Let S = {x ∈ E; ‖x‖ = 1} be the sphere of dimension n and dS the normalized

invariant measure on S.

Lemma 1. Let fk ∈ Pk∆(Ẽ) and fj ∈ Pj∆(Ẽ). Then we have
1)

∫
S
fk(ω)fj(ω)dS(ω) = 0, k 6= j;
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2) fk(z) = N(k, n)
∫
S
fk(ω)P̃k,n(z, ω)dS(ω), z ∈ Ẽ.

The Poisson kernel K1(z, w) is defined by

(7) K1(z, w) =
1− z2w2

(1 + z2w2 − 2z · w)(n+1)/2
=
∞∑
k=0

N(k, n)P̃k,n(z, w).

Then K1(z, w) is a symmetric holomorphic function on

{(z, w) ∈ Ẽ× Ẽ; L(z)L(w) < 1}

and satisfies ∆zK1(z, w) = ∆wK1(z, w) = 0.

Theorem 2. (Poisson integral formula) Let 0 < ρ < R and f ∈O∆(B̃(R)). Then we
have

f(z) =
∫
S

f(ρω)K1(z, ω/ρ)dS(ω), z ∈ B̃(ρ).

Corollary 3. Define the k-harmonic component fk of f ∈ O∆(B̃(R)) by

fk(z) = N(k, n)
∫
S

f(ρω)P̃k,n(z, ω/ρ)dS(ω), 0 < ρ < R.

Then fk ∈ Pk∆(Ẽ) and we have f(z) =
∑∞
k=0 fk(z), where the convergence is uniform on

compact sets in B̃(R).

Lemma 4. Let f ∈ O∆(B̃(R)) and g ∈ O∆(B̃[1/R]). The bilinear form

(8) 〈f, g〉S =
∫
S

f(ρω)g(ω/ρ)dS(ω)

is well-defined , where 0 < ρ < R is sufficiently close to R. (8) is separately continuous.

P r o o f. Take R′ < R such that g ∈ O∆(B̃(1/R′)). If R′ < ρ < R, then Corollary 3
and Lemma 1 imply∫

S

f(ρω)g(ω/ρ)dS(ω) =
∫
S

∞∑
k=0

fk(ρω)
∞∑
`=0

f`(ω/ρ)dS(ω)

=
∞∑
k=0

∫
S

fk(ω)gk(ω)dS(ω).

Therefore, the right-hand side of (8) does not depend on ρ and the bilinear form is
well-defined.

We claim that (8) establishes the duality of these spaces.
Let T ∈ O′∆(B̃(R)). If w ∈ B̃[1/R], then the functionK1( · , w) belongs toO∆(B̃(R)).

We define the Poisson transform PT of T by

PT (w) = 〈Tz,K1(z, w)〉, w ∈ B̃[1/R].

We call the mapping P : T 7−→ PT the Poisson transformation.

Theorem 5. The Poisson transformation P establishes the following topological linear
isomorphisms:

P : O′∆(B̃(R)) ∼−→O∆(B̃[1/R]), 0 < R ≤ ∞,(i)

P : O′∆(B̃[R]) ∼−→O∆(B̃(1/R)), 0 ≤ R <∞.(ii)
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We have 〈T, f〉 = 〈f,PT 〉S for T ∈ O′∆(B̃(R)) and f ∈ O∆(B̃(R)) or for T ∈ O′∆(B̃[R])
and f ∈ O∆(B̃[R]).

P r o o f. We prove only (i). Let T ∈ O′∆(B̃(R)). By the Hahn-Banach theorem, there
is a Radon measure µ with supp µ ⊂ B̃(R′), R′ < R, such that 〈T, f〉 =

∫
B̃(R′)

f(z)dµ(z)

for f ∈ O∆(B̃(R)). Especially, we have

PT (w) =
∫
B̃(R′)

K1(z, w)dµ(z).

Therefore, PT can be extended holomorphically to B̃(1/R′) and satisfies

∆wPT (w) = 0;

that is, PT ∈ O∆(B̃[1/R]).
Let f ∈ O∆(B̃(R)). If R′ < ρ < R, then Theorem 2 and the Fubini theorem imply

〈T, f〉 =
∫
B̃(R′)

∫
S

f(ρω)K1(z, ω/ρ)dS(ω)dµ(z)

=
∫
S

f(ρω)
∫
B̃(R′)

K1(z, ω/ρ)dµ(z)dS(ω)

=
∫
S

f(ρω)PT (ω/ρ)dS(ω) = 〈f,PT 〉S .

Thus, P is injective. The continuity of P is clear.
Conversely, let F ∈ O∆(B̃[1/R]). Then there is R′ with 0 < R′ < R such that

F ∈ O∆(B̃(1/R′)). Take ρ with R′ < ρ < R and define TF ∈ O′∆(B̃(R)) by

〈TF , f〉 =
∫
S

f(ρω)F (ω/ρ)dS(ω) = 〈f, F 〉S , f ∈ O∆(B̃(R)).

Then Theorem 2 implies

PTF (w) = 〈(TF )z,K1(z, w)〉

=
∫
S

K1(ρω,w)F (ω/ρ)dS(ω) = F (w), w ∈ B̃(1/ρ).

Thus P is surjective. The continuity of P−1 : F 7→ TF is clear.

3. Holomorphic functions on M̃(R). Let M̃ = {ζ ∈ Ẽ; ζ2 = 0} be the complex
light cone. We put

M̃(R) = M̃ ∩ B̃(R), M̃ [R] = M̃ ∩ B̃[R].

