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Sidon subsets have been characterized by Pisier as having proportional
quasi-independent subsets [8]. There remains the open problem of whether
Sidon subsets of Z must be finite unions of quasi-independent sets. Grow and
Whicher produced an interesting example of a Sidon set whose Pisier pro-
portionality was 1/2 but the set was not the union of two quasi-independent
sets [3]. On the other hand, the present paper provides probabilistic evi-
dence in favor of an affirmative answer with a construction of random Sidon
sets which borrows heavily from ideas of Professors Katznelson and Mallia-
vin [6, 4, 5]. Katznelson provided a random construction of integer Sidon
sets which, almost surely, were not dense in the Bohr compactifaction of the
integers [4, 5]. This paper presents a modification of that construction and
emphasizes a stronger conclusion which is implicit in the earlier construc-
tion: almost surely, the random sets are finite unions of quasi-independent
sets (also of N-independent sets, defined below). In this paper, random
subsets of size O(logn;) are chosen from disjoint arithmetic progressions of
length n; (the maximum density allowed for a Sidon set), with n; — oo fast
enough and the progressions rapidly dilated as 7 — oo.

This paper concludes with several deterministic results. If every Sidon
subset of Z\ {0} is a finite union of quasi-independent sets, then the required
number of quasi-independent sets is bounded by a function of the Sidon
constant. Analogs of this result are proved for all Abelian groups, and for
other special Sidon sets (the N-independent sets). Throughout this paper,
unspecified variables denote positive integers.

DEFINITION. A subset F' C Z is said to be N-independent if and only if,
for all integers o, € [N, N], with «, # 0 for at most finitely many =z,
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That is, among all linear relations with integer coefficients from [—N, N],
only the trivial relation holds. (This definition differs from that of J. Bour-
gain, for whom N-independence is a weaker form of quasi-independence.)

When N = 1 such sets are called quasi-independent and are Sidon [8];
when N = 2 they are called dissociate [7].

THEOREM 1. Let K € RT, let integers M; and p; satisfy

(1) 0 < p; < Klog(j°)

and

(2) M; > K Myg*log(q®),
q<j

and set Q; equal to M; - {1,...,5%}. For each j, and each i € [1,pj],
choose g;; from Q; independently with uniform probability. Given N, let
A€ (0,1/2] so that

(3) W(N, K,\) = K[Alog(2N/X) + (A —1)log(1 — \)] < 1/2.

Then, for almost all choices of {g;.}, the index set for the random variables
can be partitioned into [1/X]+1 sets of which one is finite and the rest index
N-independent subsets of Z.

Remark 1. Note that {z} is N-independent when x # 0. Since 0 € @,
the finite set in Theorem 1 is also a finite union of N-independent sets. Since
N-independent sets are Sidon [8], as are the unions of finitely many Sidon
sets [7], almost all choices produce a Sidon set.

Remark 2. W(N, K, \) is a non-decreasing function of A € (0,1/2]:
OW (N, K, \)
O\
Since limy o+ W(N, K, \) = 0, there is a maximum A(N, K) € (0,1/2] such
that

= Klog(2N) + Klog((1 —X)/A) > 0.

W (N, K, AN, K)) <1/2.
The theorem applies to any A in the non-empty interval (0, A\(N, K)).
Likewise, W (N, K, A) is linear in K with a positive slope for A € (0, 1/2].
In that case, there is a unique K (N, A) > 0 such that W(N, K(N,\),\) =
1/2. For example, K(N,1/2) = log(8N)~!. The theorem applies to any K
in the non-empty interval (0, K(N, A)).

Condition (2) implies the next lemma.
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LEMMA 2. Let K € RY, integers M; satisfy condition (2), Q; = M, -
{1,...,75%}, and S; be a subset of Q; with at most K log(j?) points. A set
E C U;‘;N S is N-independent if and only if, for all j > N, the sets EN.S;
are N-independent.

