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NEGATIVELY REDUCED IDEALS IN ORDERS OF
REAL QUADRATIC FIELDS: EVEN DISCRIMINANTS
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1. Introduction. Let A be a positive discriminant, that is, a nonsquare
positive integer congruent to 0 or 1 modulo 4. Let Oa be the order of
discriminant A in the real quadratic field Q(v/A). The primitive ideals of
O are the Z-modules

(*)a I =la,(b+VA)/2], where a,b € Z,
a>0, c=(b*— A)/(4a) € Z and (a,b,c) = 1.

Our main reference is [4]; however, we depart from notation there in requir-
inga>0. In (x)a,a =N(I) =(0x :I) is the norm of I, and b is uniquely
determined modulo 2a.

For a real number A\, we denote by [A] the greatest integer not exceed-
ing \. For ¢ = 2 4+ yvVA € Q(vA) (z,y € Q), we denote by = z — yvVA
its conjugate.

If I is given by (%) A, the number ¢ = (b++/A)/2a is determined modulo 1
by I, while I = al[l, ¢] is uniquely determined by . The quantity ¢ + [—%]
depends only on I. Following P. Kaplan [2], we call the ideal I k-reduced
if o+ [—p] > k, and strictly k-reduced if k < ¢ + [~p] < k + 1. With
this terminology, 1-reduced ideals are just the reduced ideals in the classical
sense, O-reduced ideals are the negatively reduced ideals considered in [6]
and [3] (see also [7]), and strictly O-reduced ideals are negatively reduced
ideals which are not reduced. For each k > 0, the number of k-reduced
ideals of O, is finite.

These notions have been used by P. Kaplan [2] in the case of odd dis-
criminants D, to relate the 0-reduced and 1-reduced primitive ideals of O4p
to the primitive ideals of Op in a precise way. When D =5 (mod 8) these
results have application to Eisenstein’s problem concerning the existence
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of odd solutions of the equation 22 — Dy? = 4. This connection was first
observed by Mimura [6] and investigated in a systematic way by P. Kaplan
and P. A. Leonard [3].

In the present note we study the relationship between primitive 0-reduced
ideals of O4p and primitive ideals of Op in the case when D is even, and
we give an application to the Pell equation.

2. Notations and results. Let D = 4d be a discriminant. We start
with a description of the primitive ideals of Op and Oy4p.

LEMMA 1. (i) Each primitive ideal J of Op is of the form

(*)p J=[A,B+Vd], where A, BcZ, A>0,
C=(B?>~d)/Ac€Z and (A,2B,C) = 1.

(ii) Fach primitive ideal I of O4p is of the form

(*)ap I =[a,2b+2Vd], wherea,beZ, a>0,
c=4(b* —d)/a € Z and (a,2b,c) = 1.

In particular, we have either a =1 (mod 2) ora =0 (mod 4).

Proof. (i) If J is a primitive ideal of Op, then J = [A, (b + V4d)/2],
where A,b; € Z, A >0, C = (b? — 4d)/(4A) € Z and (A,by,C) = 1. This
implies by =0 (mod 2), and with b; = 2B we obtain the asserted form.

(ii) If T is a primitive ideal of Oyp, then I = [a, (b; + v/16d)/2], where
a,by € Z,a > 0,c= (b¥—16d)/(4a) € Z and (a, by, c) = 1. This implies b; =
0 (mod 2), and with by = 2by we obtain I = [a, by +2v/d] = [a, a+bs+2V/d],
c= (b3 —4d)/a € Z and (a,2by,c) = 1. If by is odd, then so is a, and we
replace by by the even number a + by. Therefore we may assume that by is
even, by = 2b,c = 4(b?> — d)/a and (a,2b,c) =1. m

For a primitive ideal I of O4p in the form (x)4p, we define a primitive
ideal 6(I) of Op by the formula

_Jla,b+Vd  ifa=1 (mod2),
(1) = :
[a/4,b4+/d] ifa=0 (mod 4).
This map, already studied by Gauss, was investigated in detail in [4], §3,
and in [3], §3. Let C}, resp. C;}, be the group of strict equivalence classes
of primitive ideals of Op resp. O4p. Then 6 induces a surjective group
homomorphism (also denoted by 6)

O:CID—>CE

such that, for any class ¢ € CJ,, and each primitive ideal I € ¢, we have
O(I) € 6(c). Concerning the kernel of 6, we have the following result.
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LEMMA 2. Consider Pell’s equation
(P) 2 —dy? = 1.

