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FOUR MAPPING PROBLEMS OF MAĆKOWIAK

BY

E. E. GRACE (TEMPE, ARIZONA)
AND E. J. VOUGHT (CHICO, CALIFORNIA)

In his paper “Continuous mappings on continua” [5], T. Maćkowiak col-
lected results concerning mappings on metric continua. These results are
theorems, counterexamples, and unsolved problems and are listed in a se-
ries of tables at the ends of chapters. It is the purpose of the present
paper to provide solutions (three proofs and one example) to four of those
problems.

A compactum is a compact metric space, a continuum is a connected
compactum, and a map is a continuous function. If f : X � Y is a map
(the double arrow indicates a surjection) and X is a continuum, then f is
partially confluent (respectively, n-confluent) if each continuum K in Y is the
union of the images of finitely many (respectively, n or fewer) components
of f−1(K). If the restriction of f to each subcontinuum of X is partially
confluent (respectively, n-confluent), then f is hereditarily partially conflu-
ent (respectively, hereditarily n-confluent). Note that 1-confluent maps are
also called weakly confluent and that n-confluent maps are called n-partially
confluent in [7, p. 409] where they and partially confluent maps are defined.
Example 1 in our paper shows that hereditarily partially confluent maps
are not necessarily n-confluent for any positive integer n. A continuum is
a local dendrite if each of its points is contained in a closed neighborhood
which is a dendrite. The first result of this paper, Theorem 1, proves that
the image of a local dendrite under a hereditarily partially confluent map
is a local dendrite. This yields as a corollary a theorem of Maćkowiak [5,
9.24, p. 82] for hereditarily 1-confluent maps and answers in the affirma-
tive a question raised by him for a subclass of 2-confluent maps [5, 9.26,
p. 83].
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A continuum is hereditarily divisible by points if every subcontinuum
is separated by one of its points. It is easily seen that such a continuum
is hereditarily decomposable and hereditarily unicoherent, i.e., that such
a continuum is a λ-dendroid. A map f : X � Y is locally monotone if
each point p in X has a closed neighborhood U such that f(U) is a closed
neighborhood of f(p) and f |U is monotone. Maćkowiak asked [5, 7.28, p. 65]
whether the property of a continuum being hereditarily divisible by points
is preserved by locally monotone maps. Theorem 3 answers this question in
the affirmative.

An arbitrary class A of maps has the (weak) limit property if, for each
pair X, Y of compacta (with Y locally connected), {f : X � Y | f ∈ A} is a
closed subset of Y X , the set of maps from X into Y with the compact-open
topology. A map f : X � Y is atriodic if, for each subcontinuum K of Y ,
there are components A and B (not necessarily distinct) of f−1(K) such that
f(A)∪f(B) = K and for each component C of f−1(K), either f(C) ⊆ f(A)
or f(C) ⊆ f(B). This is not exactly the definition given in [5, (ix), p. 12]
but is easily seen to be equivalent and is better for our purposes.

Atriodic maps are 2-confluent, and every map from a continuum onto an
atriodic continuum is an atriodic map [5, 6.12, p. 53]. Maćkowiak asked if
the set A of all atriodic maps has the weak limit property [5, 5.56, p. 45].
Theorem 4 answers this question in the affirmative.

A class A of maps has the composition factor property if the composition
g ◦ h of maps is a member of A only if g ∈ A. A map f : X � Y between
continua is atomic if, for each subcontinuum K of X such that f(K) is
nondegenerate, K = f−1(f(K)). Example 2 shows that atomic maps do
not have the composition factor property, thus answering in the negative a
question of Maćkowiak [5, 5.22, p. 33].

1. Hereditarily partially confluent maps on local dendrites

Theorem 1. If f is a hereditarily partially confluent map defined on a
local dendrite X, then Y = f(X) is a local dendrite.

P r o o f. Any local dendrite is regular [4, Theorem 1, p. 303] and so is
hereditarily locally connected [4, Theorem 2, p. 283]. Hence X is hereditarily
locally connected, and so is Y , since partially confluent maps preserve that
property [6, Theorem II.4, p. 566].