Proof. The “only if” follows from the fact that any subset of an V-
independent set is likewise N-independent. Consider the contrapositive of
the converse. Assume that F is not N-independent and let « be the coef-
ficient sequence for a non-trivial “N-relation” in E. Let J be the largest
integer for which there is some x € S; with o, # 0. If J = N, then « is
supported in E N Sy; hence £ N Sy is not N-independent. Suppose that

J > N. Then
0= Z Z QT + Z Q.

N<g<Jz€ENS, zeENS;

For z € S,, |z| < ¢*M,. Thus

Y Y s 3N aa<N Y Y al

N<q<Jz€ENS, N<q<Jz€ENS, N<q<J z€ENS,
<N Y Klog(¢®)? M, < K Y log(q®)g* M,
N<g<J N<qg<J

< My, by condition (2).
Thus

z€ENSy N<g<Jz€ENS,

However, each x € S is a multiple of M ; therefore

Z a,x = 0.

xeENSy

Since a, # 0 for at least one x € E N Sy, it follows that £ NSy is not
N-independent. Thus, whether J = N or J > N, EN.S; is not N-
independent. m

LEMMA 3. Assume the hypotheses and notations of Theorem 1. Let
{z; fil range over random selections from Q. Let P; denote this propo-
sition: for all @ = {a;}}7,, with a; an integer in [N, N], the equality

P iz = 0 implies that Y5 | |ai| = 0 or that there are more than [Ap;]
coefficients which are non-zero. Then the probability of P; being false is at
most C'log(j)j2V =2, where W is defined in expression (3) of Theorem 1 and

C =8NK(1—\).

Before describing the proof of Lemma 3, here is the proof of Theorem 1.
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Proof of Theorem 1. By Lemma 3, the probability of P; failing
for infinitely many positive integers j is at most

: 2W —2
Jim ; Clog(q)g™" 2,
which is 0 since W < 1/2 (by an integral comparison test). Thus, al-
most surely, P; is true for all but finitely many j’s. P; implies that any
set of at most [Ap;] indices ¢ must index distinct elements forming an NN-
independent set. Therefore, for p; > 0, one can partition the p; indices (7, 7)
into [p;/[Ap;]] subsets each of which indexes an N-independent subset of
Q;. Consequently, for p; > 0,

el =] =

[This partition bound holds trivially if p; = 0.] By Lemma 2, the union of
N-independent subsets from distinct @);’s, j > N, remains N-independent.
Thus, almost surely, the index set for the random variables {g; ;} is a union
of at most [1/\] sets which index N-independent sets together with a finite
set; the finite set comes from the finite number of j’s where j < N or where
P; fails to be true. m

LEMMA 4. From a finite subset QQ of real numbers of size n, choose p
points at random, {g;}%_,, uniformly and independently. For any coefficient
sequence o = {a; }!_,, let C,, denote the probability that

p
0="R(e) = ag;.
i=1

If P |ai] >0, then Cy < n™ 1.

Proof. Suppose first that exactly one coefficient, say «;, is non-zero.
Then R(«) = 0 if and only if g; = 0. This has probability 0 if 0 ¢ @ and
1/n if 0 € Q. Next, suppose that at least two coefficients are non-zero. Let
t be the last integer such that a; # 0. Then, R(a) = 0 if and only if

t—1
gt = —(a)™! Zaigi-
i=1

Set the right-hand side above equal to R*(«). By the joint independence
of the random variables g;, 1 < i < p, g; is independent of R*(«). Also,
P(g: = y) is either 1/n or 0; the latter if y € @ and the former if not. Hence

P(R(a)=0) = ¥ P(gi = —2)P(R*(a) = )
Tz€R

<(1/n)> PR*()=z)=1/n-1=1/n. =

zER
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LEMMA 5. Let ¢(s) = slog(s) + (1 — s)log(1 — s), for s € (0,1). For
A€ (07 1)7 pE Z+7 and t € (_)‘7 1- )‘) N [_1/])7 1/p]7

—pp(A +1) < [¢'(N)] = pop(N).