We denote by O(M̃(R)) the space of holomorphic functions on M̃(R) and put O(M̃ [R]) =
ind lim{O(M̃(R′)); R′ > R}. A continuous linear functional on O(M̃(R)) (resp.,
O(M̃ [R])) is called an analytic functional on M̃(R) (resp., M̃ [R]). We denote by
O′(M̃(R)) (resp., O′(M̃ [R])) the dual space of O(M̃(R)) (resp., O(M̃ [R])).

We denote the space of k-homogeneous polynomials on M̃ by Pk(M̃) = {P |M̃ ; P ∈
Pk(Ẽ)}. Note that, if ξ or ζ ∈ M̃ , then P̃k,n(ξ, ζ) = γ(k, n)(ξ · ζ)k, where γ(k, n) is the
coefficient of the highest power of Pk,n(t):

(9) γ(k, n) = Γ(k + (n+ 1)/2)2k/(N(k, n)Γ((n+ 1)/2)k!).
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Let M = {ζ ∈ M̃ ; L(ζ) = 1}. Then M is isomorphic to the cotangential sphere
bundle over S and M

∼=O(n + 1)/O(n − 1). We denote by dM the normalized invariant
measure on M .

Lemma 6. ([5, Lemma 1.3]) Let fk ∈ Pk∆(Ẽ) and fj ∈ Pj∆(Ẽ).
1)

∫
M
fk(ζ)fj(ζ̄)dM(ζ) = 0, k 6= j;

2) fk(z) = 2kN(k, n)
∫
M
fk(ζ)(z · ζ̄)kdM(ζ), z ∈ Ẽ.

The Cauchy kernel K0(ξ, ζ) is defined by

K0(ξ, ζ) =
1 + 2ξ · ζ

(1− 2ξ · ζ)n
=
∞∑
k=0

2kN(k, n)(ξ · ζ)k.

Then K0(ξ, ζ) is a symmetric holomorphic function on

{(ξ, ζ) ∈ Ẽ× Ẽ; L(ξ)L∗(ζ) < 1/2 or L∗(ξ)L(ζ) < 1/2}.

Since

(10) 2L∗(ζ) = L(ζ) for ζ ∈ M̃,

if ζ ∈ M̃ , then K0( · , ζ) is a holomorphic function on {z ∈ Ẽ; L(z)L(ζ) < 1} and satisfies
∆zK0(z, ζ) = 0.

Theorem 7. (Cauchy integral formula for O∆(B̃(R))) Let 0 < ρ < R and f ∈
O∆(B̃(R)). Then we have

(11) f(z) =
∫
M

f(ρζ)K0(z, ζ̄/ρ)dM(ζ), z ∈ B̃(ρ).

For f ∈ O∆(B̃(R)) the k-harmonic component of f is also given by

(12) fk(z) = 2kN(k, n)
∫
M

f(ρζ)(z · ζ̄/ρ)kdM(ζ), z ∈ Ẽ,

where 0 < ρ < R. It is known ([7]) that the restriction mapping f 7→ f |M̃(R) is a
topological linear isomorphism of O∆(B̃(R)) onto O(M̃(R)). The inverse mapping is
given by the right-hand side of (11). f ∈ O∆(B̃(R)) is called the harmonic extension of
f |M̃(R).

We shall consider functions on M̃ . If we consider K0(ξ, ζ) as a function on M̃ × M̃ ,
it is a symmetric holomorphic function on {(ξ, ζ) ∈ M̃ × M̃ ; L(ξ)L(ζ) < 1}.

Theorem 8. (Cauchy integral formula on M̃) Let 0 < ρ < R and f ∈ O(M̃(R)).
Then we have

(13) f(ξ) =
∫
M

f(ρζ)K0(ξ, ζ̄/ρ)dM(ζ), ξ ∈ M̃(ρ).

Corollary 9. ([3, Theorem 5]) Define the k-homogeneous component fk of f ∈
O(M̃(R)) by

fk(ξ) = 2kN(k, n)
∫
M

f(ρζ)(ξ · ζ̄/ρ)kdM(ζ), 0 < ρ < R.

Then fk ∈ Pk(M̃) and we have f(ξ) =
∑∞
k=0 fk(ξ), where the convergence is uniform on

compact sets in M̃(R).
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Lemma 10. Let f ∈ O(M̃(R)) and g ∈ O(M̃ [1/R]). The bilinear form

(14) 〈f, g〉M =
∫
M

f(ρζ)g(ζ̄/ρ)dM(ζ)

is well-defined , where 0 < ρ < R is sufficiently close to R. (14) is separately continuous.

P r o o f. Take R′ < R such that g ∈ O(M̃(1/R′)). If R′ < ρ < R, then Corollary 9
and Lemma 6 imply∫

M

f(ρζ)g(ζ̄/ρ)dM(ζ) =
∫
M

∞∑
k=0

fk(ρζ)
∞∑
`=0

g`(ζ̄/ρ)dM(ζ)

=
∞∑
k=0

∫
M

fk(ζ)gk(ζ̄)dM(ζ).

Therefore, the right-hand side of (14) does not depend on ρ and the bilinear form is
well-defined.

We claim that (14) establishes the duality of these spaces.
Let T ∈ O′(M̃(R)). If ζ ∈ M̃ [1/R], then the function K0( · , ζ) belongs to O(M̃(R)).

We define the Cauchy transform CT of T by

(15) CT (ζ) = 〈Tξ,K0(ξ, ζ)〉, ζ ∈ M̃ [1/R].