Assume the theorem is false, i.e., assume X and f satisfy the hypotheses
and Y =f(X) is not a local dendrite. Then Y , since it is not a local dendrite,
contains infinitely many distinct simple closed curves J1, J2, . . . [4, Lemma 3,
p. 303]. Since Y is hereditarily locally connected, the simple closed curves
can be chosen so that they converge to a point s. They can also be chosen so
that none is contained in the union of the others. Let Y ′ be a subcontinuum
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of Y containing
⋃∞

j=1 Jj such that, for i = 1, 2, . . . , there is an arc [ri, si, ti]
in Ji \

⋃
j 6=i Jj that is in the interior of Ji relative to Y ′.

Since f is partially confluent and Y ′ \ [
⋃∞

j=1(sj , tj)] is a subcontin-
uum of Y , there is a continuum H in f−1(Y ′ \ [

⋃∞
j=1(sj , tj)]) such that

f(H)∩{s1, s2, . . .} is infinite. Assume without loss of generality that f(H) ⊇
{s1, s2, . . .}. Let r̃ be a point of the limiting set of H ∩ f−1(s1), H ∩
f−1(s2), . . . Then r̃ ∈ f−1(s), since s1, s2, . . . converges to s. Let R1 be
an arc in H that is irreducible from f−1(s1) to r̃. Since R1 is an arc in
H and f |R1 is partially confluent, f(R1) is a graph [6, Theorem III.2, p.
569] in Y ′ \ [

⋃∞
j=1(sj , tj)]. Any graph in that continuum has an end point

in each of the arcs [r1, s1], [r2, s2], . . . that it intersects. Since no graph has
infinitely many endpoints, f(R1) intersects at most a finite number of those
arcs. Hence, assume without loss of generality that f(R1)∩ (

⋃∞
j=1[rj , sj ]) =

[r1, s1].
Since H is locally connected, there is, relative to H, a connected, open

neighborhood C1 of r̃ with diam C1 ≤ 1 such that f(C1) ∩ [r1, s1] = ∅. As-
sume without loss of generality that C1 ∩ f−1(s2) 6= ∅, and let R2 be an
arc in C1 that is irreducible from f−1(s2) to r̃. Without loss of generality
f(R2) ∩ (

⋃∞
j=1[rj , sj ]) = [r2, s2]. Let C2 be a connected, relatively open

subset of H containing r̃, with diam C2 ≤ 1/2, such that f(C2) ∩ {[r1, s1] ∪
[r2, s2]} = ∅. Assume without loss of generality that C2 ∩ f−1(s3) 6= ∅, and
let R3 be an arc in C2 that is irreducible from f−1(s3) to r̃. Without loss of
generality f(R3) ∩ (

⋃∞
j=1[rj , sj ]) = [r3, s3]. Continuing with this construc-

tion (choosing C1, C2, . . . so that diam Ci → 0) yields a sequence R1, R2, . . .
of arcs in H that converges to r̃ and has the property that for i = 1, 2, . . . ,
Ri is irreducible from f−1(si) to r̃ and f(Ri) ∩ (

⋃∞
j=1[rj , sj ]) = [ri, si].

Since f is partially confluent and Y ′ \ [
⋃∞

j=1(rj , sj)] is a subcontinuum
of Y , there is a continuum K in f−1(Y ′ \ [

⋃∞
j=1(rj , sj)]) such that f(K) ∩

{s1, s2, . . .} is infinite. Without loss of generality f(K) ⊇ {s1, s2, . . .}. A
construction similar to that in H yields t̃ in f−1(s) and a sequence T1, T2, . . .
of arcs in K that converges to t̃ and has the property that, for i = 1, 2, . . . ,
Ti is irreducible from f−1(si) to t̃ and f(Ti) ∩ (

⋃∞
j=1[sj , tj ]) = [si, ti].