Proof. Since ¢” is positive, this follows from Taylor’s Remainder The-
orem. For A € (0,1) and ¢t € (—\,1 —\),

t2

S +1) = o) + gt + L1

for some u between A and A + ¢. One has ¢'(u) = log(u) — log(1 — u) and
¢"(u) =u"t+ (1 —u)"t >0 for u € (0,1). Since both X\ and \ + ¢ are in
(0,1) the remainder term is non-negative and thus

SA+1) = 6(N) + ¢' (M)t

Therefore, to prove this lemma, it suffices to have

—pd (Nt < [¢'(V)].

Suppose that A < 1/2. Then ¢'(\) = log[A/(1 — A)] < 0. It follows from
t <1/p that

[=p¢' (W]t < [=pd'(M](1/p) = —¢'(N).
If A > 1/2, then ¢/(\) > 0. It follows from ¢ > —1/p that
[=p¢'(N)]t < [=pd’ (N)](=1/p) = ¢'(A). =

Proof of Lemma 3. Let p denote p;. If A\p < 1, P; is always true
because 0 ¢ ; and hence any “N-relation” requires at least two points of
@;. So assume Ap > 1. The number of quasi-relations excluded by P; is

(@) Dip) = ri (2)me.

To see equation (4), think of a quasi-relation a with exactly s non-zero
coefficients. There are (g) locations for the non-zero coefficients; for each
placement, there are 2N choices of a non-zero integer from [—N, N].

Use Stirling’s approximation to factorials [1] to estimate (81; ) with
sp = [Ap]:

P sp p—sp
(5) (p)gp\/%rp. e e T

sp ep (sp)sPy/2msp ‘ (p — sp)P=5P/27(p — sp)

where

T < 1/(129) 4 o1/(A2ps) \ o1/12(p—ps)] < 11/72 < 1 17,
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After removing common factors of the form e* and p*, one has

(p > <2 ! ! T
D * * *
sp) P s°P\/2msp (1 — s)P—sP/27t(p — sp)
< a2 * VP ks °P(1—s)P7P
V2msp /P —sp
T V2p % e—p'[s log(s)+(1—s)log(1—s)]

<
— \/2msp * vp—1

since p — sp > (p — 1)/2,

T VD . )
<k —Y" 4 P gince sp > 2,
VT /2(p—1)
<e P, since p > 2.
View ¢(s) with s = A+ ¢ as in Lemma 5:
p < 1- )\e—lﬂﬁ()\)‘
sp) T A

Now return to D(p). Since A < 1/2, the binomial coefficients in equation (4)
are dominated by the last one. Also, Ap > 1 and hence [Ap] < Ap+1 < 2Ap.
Therefore

D(p) < ([Ap1)<;> (2N) 2]

< (2Ap)- ?e*’”“) - (2N)e P los(2N)

= 4ANp(1 — N)ePW/E) by equation (3).

By Lemma 4, the probability of P; failing is at most D(p)|Q;|~*. With
1Q;| = j2 p=p; < Klog(j?), and W > 0, one has

P(P; failing) < 4N(1 — \)K log(j2)e!< 108U") (W/K) ;=2
= Clog(5)5*" 2,
where C =8N(1-M)K. =

The efficiency of the proof. The proof does not provide elegant
estimates for A in terms of a priori values of N and K. To evaluate the
efficiency of the proof, assume that p; = | K log(j2)] (the maximum density
allowed by condition (1) of Theorem 1).