If (P) has a solution (x,y) with y =1 (mod 2), then 0 is an isomorphism;
otherwise the kernel of 0 has order 2.

Proof. For a discriminant A, let h A be the number of classes of properly
equivalent primitive binary quadratic forms with discriminant A. Then we
have ha = #C} ([5], Theorem 1.20), and therefore

_ #C/p _ lup

r = F#ker(0) = #Cg =y

and the latter quotient is calculated in [1], §151 as follows. Let (2, yo) resp.
(x1,y1) be the least positive solution of #? — dy? = 1 resp. 22 — 4dy® = 1;
then

_— 2log(zo + yoVd)

log(z1 + 2y1 \/&)

From the theory of Pell’s equation (cf. [1], §85) it follows that (P) has a
solution (z,y) with y = 1 (mod 2) if and only if yp = 1 (mod 2), and in
this case x; + 2y1vVd = (zo + yov/d)?, whence r = 1. If yo = 0 (mod 2),
then y; = yp/2 and r = 2. =

In what follows let E (respectively E*) denote the set of primitive 0-
reduced ideals of O4p (respectively Op). Our next lemma provides a useful
normalization of ideals in E™*.

LEMMA 3. For each J € E*, there exists a unique C = Cj € Z such that
J=[A,B++/d], where A,B€Z, A>0,C = (B>-d)/A, (A,2B,C)=1,
and w = (B + V/d)/A satisfies

l<w<2<w.

The number w = wy is also uniquely determined by J, and J is 1-reduced if
and only if w > 3.

Proof. By Lemma 1, J = [A, B + \/d] where A,B € Z, A > 0,
C = (B*-d)/A€Zand (A,2B,C) = 1. In this representation, A = N'(J)
is uniquely determined, B is uniquely determined modulo A, and each nor-
malization of B also fixes C. There is a unique choice of B modulo A
such that the number w = (B + v/d)/A satisfies 1 < @ < 2, and since
w+ [-w] > 0, we infer w > 2. J is 1-reduced if and only if w + [-&] > 1,
ie,w>3 =
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DEFINITION. (a) Let J € E* be an ideal, A = N(J) and C =C; € Z
the number introduced in Lemma 3. The ideal J is called

e of type 1if C =0 (mod 2) and J is strictly 0-reduced;

e of type 2 if either C' =0 (mod 2) and J is 1-reduced
or A=0 (mod 2) and J is strictly O-reduced;

e of type 3if A=C =1 (mod 2)
or A=0 (mod 2) and J is 1-reduced.

(b) For a class ¢ € CJ}, and j € {1,2,3}, denote by N7 (c) the number of
ideals of type j in 0(¢c) N E*, and set N(c) = #(EN¢), N = #E.
(c) For j € {1,2,3}, let N; denote the number of ideals of type j in £*.

THEOREM. For any class ¢ € CZD, we have
3
DN = 3 N
j=1 ¢€0-1(0(c))
The proof of Theorem 1 will be given in §3. Here we draw two corollaries.
COROLLARY 1. N = Ny 4+ 2N35 + 3N3.
Proof. With r = #ker(f), we obtain
3 3
rY iNj= ) 3 aNj@=3, Y NE)=r) N=rN
j=1 cect 7=1 cec), ¢/€071(0(c)) cec;,
whence the assertion. m
COROLLARY 2. The following assertions are equivalent:

(a) Pell’s equation x> —dy® = 1 has a solution (z,y) withy =1 (mod 2).
(b) For any class ¢ € C/},, we have N(c) = Ni(c) + 2N3 (c) + 3N3 (c).