We call the mapping C : T 7−→ CT the Cauchy transformation.
Because CT can be continued holomorphically to a neighborhoood of M̃ [1/R], the

Cauchy transformation is a continuous linear mapping of O′(M̃(R)) into O(M̃ [1/R]).
We proved the following theorem in [3].

Theorem 11. The Cauchy transformation C establishes the following topological lin-
ear isomorphisms:

C : O′(M̃(R)) ∼−→O(M̃ [1/R]), 0 < R ≤ ∞,(i)

C : O′(M̃ [R]) ∼−→O(M̃(1/R)), 0 ≤ R <∞.(ii)

We have 〈T, f〉 = 〈f, CT 〉M for T ∈ O′(M̃(R)) and f ∈ O(M̃(R)) or for T ∈ O′(M̃ [R])
and f ∈ O(M̃ [R]).

Note that the right-hand side of (15) is defined for ζ ∈ B̃[1/R] and satisfies ∆ζCT (ζ) =
0. Hence, we can consider the Cauchy transformation as a topological linear isomorphism:
O′(M̃(R)) ∼−→O∆(B̃[1/R]). (See [3, Theorem 9].)

4. Conical Fourier–Borel transformation. If ζ ∈ M̃ , then the function exp(λζ ·z)
is entire harmonic in z. Therefore, for T ∈ O′∆(B̃(R)), the value 〈Tz, exp(λζ · z)〉 is well-
defined, which we denote by

F∆
λ T (ζ) = 〈Tz, exp(λζ · z)〉, ζ ∈ M̃.

We call F∆
λ T the conical Fourier–Borel transform of T .
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By the Hahn-Banach theorem, there is a Radon measure µ on B̃(R) with supp µ ⊂
B̃[R′], R′ < R, such that

F∆
λ T (ζ) =

∫
B̃[R′]

exp(λζ · z)dµ(z).

Therefore, we have

|F∆
λ T (ζ)| ≤ ‖µ‖ sup{| exp(λζ · z)|; z ∈ B̃[R′]}

= ‖µ‖ exp(|λ|R′L∗(ζ)).

Thus, F∆
λ T is an entire function on M̃ (that is, a holomorphic function on M̃) of expo-

nential type. To describe the image under F∆
λ , we introduce some notations.

Let N be the Lie norm L or the dual Lie norm L∗. For 0 < A ≤ ∞ we denote by

Exp(M̃ ; [A,N ]) = {f ∈ O(M̃); there is A′ < A such that

sup{|f(ζ)| exp(−A′N(ζ)); ζ ∈ M̃} <∞}

the space of entire functions on M̃ of exponential type [A,N ]. Furthermore, for 0 ≤ A <

∞ we put

Exp(M̃ ; (A,N)) = {f ∈ O(M̃); for all A′ > A,

sup{|f(ζ)| exp(−A′N(ζ)); ζ ∈ M̃} <∞}.

Using these notations, we can state the following

Lemma 12. The conical Fourier–Borel transformation F∆
λ establishes the following

continuous linear mappings:

F∆
λ : O′∆(B̃(R)) −→ Exp(M̃ ; [|λ|R,L∗]), 0 < R ≤ ∞,(i)

F∆
λ : O′∆(B̃[R]) −→ Exp(M̃ ; (|λ|R,L∗)), 0 ≤ R <∞.(ii)

We shall show that the transformations F∆
λ are topological linear isomorphisms (The-

orem 18).

5. The Plancherel measure on M̃ . K. Ii ([1]) defined the Plancherel measure dM̃
on M̃ by ∫

M̃

f(ζ)dM̃(ζ) =
∫ ∞

0

∫
M

f(rζ ′)dM(ζ ′)rn−1ρn(r)dr, ζ = rζ ′

where ρn is the Ii-Wada function defined by (1). By means of the Plancherel measure on
M̃ , we can define a duality bilinear form on

Exp(M̃ ; (A,L∗))× Exp(M̃ ; [1/A,L∗]).

Lemma 13. Let A ≥ 0, f ∈ Exp(M̃ ; (A,L∗)) and g ∈ Exp(M̃ ; [1/A,L∗]).
1) The integral

(16)
∫
M̃

f(sζ)g(ζ̄/s)dM̃(ζ)

converges absolutely for s ∈ C with 0 < |s| < 1/A sufficiently close to 1/A.
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2) The integral (16) is independent of s. The bilinear form

〈〈f, g〉〉M̃ =
∫
M̃

f(sζ)g(ζ̄/s)dM̃(ζ)

is well-defined and separately continuous. We have

〈〈f, g〉〉M =
∞∑
k=0

C(k, n)
∫
M

fk(ζ ′)gk(ζ̄ ′)dM(ζ ′),

where fk and gk are the k-homogeneous components of f and g respectively , and C(k, n)
are the constants given by (2).

P r o o f. 1) Take A′ > A and C ′ ≥ 0 such that

|g(ζ̄/s)| ≤ C ′ exp(1/(|s|A′)L∗(ζ)), ζ ∈ M̃.

For any A′′ with A′ > A′′ > A there is C ′′ ≥ 0 such that

|f(sζ)| ≤ C ′′ exp(|s|A′′L∗(ζ)), ζ ∈ M̃.

Therefore, from (10) for |s| = 1/A′′ there is C ≥ 0 such that

|f(sζ)g(ζ̄/s)| ≤ C exp((1 +A′′/A′)L(ζ)/2).

Because ρn(r) is of exponential type −1, we have 1).