Let H ′ =
⋃∞

j=1 Rj and K ′ =
⋃∞

j=1 Tj . For i = 1, 2, . . . , let r̃i and t̃i be
the endpoints of Ri and Ti, respectively, that are in f−1(si). Then r̃i = t̃i
for at most a finite number of values of i, since X does not contain infinitely
many simple closed curves [4, Theorem 4(i), pp. 303, 304]. Assume without
loss of generality that r̃i 6= t̃i, for i = 1, 2, . . . If H ′ ∩K ′ = ∅, let A be an arc
in X that is irreducible between H ′ and K ′. If H ′ ∩K ′ 6= ∅, let A = {p} for
some p in H ′∩K ′. In either case f |(A∪H ′∪K ′) is partially confluent, since
f is hereditarily partially confluent and A∪H ′∪K ′ is a subcontinuum of X.
Consider the subcontinuum V = f(K ′) ∪ (

⋃∞
j=1[r

′
j , sj ]) of f(A ∪H ′ ∪K ′),
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where r′j ∈ (rj , sj), for j = 1, 2, . . . There is some component L of f−1(V )∩
(A ∪ H ′ ∪ K ′) such that f(L) ∩ {r′1, r′2, . . .} is infinite. Since any contin-
uum in f−1(V ) ∩ (H ′ ∪ K ′) that intersects f−1(r′i) is contained in Ri, for
i = 1, 2, . . . , L is not a subset of H ′ ∪ K ′. Hence L ∩ [A \ (H ′ ∪ K ′)] 6= ∅
and A is an arc that is irreducible between H ′ and K ′. So L is the union of
closed connected sets (some perhaps void) CA, CH , and CK , where CA ⊆ A,
CH ⊆ H ′ and CK ⊆ K ′. Then f(CH) ∩ {r′1, r′2, . . .} contains at most one
point, and f(CK) ∩ {r′1, r′2, . . .} = ∅, so f(CA) ∩ {r′1, r′2, . . .} is infinite. But
f(CA) is a graph [6, Theorem III.2, p. 569] in V and no graph has infinitely
many endpoints. Hence f(CA) ∩ {r′1, r′2, . . .} is finite. This contradiction
establishes the theorem.

The following result, due to Maćkowiak [5, 9.24, p. 82], is a corollary of
Theorem 1.

Corollary. If f is a hereditarily weakly confluent map defined on a
local dendrite X, then Y = f(X) is a local dendrite.

P r o o f. This follows from Theorem 1 because weakly confluent maps
are 1-confluent.

Maćkowiak asked [5, 9.26, p. 83] whether hereditarily atriodic maps pre-
serve the property of being a local dendrite and conjectured that they do.
Since hereditarily atriodic maps are hereditarily 2-confluent, an affirmative
answer to Maćkowiak’s question follows from Theorem 1.

The following example shows that the hypothesis, in Theorem 1, that f
is hereditarily partially confluent is weaker than the property that there is
a positive integer n such that f is hereditarily n-confluent.

Example 1. Planar continua X and Y that are of Menger order 3 and are
homeomorphic to each other and a map f from X onto Y that is hereditarily
partially confluent but is not n-confluent for any positive integer n.

For i and j any positive integers with i ≥ j, let aij and bij be points
in the interval (0, 1) on the x-axis in the coordinate plane in the following
order: a11 < b11 < a21 < a22 < b21 < b22 < a31 < a32 < a33 < b31 < . . .
That is, for every positive integer i, (1) aij < aik and bij < bik if j < k ≤ i,
and (2) aij < bik < a(i+1)j if j and k are in {1, . . . , i}. Also, for i and j
any positive integers with i ≥ j, let [aij , b

′
ij , c

′
ij ] and [bij , cij ] be intervals,

of length 1/i, perpendicular to [0, 1]. Let X = [0, 1] ∪ [
⋃∞

i=1(
⋃i

j=1[aij , c
′
ij ])]

and Y = [0, 1] ∪ [
⋃∞

i=1(
⋃i

j=1[bij , cij ])]. Let f be the identity on [0, 1] and
map [aij , b

′
ij ] linearly onto [aij , bij ] and [b′ij , c

′
ij ] linearly onto [bij , cij ], for all

appropriate i and j. It is easily verified that X, Y , and f have the stated
properties.
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2. Locally monotone maps on continua that are hereditarily
divisible by points

Lemma 1. Let f : X � Y be a map, and let Z = {Xp | p ∈ X} where Xp

is the p-component of f−1(f(p)). Then the projection function g : X � Z
is a monotone map.