Proof. Since N(c) > 0 for every ¢ € C/},, Theorem 1 implies that (b)
holds if and only if 6 is an isomorphism. Now the assertion follows from
Lemma 2. =

3. Proof of the theorem. Throughout, we fix an ideal class ¢ € CZ'D,

and we set
= U ¢
c/€60-1(0(c))

Clearly, © = ¢ if 6 is injective; otherwise ¢ = ¢ U ¢; where ¢ # ¢; € Cj}, and
O(c1) = 0(c). We will study the effect of 6 on the ideals I € EN¥, given by
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(*)4p. To this end, we partition E Nt, defining E; (i = 1,2,3) by
Ei={I€Ent|a=1 (mod 2) and O() is O-reduced},
Ey;={I€Ent|a=1 (mod 2) and O() is not O-reduced},
Es={I€ENt|a=0 (mod4)}.

For an ideal J € E* with associated number w, we denote by J’ the ideal
associated with w’ = ([w + 1] — w)™!; see [3]. Moreover, we set A; = N(J)
and we denote by C; € Z the number introduced in Lemma 3.

For I € ENt, we define

_[6() ifIeE;UE;s,
wil) = {6([)’ if I € Fs.
The theorem follows from Propositions 1, 2 and 3 below, giving the effect
of ¢ on E1, E5 and FEj3, respectively.

PROPOSITION 1. ¢ maps E; bijectively to E; ={J € E*N6O(c) | Ay =1
(mod 2)}.

Proof. By definition, ¢(F;) C Ef. We must prove that, given J € E,
there is exactly one I € Fy with ¢(I) = J. Let J € EY be given, J =
[A, B ++/d], Aodd, B> — AC = d and (A,2B,C) = 1.

For I = [a,2b+ 2Vd] € Ey, §(I) = J if and only if [a,b + Vd] =
[A, B ++/d], that is, if and only if a = A and b = B + kA for some k € Z.
Since [A,2B + 2kA + 2Vd] = [A,2B + 2V/d] for all k, there is at most
one ideal I € F; such that 6(I) = J, namely, I = [A,2B + 2v/d]. Now
c= (4b®> — 4d)/a = 4(B? — d)/A = 4C, so that (a,2b,c) = (A,2B,4C) =
(A,2B,C) = 1, and therefore [A,2B + 2+/d] is primitive.

If w = (B++d)/A, then as J = A[l,w] is O-reduced, w + [~@] > 0. Now
[A,2B + 2Vd] = A[1,2w] and 2w + [-20] > 2w + 2[~@] > 0 so that T is
0-reduced. This completes the proof. =

PROPOSITION 2. ¢ maps Es bijectively to E5 = {J € E*Nf(c) |Cy =1
(mod 2)}.

Proof. We first prove that I € FE, implies ¢(I) = 6(I)’ € E5. Let
I € E, be given, I = a[l,¢] = [a,2b+ 2V/d], where a,b € Z, a > 0, a = 1
(mod 2), 4b? — ac = 4d, where ¢ € Z and (a,2b,c) = 1. Since a is odd, we
have ¢; = ¢/4 € Z. Furthermore,

(%) o+ [-p] >0 and %—1— [_2('0] <0,

since I is 0-reduced and 6(I) is not. Now J = ¢(I) = [A, B+Vd| = A[l,w],
where A = Ay, B€ Z, C = (B> —d)/A € Z and w = (B + Vd)/A =
([e/2 + 1] — p/2)~ L. If k = [~5/2], then (x) implies [~] > —p > 2k;
consequently, [-@] =2k + 1, -2k — 1 < p < —2k and [¢p/2 + 1] = —k.
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Since w = —2/(2k + ¢), we obtain w > 2, and W = —2/(2k + ) implies
1 <w < 2, since —2 < 2k + P < —1. In particular, we obtain w + [—©] > 0,
whence J € E*, and C = C};.