2) Take s ∈ C \ {0} as in 1). Put ζ = rζ ′, r ≥ 0, ζ ′ ∈ M . Then by Lemma 6,
Corollary 9 and (2) we have∫

M̃

f(sζ)g(ζ̄/s)dM̃ =
∫ ∞

0

∫
M

∞∑
k=0

skrkfk(ζ ′)
∞∑
`=0

r`s−`g`(ζ̄ ′)dM(ζ ′)rn−1ρn(r)dr

=
∫ ∞

0

∞∑
k=0

r2k

∫
M

fk(ζ ′)gk(ζ̄ ′)dM(ζ ′)rn−1ρn(r)dr

=
∞∑
k=0

C(k, n)
∫
M

fk(ζ ′)gk(ζ̄ ′)dM(ζ ′).

Lemma 14. For z, w ∈ Ẽ with L(z)L(w) < 1 the Poisson kernel K1(z, w) can be
represented as follows:

K1(z, w) =
∫
M̃

exp(sz · ζ) exp(ζ̄ · w/s)dM̃(ζ),

where s ∈ C is sufficiently close to 1/L(z).

P r o o f. The convergence of the integral can be proved as in the proof of Lemma 13.
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Now by Lemma 6, (2), (9) and (7), we have∫
M̃

exp(sz · ζ) exp(ζ̄ · w/s)dM̃(ζ)

=
∞∑
k=0

C(k, n)
∫
M

((z · ζ ′)k/k!) ((ζ̄ ′ · w)k/k!)dM(ζ ′)

=
∞∑
k=0

C(k, n)/((k!)22kN(k, n)γ(k, n))P̃k,n(z, w)

=
∞∑
k=0

N(k, n)P̃k,n(z, w) = K1(z, w).

K. Ii ([1]) defined the kernel E0(ξ, ζ) by

E0(ξ, ζ) =
∫
S

exp(ξ · ω) exp(ω · ζ)dS(ω),

which we shall call the F-Poisson kernel. By the definition, E0(ξ, ζ) is a symmetric holo-
morphic function on Ẽ× Ẽ and satisfies

|E0(ξ, ζ)| ≤ exp(L∗(ξ) + L∗(ζ)), (ξ, ζ) ∈ Ẽ× Ẽ.

Lemma 15. We have

E0(ξ, ζ) =
∞∑
k=0

2kN(k, n)/C(k, n)(ξ · ζ)k, ξ, ζ ∈ M̃.

Especially , for any s ∈ C \ {0} we have

E0(sξ, ζ/s) = E0(ξ, ζ), ξ, ζ ∈ M̃.

P r o o f. Let ξ, ζ ∈ M̃ . Then by Corollary 3, Lemma 1, (2) and (9), we have

E0(ξ, ζ) =
∞∑
k=0

1/(k!)2

∫
S

(ξ · ω)k(ω · ζ)kdS(ω)

=
∞∑
k=0

1/((k!)2γ(k, n)N(k, n))(ξ · ζ)k

=
∞∑
k=0

2kN(k, n)/C(k, n)(ξ · ζ)k.

The F-Poisson kernel has a reproducing property in the following sense.

Theorem 16. Let A ≥ 0 and f ∈ Exp(M̃ ; (A,L∗)). For s ∈ C with 0 < |s| < 2/A
we have

(17) f(ξ) =
∫
M̃

f(sζ)E0(ξ, ζ̄/s)dM̃(ζ), ξ ∈ M̃.

P r o o f. By Lemma 15, E0(ξ, · ) belongs to Exp(M̃ ; (0, L∗)). Therefore, as in the
proof of Lemma 13, the right-hand side of (17) is finite and does not depend on s.
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Lemmas 15, 6, Corollary 9 and (2) imply∫
M̃

f(sζ)E0(ξ, ζ̄/s)dM̃(ζ) =
∞∑
k=0

2kN(k, n)
∫
M

fk(ζ ′)(ξ · ζ̄ ′)kdM(ζ ′)

=
∞∑
k=0

fk(ξ) = f(ξ), ξ ∈ M̃.

Let A ≥ 0 and T ∈ Exp′(M̃ ; (A,L∗)). We define the F-Poisson transform MT of T
by

MT (ζ) = 〈Tξ, E0(ξ, ζ)〉.

Because E0( · , ζ) ∈ Exp(M̃ ; (0, L∗)), MT (ζ) is well-defined. It is easy to see that MT

is an entire function on M̃ .

Theorem 17 The F-Poisson transformation M establishes the following topological
linear isomorphisms:

M : Exp′(M̃ ; (A,L∗)) ∼−→Exp(M̃ ; [1/A,L∗]), 0 ≤ A <∞,(i)

M : Exp′(M̃ ; [A,L∗]) ∼−→Exp(M̃ ; (1/A,L∗)), 0 < A ≤ ∞.(ii)

We have 〈T, f〉 = 〈〈f,MT 〉〉M̃ for

T ∈ Exp′(M̃ ; (A,L∗)) and f ∈ Exp(M̃ ; (A,L∗))

or for
T ∈ Exp′(M̃ ; [A,L∗]) and f ∈ Exp(M̃ ; [A,L∗]).

P r o o f. We prove only (i). Let T ∈ Exp′(M̃ ; (A,L∗)). By the continuity of T , there
are A′ > A and C ≥ 0 such that

|〈T, f〉| ≤ C sup{|f(ξ)| exp(−A′L∗(ξ)); ξ ∈ M̃}.