One can view the choice of K log(j?) points as approximately K/K,
choices of sets of size Kylog(j?). Let Ko = K(N,1/2). (By using La-
grange multipliers to find the maximum of KX subject to A € [0,1/2] and
W(N, K, \) = 1/2, one can show that the maximum occurs at the boundary
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of this manifold with A = 1/2. Thus, Ky, = K(N,1/2) is optimal for this
comparison argument.) The details require some explanation. Assume first
that K is not an integer multiple of K. Then one may find K|, € (0, K) for
which W(N, K{,1/2) < 1/2, [K/Ky| = [K/K{], and K is not an integer
multiple of K. Then the number of N-independent sets required for sets
chosen from ;s with large j is

— T _
2timenp | e | SRR

Thus at most 2[log(8N)K| N-independent sets are required for all but
finitely many j’s (almost surely). If K is an integer multiple of Ky, one can
not choose K|, < Ky without making [K/K|)| greater than [K/Ky|. In this
case, the limsup is [1 4+ K/Kp]|. In summary, the number of N-independent
sets required for all but finitely many j’s, almost surely, is bounded by

2|1 + log(8N)K|.

In the case of N =2 and K = 1.80 > log(2)~! (the latter is the asymptotic
density of a quasi-independent set, as proved below), random sets chosen
with a density greater than that of a quasi-independent set are a union
of no more than 10 dissociate sets (for all but finitely many j’s, almost
surely). The authors venture no guesses as to whether this is universally
true of quasi-independent sets; the quasi-independent set {1,6,10,12,14}
is an example where three dissociate sets are required and the worst case
known to date.

Fix K > 0, let N — oo, and consider [1/A(N, K)~ ] for some A(N, K)~ €
(0, \(N, K)) to be described. If X € (0,1/2] and

W (N, K,)) = K[\og(2N/A) + (A — 1) log(1 — \)] < 1/2,

then KAlog(2N) < 1/2 and thus A < 1/(2Klog(2N)). It follows that
AMN,K)— 0as N — co. One has

(A=1)log(l—=X) <A for A e(0,1),

< 2lim sup

{ K log(j?)

Kplog(j?) — 1

with

)\Ergl+()\ log(l—=X)/A=1.
If W*(N,K,\) is defined as K[l + log(2N/))], one has W(N,K,\) <
W*(N,K,\) for A € (0,1). Let A(IV, K)~ be the last A € (0,1/2] such that
WH*(N,K,\) < 1/2. Since W(N,K,\) < W*(N,K,\) for A € (0,1), one
has A(N, K)~ < A(N, K). As shown earlier,

AN, K)~ < AN, K) < 1/(2K log(2N)).
Also, limy .o W*(N, K, (4K log(2N))~!) = 1/4 < 1/2. Consequently, for
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N large enough,
1/(4K1og(2N)) < A(N,K)~ < 1/(2K log(2N))
and one may write
AMN,K)” = ((2+en)Klog(2N))™!  for some ey € (0,2).
By solving W*(N, K,A\(N,K)~) = 1/2 with A(IV, K)~ in this form, one
finds that
ey = 2[1 +log(2 +en) + log(K) + log(log(2N))]/ log(2N)
< 2[1 4 log(4) + log(K) + log(log(2N))]/ log(2N).
Therefore,
[1/A(N,K)~] = [(2+en)K log(2N)],
with limy_. o, exy = 0. By the previous equation for €y,
[1/AN, K)~ ]
= [2K {log(2N) + log(log(2N)) + log(K) + 1 +log(2 +en)}].
A lower bound for 1/ will follow from the next proposition.

PROPOSITION 6. Let m; be the mazximum cardinality of an N-indepen-
dent subset of any arithmetic progression of the form S; = k-{1,...,j} with
k #0. Then

1i mg . 1
P log(j) log(N +1)

Proof. It is clear that m; does not depend upon the dilation factor k,

so we may set k = 1 for simplicity. The set {1, N+1,(N+1)%,...,(N+1)t}

is N-independent in S;, where t = [log(j)/log(N + 1)]. Thus,
m; 1
lim inf J _ > .
ji—oo log(7) ~ log(N +1)
Second, any N-independent subset E has the property that, for distinct

coefficient sequences a and o’ from {0,1,..., N} ¥,
g Qpx # E aLx.
zeE zeE

If E C S; is N-independent of cardinality m;, there are (N 4 1) of these
sums in [0, N ) _px]. Thus, for m; > 1,