P r o o f. It is easily seen that the decomposition is upper semi-continuous,
since f is continuous. It then follows that the projection function g is contin-
uous. From the definition of Z it is clear that the preimage of any member
of Z is connected. Hence g is a monotone map.

Lemma 2. Let f : X � Y be a locally monotone map, Z = {Xp | p ∈ X}
with the decomposition topology where Xp is the p-component of f−1(f(p)),
and h : Z � Y be defined by h(Xp) = f(p). Then h is a finite-to-one, open
map.

P r o o f. Locally monotone maps are confluent [5, Table II, p. 28] and
have the property that the collection of components of f−1(f(p)) is finite
for all p in X [5, 4.32, p. 22]. Hence the map h is finite-to-one. Suppose h
is not open. Then there is an element K of Z and an open set V in Z such
that K ∈ V but h(K) is not an interior point of h(V ). Let p ∈ K and let U
be a closed neighborhood of p (in X) such that f(p) ∈ Int (f(U)) and f |U is
monotone. Then there is a sequence q′1, q

′
2, . . . of points in {Y \h(V )}∩f(U)

that converges to h(K) = f(p). For i = 1, 2, . . . , let qi ∈ U ∩ f−1(q′i) and
assume without loss of generality that q1, q2, . . . converges to a point q in
U . Then f(q) = f(p). Since {p, q} ⊆ U ∩ f−1(f(p)) and U ∩ f−1(f(p)) is a
subcontinuum of U , it follows that {p, q} ⊆ K. Let g be the projection map
from X to Z. Then g−1(V ) is an open set in X containing K and, therefore,
containing q. Hence qi ∈ g−1(V ) for large i, since q1, q2, . . . converges to q
and, therefore, q′i = f(qi) = h(g(qi)) ∈ h(V ) for large i. This contradiction
proves the lemma.

Lemma 3. Let f : X � Y be a locally monotone map. Then there exist
a continuum Z and maps g : X � Z and h : Z � Y such that f = h ◦ g,
where g is monotone and h is finite-to-one and open.

P r o o f. Let Z be the continuum and g the map defined in Lemma 1,
and let h be the map defined in Lemma 2. The conclusion of the lemma
follows from Lemmas 1 and 2.

Theorem 2. Let f : X � Y be a finite-to-one, open map and X be a
continuum that is hereditarily divisible by points. Then Y is a continuum
that is hereditarily divisible by points.

P r o o f. Since X is a λ-dendroid, and the image of a λ-dendroid under
an open map is a λ-dendroid [5, 7.24, p. 64], Y is a λ-dendroid, and, hence,
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is hereditarily unicoherent. Let K be a subcontinuum of Y . Since f is
finite-to-one, there is a positive integer n and an uncountable subset Kn of
K such that f−1(y) has fewer than n points, for all y in Kn.

Let H be a component of f−1(K). Since f is confluent [5, 3.6, p. 13] and
finite-to-one, each component of f−1(K) maps onto K, and there are only
finitely many such components. It then follows that f |H is an open map [5,
3.16, p. 14]. We wish to show that H contains a finite set F such that H \F
is the union of n or more separated sets, i.e., disjoint sets that are both open
and closed relative to H \F . We will then show that f(F ) separates K, and,
therefore, since K is unicoherent, that some point of f(F ) separates K.