Therefore, if A < |s| < A′, then we have

|MT (ζ)| ≤ C sup{exp(|s|L∗(ξ) + L∗(ζ)/|s|) exp(−A′L∗(ξ)); ξ ∈ M̃}
≤ C exp(L∗(ζ)/|s|);

that is, MT ∈ Exp(M̃ ; [1/A,L∗]).
Let f ∈ Exp(M̃ ; (A,L∗)). Take s ∈ C with 0 < |s| < 1/A sufficiently close to 1/A.

Then Theorem 16 implies

〈T, f〉 = 〈Tξ,
∫
M̃

f(sζ)E0(ξ, ζ̄/s)dM̃(ζ)〉

=
∫
M̃

f(sζ)〈Tξ, E0(ξ, ζ̄/s)〉dM̃(ζ)

=
∫
M̃

f(sζ)MT (ζ̄/s)dM̃(ζ) = 〈〈f,MT 〉〉M̃ .

Thus, M is a continuous linear injection.
Conversely, let F ∈ Exp(M̃ ; [1/A,L∗]). Then 〈TF , f〉 = 〈〈f, F 〉〉M̃ defines TF ∈

Exp′(M̃ ; (A,L∗)) and

MTF (w) = 〈〈E0(z, w), F (z)〉〉M̃ = F (w)
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by Theorem 16. Thus, M is surjective. The continuity of M−1 : F 7→ TF is clear.

6. The first main theorem. If ζ ∈ B̃(1/R), then we have exp(ζ · z/λ) ∈
Exp(M̃ ; [1/(|λ|R), L∗]). Therefore, for T ∈ Exp′(M̃ ; [1/(|λ|R), L∗]) we can define the
Fourier–Borel transform

F1/λT (ζ) = 〈Tz, exp(ζ · z/λ)〉, ζ ∈ B̃(1/R).

It is clear that the Fourier–Borel transformation F1/λ is a continuous linear mapping

(18) F1/λ : Exp′(M̃ ; [1/(|λ|R), L∗]) −→ O∆(B̃(1/R)).

Taking inductive limit, we get another continuous linear mapping

(19) F1/λ : Exp′(M̃ ; (1/(|λ|R), L∗)) −→ O∆(B̃[1/R]).

We proved in [3] that (18) and (19) are topological linear isomorphisms. Here we claim
that (18) and (19) give the inverse of the conical Fourier–Borel transformations (Lem-
ma 12) via the isomorphisms P andM. Thus, constructing explicitly the inverse mapping,
we have another proof of the topological linear isomorphism of (18) and (19).

Theorem 18. The following diagrams are commutative and all mappings are topo-
logical linear isomorphisms:

(i) O′∆(B̃(R)) P−1

←− O∆(B̃[1/R])yF∆
λ

xF1/λ (0 < R ≤ ∞)

Exp(M̃ ; [|λ|R,L∗]) M−1

−→ Exp′(M̃ ; (1/(|λ|R), L∗)),

(ii) O′∆(B̃[R]) P−1

←− O∆(B̃(1/R))yF∆
λ

xF1/λ (0 ≤ R <∞)

Exp(M̃ ; (|λ|R,L∗)) M−1

−→ Exp′(M̃ ; [1/(|λ|R), L∗]).

P r o o f. We prove only the first diagram. Because P and M are topological linear
isomorphisms (Theorems 5 and 17), we have only to show that

1) F∆
λ ◦ P−1 ◦ F1/λ ◦M−1 = id, 2) F1/λ ◦M−1 ◦ F∆

λ ◦ P−1 = id.

1) Let f ∈ Exp(M̃ ; [|λ|R,L∗]). Then by Theorem 17 and Lemma 13, there is s >
1/(|λ|R) sufficiently close to 1/(|λ|R) such that

F1/λ(M−1f)(z) =
∫
M̃

f(sζ) exp(z · ζ̄/(λs))dM̃(ζ).

Note that the right-hand side belongs to O∆(B̃(s|λ|)). By Theorem 5, Lemma 4, the
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Fubini theorem, Lemma 15 and Theorem 16, there is ρ with 1/ρ < s|λ| such that

(F∆
λ ◦ P−1 ◦ F1/λ ◦M−1)f(ξ)

=
∫
S

F1/λ(M−1f)(ω/ρ) exp(λρω · ξ)dS(ω)

=
∫
S

(∫
M̃

f(sζ) exp(ω · ζ̄/(λsρ))dM̃(ζ)
)

exp(λρω · ξ)dS(ω)

=
∫
M̃

f(sζ)
(∫

S

exp(ω · ζ̄/(λsρ)) exp(λρω · ξ)dS(ω)
)
dM̃(ζ)

=
∫
M̃

f(sζ)E0(ξ, ζ̄/s)dM̃(ζ) = f(ξ), ξ ∈ M̃.

2) Let f ∈O∆(B̃[1/R]). Then by Theorem 5 and Lemma 4, there is 0 < ρ < R such
that

F∆
λ (P−1f)(ζ) =

∫
S

f(ω/ρ) exp(λρζ · ω)dS(ω), ζ ∈ M̃.