(N+1)™ <1+N> z<1+Njm;.
zelE

Thus (N + 1) < Njm; (for m; > 1) and
m; log(N + 1) —log(m;) < log(j) + log(NV).
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It follows that

m; log(mj)] log(N)
—|log(N+1) — —=——| <1+ iy
log(j) { ( ) m; log(7)
Since m; — 0o as j — 00,
Jim 2080M) _
J—0o0 mj
and hence
. , 1 .
log(N + 1) lim sup m]. = limsup {m] [log(N +1)— og(m])] }
j—oo log(j) j—oo L log(j) m;
log N
< limsup [1 + og] =1
j—o0 log(j)
Consequently,

; 1
lim sup J < . m
j—oo 10g(j) T log(N +1)

Proposition 6 implies that, for any choice of A\(N, K)~ from (0, A(N, K)),
[1/MN,K)™] > Klog(N +1).
First, by Proposition 6, if K log(j?) distinct points are chosen from Q; (of

size j2) and m; is the maximum size of an N-independent subset of ();, the
number of N-independent subsets required to cover those points is at least

-2 ) 2\
lim 108Uy os(T) | Klog(57) — 1
j—00 m; j—oo My log(52)

= Klog(N +1).

Second, note that Lemma 3 implies that almost all the random choices of
Theorem 1 produce distinct elements of ); for all but finitely many j. Hence
the above estimate applies to [1/A\(N, K)~].

Some deterministic observations. For Sidon sets and M-independent
sets, the question of whether they are a finite union of N-independent sets
is “finitely determined”. To make this precise, the following definition is
offered.

DEFINITION. For subsets E C Z, let u(E,m) = oo if E is not a fi-
nite union of m-independent sets; otherwise, let p(E, m) be the minimum
number of m-independent sets of which FE is the union.

As in [7], let a(E) denote the Sidon constant of E for Sidon subsets of Z,
and oo otherwise.

THEOREM 7. If the m-independent subsets of Z are unions of finitely
many n-independent subsets, then there is a uniform bound on the number
of n-independent subsets which are required.



126 K. J. HARRISON AND L. T. RAMSEY

THEOREM 8. If every Sidon subset of 7 \ {0} is the union of finitely
many m-independent subsets, then then there is an increasing function ¢ :
[1,00) — ZT such that, for Sidon subsets E of Z \ {0} with a(E) < r,

(6) u(E,m) < ¢(r).

The restriction to r > 1 is due to the fact that «(E) > 1 for all E C Z
(cf. [7]). The proofs of Theorems 7 and 8 will be facilitated by the following
lemmas. The proof of the first follows closely from the definitions.

LEMMA 9. For subsets E and F of Z, if F C E then o(F) < o(F) and
W(F,m) < u(E,m). Also, form <n, u(E,m) < u(E,n).

LEMMA 10. For k # 0 and E C Z, o(F) = a(kE) and p(E,m) =
pw(kE,m).

Proof. That a(F) = a(kE) is well known. For k # 0, F C Z is m-
independent if and only if kF is m-independent. Thus, if F is partitioned
into F;’s which are m-independent, then kFE is partitioned by kF;’s which
remain m-independent and vice versa. m

LEMMA 11. For E C Z,
(7) p(E,m) =sup{u(F,m) | F C E & F is finite}.

Proof. Let t equal the right-hand side of equation (7). By Lemma 9,
w(E,m) > t. Next, the reversed inequality will be proved. Let Ey =

EN[-s,s]. Then
E=JE.
S

and there are m-independent subsets I, ; (possibly equal to () such that
E,=|]JIps
q<t

Without loss of generality, it may be assumed that the I, ;s are disjoint for
distinct ¢’s. Hence

t
(8) Xp, = D Xu, .-
q=1

By a weak-limit argument, or by using Alaoglu’s Theorem in (. (Z) =
¢1(Z)*, there is a subsequence s; such that

lim Xipo, = fq forl1<gq<t,

J—0o0

pointwise on Z (or weak-* in (o (Z)).
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Necessarily, f, = x I, for some set I, C Z. By equation (8),

ZXI = hm ZXI = hm X5, =X

Thus, F is the dlSJOlIlt union of the I,’s. To prove that the I,’s are m-
independent, suppose that I, is not m-independent for some g. Then there
is an “m-relation”, specifically a finite set W C I, and integer coefficients
oy € [—m,m] with o, # 0 such that

Z azxr = 0.