If H contains a point p such that H \ {p} has n or more components,
then let p1 be such a point and let F = {p1}. Otherwise, let p1 be a
separating point of H. Then H \ {p1} is the union of separated sets B1 and
A1 where A1 is connected. Let p2 be a separating point of A1 = A1 ∪ {p1}.
Either F = {p1, p2} has the desired property or H \ {p1, p2} is the union of
separated sets B1, B2 and A2 where A2 is connected. Continuing this process
we construct a finite subset F = {p1, . . . , pm} of H such that H \ F is the
union of n or more separated sets. Since these sets are disjoint, there is no
point y of Kn such that f−1(y) intersects all of them. Let y1 ∈ Kn \ f(F ),
and let A′ be one of the separated sets in H \ F that does not intersect
f−1(y1). Then A′ is a nonvoid subset of H \ F that is open and closed
relative to H \ F and f(A′) does not contain K \ f(F ), since y1 6∈ f(A′).

Since f |H is an open map and A′ is open relative to H, it follows that
f(A′) is open relative to K. Hence f(A′)\f(F ) is open relative to K \f(F ).
Also, f(A′) ∪ f(F ) = f(A′ ∪ F ) = f(A′ ∪ F ) = f(A′) ∪ f(F ) is closed.
Therefore, f(A′)\f(F ) is a nonvoid, proper subset of K \f(F ) that is open
and closed relative to K \ f(F ). It follows that K \ f(F ) is not connected,
so f(F ) is a finite subset of K that separates K.

Let F ′ be a subset of f(F ) that is minimal with respect to separating K,
and let K \F ′ = R∪S, a separation. Since no proper subset of F ′ separates
K, both R and S contain F ′. Similarly, any nonvoid subset of R (or S)
that is open and closed relative to R (or S) must contain F ′. Therefore
R = R ∪ F ′ and S = S ∪ F ′ are continua whose intersection is F ′. Since Y
is hereditarily unicoherent, F ′ is connected. Hence F ′ consists of one point,
which is a separating point of K. It follows that Y is hereditarily divisible
by points.

Theorem 3. Let f : X � Y be a locally monotone map and X be a
continuum that is hereditarily divisible by points. Then Y is hereditarily
divisible by points.

P r o o f. By Lemma 3, f = h ◦ g where g is monotone and h is finite-to-
one and open. Monotone maps preserve the property of being hereditarily
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divisible by points [5, 7.26, p. 65]. By Theorem 2, finite-to-one, open maps
also preserve this property. Therefore f = h ◦ g also preserves it and the
theorem is proved.

This theorem answers a question of Maćkowiak [5, 7.28, p. 65].

3. Atriodic maps and the weak limit property. Maćkowiak gave
an example [5, 5.57, p. 45] showing that the class of atriodic maps does
not have the limit property. In the example, the domain compactum is not
connected and the range is not locally connected, so the example does not
answer either of the following two questions that he raised [5, 5.56, p. 45].
Does the class of atriodic maps have the limit property on continua? Does
it have the weak limit property? The first question is still unanswered, and
Theorem 4 below answers the second in the affirmative.

Atriodic maps are 2-confluent and, for each positive integer n, the class of
n-confluent maps has the limit property [5, 5.55, p. 45], but, unfortunately,
that was not helpful in proving Theorem 4.

Theorem 4. The class of atriodic maps has the weak limit property.

P r o o f. Let X and Y be compacta with Y locally connected, and let Y X

be the space of all maps from X into Y with the compact-open topology.
Let A = {g ∈ Y X | g is an atriodic map from X onto Y }, and let f ∈ A.
We wish to show that f is an atriodic map from X onto Y , thus showing
that A is closed, which establishes the theorem.

Let K be a subcontinuum of Y , and let N1, N2, . . . be a sequence of
connected open sets closing down on K (i.e., N1 ⊇ N2 ⊇ N2 ⊇ N3 ⊇ . . .
and K =

⋂∞
i=1 Ni). Since Y X is metrizable [2, 8.2(3), p. 270] and has the

compact-open topology, there is a sequence f1, f2, . . . in A that converges
to f and has the property that fi(f−1(K)) ⊆ Ni, for i = 1, 2, . . . If p ∈
lim sup f−1

i (N i), then f(p) ∈ K, since f1, f2, . . . converges to f uniformly [2,
Theorem 7.2, p. 268]. Hence, not only do the terms of f−1

1 (N1), f−1
2 (N2), . . .

contain f−1(K) but the sequence converges to f−1(K). It also follows from
the uniform convergence of f1, f2, . . . , and the continuity of the functions,
that f is continuous [2, 7.3, p. 268].