Since ¢ = (2b+2v/d)/a, we infer w = —2/(2k+¢) = —a/(ka+b+/d) =
(B ++/d)/A, which implies

B=—(ka+b), A=k? +2bk+c

and therefore C = (B? —d)/A=a =1 (mod 2); thus J € Ej.

Next, suppose J € Ei, J = [A, B + V/d], where A = A;, B € Z,
w = (B+Vd)/A satisfies | <@ <2 <wand C = Cy = (B?> —d)/A is
odd. If I € E5 and ¢(I) = J, we normalize I in the form I = a[l, ¢], where
-2 <P < —1< ¢. Since /2 + [-p/2] < 0 and [-5/2] = 0, we have
¢ < 0and J = A[l,w'], where o' = 1/([¢/2 + 1] — ¢/2) = —2/p. Since
1 <@ <2< w wehave w = u', and so p = —2/w = (2B + 2/d)/C.
Therefore, the only candidate for I € Ey satisfying ¢(I) = J is

Ih=[C,—2B+2Vd]=C -[1,¢], where p = —2/w.

It remains to show that Iy € Fs. Asa = C and b = —B, we have ¢ =
(4b%> —4d)/a = 4(B* —d)/C = 4A, and therefore (a,2b,c) = (C,—2B,4A) =
1 since C is odd. Thus I is primitive. As 1 < @ < 2 < w we have
—2 <P < —1<p<0. This implies ¢ + [-¢] > ¢+ 1 > 0 (so that I, is
O-reduced) and /2 + [-5/2] = ¢/2 < 0 (so that 0(ly) is not O-reduced).
Therefore, Iy € F5 and the proof of Proposition 2 is complete. m

PROPOSITION 3. Let J = [A, B+ d] € E*N6(c), where A= A;, BEZL
and C = Cj = (B? —d)/A € Z, be given. Then

2 if Jis 1-reduced and A =0 (mod 2),
1 if Jis 1-reduced and C =0 (mod 2)
#{IebEs|y()=J}= or J is 1-reduced and A =C =1 (mod 2)
or J is not 1-reduced and C =1 (mod 2),
0 otherwise.

Proof. For J given as above, w = (B + v/d)/A satisfies 1 < @ <
2 < w. If I € Es is such that o (I) = J then I = [4ay,2b + 2V/d], where
ai,b,c € Z, a; >0, (4a1,2b,¢) =1, b> —ajc=d and §(I) = [ay,b+ Vd] =
[A,B ++/d]. Thus a; = A and b = B + kA for some k € Z, so that
I =1, = [4A,2B 4 2kA + 2V/d| for some k € Z. Since I} = I}, for each
k, we have I € {Ip, 11} and {I € E3 | (I) = J} = {lo,[1} N E. It remains
to determine the conditions under which each of the two candidates, Iy and
Iy, is a member of E.

First, Iy = [44,2B+2Vd] = [a,2b+2+/d] has ¢ = (4b> —4d)/a = 4(B? -
d)/(4a) = C, and so (a,2b,c) = (44,2B,C). Hence I is primitive if and
only if C is odd. Now ¢o = (2B + 2v/d)/(4A) = w/2 satisfies @o + [~F,] =
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w/2+4[-w/2] =w/2 —1 > 0 so that I is always O-reduced. Thus, Iy € E
precisely when it is primitive, that is, when C; = 1 (mod 2).

Next, I) = [4A,2B + 2A 4 2V/d] = [a,2b + 2v/d] has ¢ = (4b*> — 4d)/a =
4((A+B)? —d)/(4A) = A+ 2B + C and so (a,2b,c) = (4A,2B + 2A, A +
2B + C). Hence [ is primitive if and only if A+ C' is odd.

Now 1 = (2B + 24 4 2V/d)/(4A) = (w + 1)/2 satisfies 1 + [-5,] =
(w+1)/24[-(w+1)/2] = (w+1)/2+ (=2) > 0 if and only if w > 3,
that is, if and only if J is 1-reduced. Thus, I; € E precisely when A + C
is odd and J is 1-reduced. Proposition 3 follows easily from the preceding
two observations. m
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