Because x,  ~ converges pointwise to x, on Z and W is finite, there is

some jo such that W C I, for all j > jo. That would make I, ;. fail to be
m-independent, contrary to the hypotheses. So, I, must be m- 1ndependent
and hence pu(E,m) <t. m

Proof of Theorem 7. Assume that no uniform bound holds. That
is, for each ¢, there is an m-independent subset E; C Z such that u(E;,n)
> t. By Lemma 11 there is a finite subset F; C E; such that u(Fy,n) >t
(and of course remains m-independent). Let

F == U ktFt,
t

where the k;’s are positive integers which increase rapidly enough to make F
be m-independent. This will contradict the hypotheses, because Lemmas 9
and 10 imply that for all £,

p(Fyn) > p(keFe,n) = p(Fy,n) >t

One may choose k; as follows. Let k1 = 1. Given k; for s < ¢, let D; denote
the maximum absolute value of the elements

g g azx, where a, an integer in [—m,m] for all x.
s<t x€ksFs

Choose k41 > D;. Here’s an argument that F' is then m-independent.
Suppose that F' is not m-independent. Then there is a non-empty, finite
set W C F and integers «, € [-m,m| with a, # 0 such that

(9) Z azr = 0.
zeW

Because W is finite and non-empty, there is a maximum ¢ such that W N
kiFy # (0. If t = 1, then W is a subset of k1 F; and ki F} fails to be m-
independent (which contradicts the m-independence of F;). So t > 1, and
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equation (9) can be rewritten as

(10) Z 0T = — Z Z QT

xeWNk Fy s<t xeWnksFs
If Y ewnk, r, @t # 0, then it is a non-zero multiple of k; and

ktg‘ Z awm:‘—z Z Ny T

ceEWNk: Fy s<t xeWnksFs

Z ozx = 0.

zeWnNnk, Fy

< D;_y.

This contradiction proves that

Since a, # 0 for at least one = € ki F}, ki F; fails to be m-independent.
However, since k; > 0, this contradicts the m-independence of F;. m

Proof of Theorem 8. Suppose that, for every r > 1,
(11) sup{u(E,m) | E C (Z\{0}) & a(F) <r} < oo.

Then let ¢(r) be that supremum; it is clearly increasing with r and meets
the requirements of the theorem. Suppose, on the contrary, that there is
some r > 1 for which inequality (11) is false. Then, for each ¢, there is some
E, C Z\ {0} for which a(E;) < r and pu(E,m) > t. By Lemma 11, there is
a finite subset F; C E; for which u(F;, m) >t (and, of course, a(F;) < r).
As in the proof of Theorem 7, let

F=JkH,
t

for a rapidly increasing sequence of positive integers, {k;};. For all ¢,
p(F,m) > p(keFy,m) = p(Fy,m) > t.

Thus, F will not be a finite union of m-independent sets. If F' is Sidon, this
will contradict the hypotheses of Theorem 8.