By Lemma 12, F∆
λ (P−1f)(ζ) belongs to Exp(M̃ ; [|λ|R,L∗]). Therefore, if |s| = 1/(|λ|ρ),

then Theorem 17, Lemma 13, the Fubini theorem, Lemma 14 and Theorem 2 imply

(F1/λ ◦M−1 ◦ F∆
λ ◦ P−1)f(z)

=
∫
M̃

exp(z · ζ/(λs))F∆
λ (P−1f)(sζ)dM̃(ζ)

=
∫
M̃

exp(z · ζ/(λs))
(∫

S

f(ω/ρ) exp(λρsζ · ω)dS(ω)
)
dM̃(ζ)

=
∫
S

f(ω/ρ)
(∫

M̃

exp(z · ζ/(λs)) exp(λρsζ · ω)dM̃(ζ)
)
dS(ω)

=
∫
S

f(ω/ρ)K1(z, ρω)dS(ω) = f(z), z ∈ B̃(1/ρ).

7. Fourier–Borel transformation on O′(M̃(R)). In [3] we studied the Fourier–
Borel transformation on O′(M̃(R)). The Fourier–Borel transform FλT of T ∈ O′(M̃(R))
is defined by

FλT (z) = 〈Tζ , exp(λζ · z)〉, z ∈ Ẽ.

By the Hahn-Banach theorem, there is a Radon measure µ on M̃(R) with

supp µ ⊂ M̃ [R′], R′ < R,

such that
FλT (z) =

∫
M̃(R′)

exp(λζ · z)dµ(ζ).

Therefore, FλT is an entire function on Ẽ, satisfies ∆z(FλT )(z) = 0, and of exponential
type:

|FλT (z)| ≤ ‖µ‖ sup{| exp(λζ · z)|; ζ ∈ M̃ [R′]}
= ‖µ‖ exp(|λ|R′L∗(z)).

To describe the image under Fλ, let us introduce some notations.
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Let N be the Lie norm L or the dual Lie norm L∗. For 0 < A ≤ ∞ we denote by

Exp(Ẽ; [A,N ]) = {f ∈ O(Ẽ); there is A′ < A such that

sup{|f(z)| exp(−A′N(z)); z ∈ Ẽ} <∞}

the space of entire functions on Ẽ of exponential type [A,N ]. Put

Exp∆(Ẽ; [A,N ]) = Exp(Ẽ; [A,N ]) ∩ O∆(Ẽ).

Furthermore, for 0 ≤ A <∞ we put

Exp(Ẽ; (A,N)) = {f ∈ O(Ẽ); for all A′ > A,

sup{|f(z)| exp(−A′N(z)); z ∈ Ẽ} <∞}

and Exp∆(Ẽ; (A,N)) = Exp(Ẽ; (A,N)) ∩ O∆(Ẽ).

Lemma 19. ([6, Proof of Corollary 3.5]) We have

Exp∆(Ẽ; [A,L∗]) = Exp∆(Ẽ; [A/2, L]),

Exp∆(Ẽ; (A,L∗)) = Exp∆(Ẽ; (A/2, L)).

In particular , if f ∈ Exp∆(Ẽ; (A,L∗)), then for any ε > 0 there is C ≥ 0 such that

|f(x)| ≤ C exp((A+ ε)‖x‖/2), x ∈ E.

A continuous linear functional on Exp∆(Ẽ; [A,L∗]) or Exp∆(Ẽ; (A,L∗)) will be called
an entire harmonic functional on Ẽ.

By the definition we have the following :

Lemma 20. The Fourier–Borel transformation Fλ establishes the following continuous
linear mappings:

Fλ : O′(M̃(R)) −→ Exp∆(Ẽ; [|λ|R,L∗]), 0 < R ≤ ∞,(i)

Fλ : O′(M̃ [R]) −→ Exp∆(Ẽ; (|λ|R,L∗)), 0 ≤ R <∞.(ii)

In [3] we proved that the transformations Fλ are topological linear isomorphisms by
calculating the growth behavior of homogeneous components. Relying on the Plancherel
measure on E, we shall show that these isomophisms can be understood in the setting
similar to Theorem 18.

8. The Plancherel measure on E. On the Euclidean space E we introduce the
Plancherel measure dE by∫

E
f(x)dE(x) =

∫ ∞
0

∫
S

f(rω)dS(ω)rn−1ρn(r)dr,

where ρn(r) is the Ii-Wada function defined by (1).
By means of the Plancherel measure on E, we can define a duality bilinear form on

Exp∆(Ẽ; (A,L∗))× Exp∆(Ẽ; [1/A,L∗]).

Lemma 21. Let A ≥ 0, f ∈ Exp∆(Ẽ; (A,L∗)) and g ∈ Exp∆(Ẽ; [1/A,L∗]).
1) The integral

(20)
∫

E
f(sx)g(x/s)dE(x)
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converges absolutely for s ∈ C with 0 < |s| < 1/A sufficiently close to 1/A.
2) The integral (20) is independent of s. The bilinear form

〈〈f, g〉〉E =
∫

E
f(sx)g(x/s)dE(x)

is separately continuous. We have

〈〈f, g〉〉E =
∞∑
k=0

C(k, n)
∫
S

fk(ω)gk(ω)dS(ω),

where fk and gk are the k-harmonic components of f and g, respectively and C(k, n) are
the constants defined by (2).

P r o o f. 1) By Lemma 19 there are A′ > A and C ′ ≥ 0 such that

|g(x/s)| ≤ C ′ exp(‖x‖/(2|s|A′)), x ∈ E.

For any A′′ with A′ > A′′ > A there is C ′′ ≥ 0 such that

|f(sx)| ≤ C ′′ exp((|s|A′′)‖x‖/2), x ∈ E.

Therefore, for |s| = 1/A′′ there is C ≥ 0 such that

|f(sx)g(x/s)| ≤ C exp((1 +A′′/A′)‖x‖/2), x ∈ E.