For i = 1, 2, . . . , N i is a subcontinuum of Y and fi is atriodic, so there
are components Ai and Bi (not necessarily distinct) of f−1

i (N i) such that
fi(Ai) ∪ fi(Bi) = N i and, if Ci is a component of f−1

i (N i), then fi(Ci) ⊆
fi(Ai) or fi(Ci) ⊆ fi(Bi). Assume without loss of generality that A1, A2, . . .
and B1, B2, . . . converge to continua A′ and B′, respectively. Since A1 ∪B1,
A2 ∪ B2, . . . converges to A′ ∪ B′, and f1, f2, . . . converges to f uniformly,
f(A′ ∪B′) = K.

Let A and B be the components of f−1(K) that contain A′ and B′,
respectively. Then K ⊇ f(A)∪ f(B) ⊇ f(A′)∪ f(B′) = f(A′ ∪B′) = K, so
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f(A)∪ f(B) = K. Let C be a component of f−1(K). Then for i = 1, 2, . . . ,
there is a component Ci of f−1

i (N i) that contains C. Assume without loss
of generality that C1, C2, . . . converges to a continuum C ′ which, of course,
contains C. Also assume that fi(Ci) ⊆ fi(Ai), for i = 1, 2, . . .

Let p ∈ C. Then fi(p) ∈ fi(C) ⊆ fi(Ci) ⊆ fi(Ai) for i = 1, 2, . . . ,
so there is a point pi in Ai such that fi(p) = fi(pi). Assume without
loss of generality that p1, p2, . . . converges to a point p′ in A′ ⊆ A. Then
f(p) = f(p′), since f1, f2, . . . converges uniformly to f . Hence f(C) ⊆ f(A),
which implies that f ∈ A, and, hence, that A is closed. This establishes the
theorem.

4. Atomic maps and the composition factor property.
Maćkowiak asked if the class of atomic maps has the composition factor
property [5, 5.22, p. 33] and conjectured that it does. Example 2 shows
that the property fails, even on continua.

Example 2. An atomic map f : X � Z that is the composite of maps
h : X � Y and g : Y � Z but g is not atomic.

In [1, Section 7, pp. 189–191] a continuous collection G of disjoint pseu-
doarcs is described such that M =

⋃
G is a homogeneous continuum and G

with the decomposition topology is a simple closed curve. Also, if A ∈ G
and K is a subcontinuum of M that contains a point of A and a point of
M \ A, then A ⊆ K (see [3, Theorem 2, p. 739]). Let f be the projection
map from M onto G with the decomposition topology. Then f is clearly an
atomic map onto a simple closed curve.

Let X = M and Z = G with the decomposition topology. We wish to
define a continuum Y (a decomposition space of X) and maps h : X � Y
and g : Y � Z such that f = g ◦ h and g is not atomic. The construction
of G referred to above uses a circle W2 in the plane that has the properties
that (1) W2 ∩ M is a topological Cantor set, (2) both endpoints of each
component of W2\M belong to the same member of G, and (3) W2 intersects
each member of G [1, Section 7, pp. 189–191]. Let Y be the decomposition
space of M that results from identifying the endpoints of each component
of W2 \M . Let h be the projection map from X onto Y . Now h(M ∩W2)
is a simple closed curve that intersects each member of {h(A) | A ∈ G}.
Let g : Y � Z be such that f = g ◦ h, i.e., for each x ∈ A ∈ G, let
g(h(x)) = A, as a point of Z. Clearly g is not atomic since K = h(M ∩W2)
is a subcontinuum of Y and g−1(g(K)) = Y 6= K.
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