To make F be Sidon, let ky = 1; for t > 1, let k; > 722!M,_;, where
M, is the maximum absolute value of an element of [ J, <t ksFs. Then, as in
the proof of Proposition 12.2.4, pages 371-372 of [2], {k:F}}+ is a sup-norm
partition for F: if p; is a k; Fi-polynomial (on T') and is non-zero for at most
finitely many ¢, then

oo oo
S sl < 27 Yoms]
=1 j=1 =

Recall that B(F') (the restrictions to F' of Fourier transforms of bounded
Borel measures on T') is the Banach space dual of Trig, (T') (the trigono-
metric polynomials with spectrum in F'). For p € Trig_(T), let p; denote
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its summand in Trig

f e B
(Fp =] o] < o 1fp)]
<

. p (I') under the natural decomposition. Then for
777

J
o
Z ||f’kij ||B(kjF]-) HijOO

J
o0
S (Sl;tlp Hf‘ktFt HB(ktFt)) Z HpJHOO
j=1

< (rsup [ fly,p, lloo) 2mllplloc), since a(kiFy) <,

< @77l flloo) 1Pl oo-

Thus, [|f|| 5 < 277| flloo- By the definition of Sidon constant, a(F') < 27r
and thus F' is Sidon. =

One can extend the idea of m-independence to arbitrary abelian groups,
by additionally restricting o, to [—p,p) when 2p is the order of x, and to
[—(p—1)/2,(p+1)/2) when the order of z is p and odd. Then Theorems 7
and 8 have more universal versions.

THEOREM 12. Suppose that, for some integers m and n and all abelian
groups G, m-independent sets are the finite unions of m-independent sets.
Then, independent of the group G, there is a uniform bound on the number
of n-independent sets required.

THEOREM 13. Suppose there is an integer m such that, for all abelian
groups G and all Sidon subsets E of G \ {0}, E is a finite union of m-
independent sets. Then there is an increasing function ¢ : [0,00) — Z7
such that, if E C (G\{0}) for any abelian group G and o(E) < r, then

p(E,m) < ¢(r).

Proof of Theorem 12. Suppose that, for every ¢, there is an m-
independent subset E; of some abelian group G; such that u(E,n) > t. Let
G be the infinite direct sum of the Gy’s: g € G if and only if

gZZJr—)UGt
t

with g(t) € Gy for all ¢ and g(t) # 0 for at most finitely many ¢ [assume
that the groups are presented additively]. Embed G; into G' canonically:
T +— g, where g, (t) = z and g,(s) = 0 for s # t. View G, as identical with
its isomorphic embedding; E; remains m-independent under the embedding
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and p(Fy,n) is unchanged. It should be clear that
E=|JE. cG
t

is m-independent while
w(E,n) > u(Ey,n) >t, forall ¢.

So F is not the finite union of n-independent sets, contrary to the hypothe-
ses. m

Proof of Theorem 13. As in the proof of Theorem 8, suppose that
there is some r € [1,00) such that, for all ¢, there is an abelian group G;
and E; C G\ {0} for which a(E;) < r and pu(E;,m) > t. As in the proof of
Theorem 12, let G be the direct sum of the G;’s and view G; as embedded
in G. Under this embedding, neither a(E};) nor u(Ey, m) changes. Let

E:UE.
t

Then FE is not the union of finitely many m-independent sets.

To see that F is a Sidon set, note that {F;}; is a sup-norm partition
of E. Specifically, if I" is the compact group dual to G (G is given the
discrete topology), then for p € Trig _(I"), with p; its natural summand in
Trig,, (1),

> Ipillee < wllplloos

j=1
by Lemma 12.2.2, page 370 of [2]. To apply that lemma two things are
required. First, no E; may contain 0, which is true here. Second, in the
language of [2], the ranges of {p;}32, are 0-additive: given {v;}32; from I’
there is some v € I' for which

(12) (p(v)-jiizv(Vj)‘==0-

Here’s a proof of equation (12). I' is the infinite direct product of I'; = ét:
~v € I' if and only if

’y:Z+—>UFt, with () € I5.
t

Let v € I" satisfy v(j) = v;(j). Note that for a character g used in p;, (g,7)
is determined by 7(j) because g is 0 in every other coordinate:

(9.7) = [Tta(s),7(5))
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Thus
p(7) = ij('y) = ij(w)'

Once it is known that E is sup-norm partitioned by the FE;’s, then just as
in the proof of Theorem 8 one has

a(E) < msupa(Ey) < mr.
t

This proves that E is Sidon. m
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