Because ρn is of exponential type −1, we have 1).
2) Take s ∈ C \ {0} as in 1). Then by Corollary 3, Lemma 1 and (2) we have∫

E
f(sx)g(x/s)dE(x)

=
∫ ∞

0

(∫
S

∞∑
k=0

skrkfk(ω)
∞∑
`=0

r`s−`g`(ω)dS(ω)

)
rn−1ρn(r)dr

=
∫ ∞

0

( ∞∑
k=0

r2k

∫
S

fk(ω)gk(ω)dS(ω)

)
rn−1ρn(r)dr

=
∞∑
k=0

C(k, n)
∫
S

fk(ω)gk(ω)dS(ω).

Lemma 22. For ξ, ζ ∈ M̃ with L(ξ)L(ζ) < 1 the Cauchy kernel K0(ξ, ζ) can be
represented as follows:

K0(ξ, ζ) =
∫

E
exp(sξ · x) exp(x · ζ/s)dE(x),

where s is sufficiently close to 1/L(ξ).

P r o o f. The convergence of the integral can be proved as in the proof of Lemma 13.
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Now by Lemma 1, (2) and (9), we have∫
E

exp(sξ · x) exp(x · ζ/s)dE(x)

=
∞∑
k=0

C(k, n)
∫
S

((ξ · ω)k/k!) ((ζ · ω)k/k!)dS(ω)

=
∞∑
k=0

C(k, n)/((k!)2N(k, n)γ(k, n))(ξ · ζ)k

=
∞∑
k=0

2kN(k, n)(ξ · ζ)k = K0(ξ, ζ).

We define the F-Cauchy kernel E1(z, w) by

E1(z, w) =
∫
M

exp(z · ζ) exp(ζ̄ · w)dM(ζ).

By the definition, E1(z, w) is a symmetric entire function on Ẽ×Ẽ and satisfies ∆zE1(z, w)
= ∆wE1(z, w) = 0 and

|E1(z, w)| ≤ exp(L∗(z) + L∗(w)), (z, w) ∈ Ẽ× Ẽ.

Lemma 23. We have

E1(z, w) =
∞∑
k=0

N(k, n)/C(k, n)P̃k,n(z, w), z, w ∈ Ẽ.

Especially , for any s ∈ C \ {0} we have

E1(sz, w/s) = E1(z, w), z, w ∈ Ẽ.

P r o o f. By (12), Lemma 6, (2) and (9), we have

E1(z, w) =
∞∑
k=0

1/(k!)2

∫
M

(z · ζ)k(ζ̄ · w)kdM(ζ)

=
∞∑
k=0

1/((k!)22kN(k, n)γ(k, n))P̃k,n(z, w)

=
∞∑
k=0

N(k, n)/C(k, n)P̃k,n(z, w).

The F-Cauchy kernel has a reproducing property in the following sense.

Theorem 24. Let A ≥ 0 and f ∈ Exp∆(Ẽ; (A,L∗)). For s ∈ C with 0 < |s| < 2/A
we have

(21) f(z) =
∫

E
f(sx)E1(z, x/s)dE(x), z ∈ Ẽ.

P r o o f. By Lemma 23, E1(z, ·) ∈ Exp∆(Ẽ; (0, L∗)). Therefore, as in the proof of
Lemma 21, the right-hand side of (21) is finite and independent of s. By Lemmas 21, 23,
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1 and Corollary 3, we have∫
E
f(sx)E1(z, x/s)dE(x) =

∞∑
k=0

N(k, n)
∫
S

fk(ω)P̃k,n(z, ω)dS(ω)

=
∞∑
k=0

fk(z) = f(z).

We define the F-Cauchy transform ET of T ∈ Exp′∆(Ẽ; (A,L∗)) by

ET (w) = 〈Tz, E1(z, w)〉.

Because E1( · , w) ∈ Exp∆(Ẽ; (0, L∗)), ET (w) is well-defined. It is easy to check that
ET is an entire function on Ẽ and satisfies ∆wET (w) = 0.

Theorem 25. The F-Cauchy transformation T 7→ET establishes the following topo-
logical linear isomorphisms:

E : Exp′∆(Ẽ; (A,L∗)) ∼−→Exp∆(Ẽ; [1/A,L∗]), 0 ≤ A <∞,(i)

E : Exp′∆(Ẽ; [A,L∗]) ∼−→Exp∆(Ẽ; (1/A,L∗)), 0 < A ≤ ∞.(ii)

We have 〈T, f〉 = 〈〈f, ET 〉〉E for

T ∈ Exp′∆(Ẽ; (A,L∗)) and f ∈ Exp∆(Ẽ; (A,L∗))

or for
T ∈ Exp′∆(Ẽ; [A,L∗]) and f ∈ Exp∆(Ẽ; [A,L∗]).

P r o o f. We prove only (i). Let T ∈ Exp′∆(Ẽ; (A,L∗)). By the continuity of T , there
are A′ > A and C ≥ 0 such that

|〈T, f〉| ≤ C sup{|f(z)| exp(−A′L∗(z)); z ∈ Ẽ}

for any f ∈ Exp∆(Ẽ; (A,L∗)). Therefore, if A < |s| < A′, then we have

|ET (w)| ≤ C sup{exp(sL∗(z) + L∗(w)/s) exp(−A′L∗(z)); z ∈ Ẽ}
≤ C exp(L∗(w)/s);

that is, ET ∈ Exp∆(Ẽ; [1/A,L∗]).
Let f ∈ Exp∆(Ẽ; (A,L∗)). Take s ∈ C with 0 < |s| < 1/A sufficiently close to 1/A.

Then Theorem 24 implies

〈T, f〉 = 〈Tz,
∫

E
f(sx)E1(z, x/s)dE(x)〉

=
∫

E
f(sx)〈Tz, E1(z, x/s)〉dE(x)

=
∫

E
f(sx)ET (x/s)dE(x) = 〈〈f, ET 〉〉E.

Thus E is a continuous linear injection.
Conversely, let F ∈ Exp∆(Ẽ; [1/A,L∗]). We define

TF ∈ Exp′∆(Ẽ; (A,L∗))
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by 〈TF , f〉 = 〈〈f, F 〉〉E for f ∈ Exp(Ẽ; (A,L∗)). Then we have

ETF (w) = 〈〈E1(x,w), F (x)〉〉E = F (w)

by Theorem 24. Thus, E is surjective. The continuity of E−1 : F 7→ TF is clear.

9. The second main theorem. If ζ ∈ M̃(1/R), then we have exp(ζ · z/λ) ∈
Exp∆(Ẽ; [1/(|λ|R), L∗]). Therefore, for T ∈ Exp′∆(Ẽ; [1/(|λ|R), L∗]) we can define the
conical Fourier–Borel transformation

F∆
1/λT (ζ) = 〈Tz, exp(ζ · z/λ)〉, ζ ∈ M̃(1/R).

It is clear that the conical Fourier–Borel transformation F∆
1/λ : T 7→ F∆

1/λT is a contin-
uous linear mapping

F∆
1/λ : Exp′∆(E; [1/(|λ|R), L∗]) −→ O(M̃(1/R)).

Taking inductive limit, we have another continuous linear mapping

F∆
1/λ : Exp′∆(E; (1/(|λ|R), L∗)) −→ O(M̃ [1/R]).

We claim that these F∆
1/λ give the inverse of the Fourier–Borel transformations Fλ on

O′(M̃ [R]) and on O′(M̃(R)) via the isomorphisms C and E .

Theorem 26. Let λ ∈ C \ {0}. The following diagrams are commutative and all
mappings are topological linear isomorphisms:

(i) O′(M̃(R)) C−1

←− O(M̃ [1/R])yFλ xF∆
1/λ (0 < R ≤ ∞)

Exp∆(Ẽ; [|λ|R,L∗]) E−1

−→ Exp′∆(Ẽ; (1/(|λ|R), L∗)),

(ii) O′(M̃ [R]) C−1

←− O(M̃(1/R))yFλ xF∆
1/λ (0 ≤ R <∞)

Exp∆(Ẽ; (|λ|R,L∗)) E−1

−→ Exp′∆(Ẽ; [1/(|λ|R), L∗]).

P r o o f. We prove only the first diagram. Since C and E are topological linear isomor-
phisms (Theorems 11 and 25), we have only to show that

1) Fλ ◦ C−1 ◦ F∆
1/λ ◦ E

−1 = id, 2) F∆
1/λ ◦ E

−1 ◦ Fλ ◦ C−1 = id.

1) Let f ∈ Exp∆(Ẽ; [|λ|R,L∗]). Then by Theorem 25 and Lemma 21, there is s with
s > 1/(|λ|R) sufficiently close to 1/(|λ|R) such that

F∆
1/λ(E−1f)(ζ) =

∫
E
f(sx) exp(ζ · x/(λs))dE(x).

Note that the right-hand side belongs to O(M̃(s|λ|)). Therefore, by Theorem 11, Lem-
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ma 10, the Fubini theorem and Theorem 24, there is ρ with 1/ρ < s|λ| such that

(Fλ ◦ C−1 ◦ F∆
1/λ ◦ E

−1)f(z)

=
∫
M

F∆
1/λ(E−1f)(ζ/ρ) exp(λρζ · z)dM(ζ)

=
∫
M

(∫
E
f(sx) exp(ζ · x/(λsρ))dE(x)

)
exp(λρζ · z)dM(ζ)

=
∫

E
f(sx)

(∫
M

exp(ζ · x/(λsρ)) exp(λρζ · z)dM(ζ)
)
dE(x)

=
∫

E
f(sx)E1(x/s, z)dE(x) = f(z), z ∈ Ẽ.

2) Let f ∈O(M̃ [1/R]). Then by Theorem 11 and Lemma 10, there is ρ with 0 <
ρ < R such that

Fλ(C−1f)(z) =
∫
M

f(ζ/ρ) exp(λρz · ζ̄)dM(ζ), z ∈ Ẽ.

From Lemma 20, Fλ(C−1f)(z) belongs to Exp∆(Ẽ; [|λ|R,L∗]). Therefore, for s =
1/(|λ|ρ), by Theorem 25, Lemma 21, the Fubini theorem, Lemma 22 and Theorem 8,
we have

(F∆
1/λ ◦ E

−1 ◦ Fλ ◦ C−1)f(ξ)

=
∫

E
exp(x · ξ/(λs))Fλ(C−1f)(sx)dE(x)

=
∫

E
exp(x · ξ/(λs))

(∫
M

f(ζ/ρ) exp(λρsx · ζ̄)dM(ζ)
)
dE(x)

=
∫
M

f(ζ/ρ)
(∫

E
exp(x · ξ/(λs)) exp(λρsx · ζ̄)dE(x)

)
dM(ζ)

=
∫
M

f(ζ/ρ)K0(ξ, ρζ̄)dM(ζ) = f(ξ), ξ ∈ M̃(1/ρ).
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