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RADIAL GROWTH AND VARIATION OF UNIVALENT FUNCTIONS
AND OF DIRICHLET FINITE HOLOMORPHIC FUNCTIONS

BY

DANIEL G IRELA (MÁLAGA)

A well known result of Beurling asserts that if f is a function which is
analytic in the unit disc ∆ = {z ∈ C : |z| < 1} and if either f is univalent
or f has a finite Dirichlet integral then the set of points eiθ for which the
radial variation

V (f, eiθ) =
1∫

0

|f ′(reiθ)| dr

is infinite is a set of logarithmic capacity zero. In this paper we prove that
this result is sharp in a very strong sense. Also, we prove that if f is as
above then the set of points eiθ such that

(1− r)|f ′(reiθ)| 6= o(1) as r → 1

is a set of logarithmic capacity zero. In particular, our results give an answer
to a question raised by T. H. MacGregor in 1983.

1. Introduction and statement of results. Let ∆ denote the unit
disc {z ∈ C : |z| < 1}. Let D be the family of functions f holomorphic in ∆
with finite Dirichlet integral, that is, those which satisfy∫∫

∆

|f ′(z)|2 dx dy < ∞.

The radial growth of the derivative of a function in D has been studied by
several authors. In [5], [6], [8] and [13] it was proved by different methods
that if f ∈ D then

(1.1) |f ′(reiθ)| = o

(
1

(1− r)1/2

)
as r → 1,
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[19]



20 D. GIRELA

for almost every θ. Furthermore, in [7] and [8] it is shown that this result is
sharp in a very strong sense.

Seidel and Walsh [13] proved that (1.1) holds for almost every θ if f
is analytic and univalent in ∆. However, this result is not sharp: it was
first improved by Clunie and MacGregor [2] and later by Makarov [11] who
proved that if f is analytic and univalent in ∆ then

(1.2) |log f ′(reiθ)| = O

{(
log

1
1− r

log log log
1

1− r

)1/2}
as r → 1,

for almost every θ, and that this result is sharp.
So far our discussion has emphasized exceptional sets of measure zero

and the results obtained for univalent functions are quite different from those
obtained for functions with finite Dirichlet integral. Now, we shall consider
the corresponding problems for other kinds of exceptional sets. Namely, we
shall be concerned with sets of logarithmic capacity zero and we shall see
that in this setting the results for the space D will be very close to those
for univalent functions. We refer to [12] and [15] for the basic results about
logarithmic capacity. For brevity, let U denote the family of all functions f
which are analytic and univalent in ∆.

If f is an analytic function in ∆ and θ ∈ [−π, π], we define

V (f, eiθ) =
1∫

0

|f ′(reiθ)| dr.

Then V (f, eiθ) denotes the radial variation of f on the radius of ∆ which ter-
minates at the point eiθ. The following well known result is due to Beurling
[1] (see also [14], Chapter 3 of [3] and Chapter VIII of [15]).

Theorem A. Let f be a function which is analytic in ∆. If f ∈ D ∪ U ,
then:

(i) The set of points eiθ for which V (f, eiθ) = ∞ is of logarithmic
capacity zero.

(ii) The set of points eiθ such that f fails to have finite non-tangential
limit f(eiθ) at eiθ is also of logarithmic capacity zero. Furthermore, if f is
univalent , f(eiθ) cannot be constant on a set of positive capacity.

Lohwater and Piranian [9] proved the following result which shows that
it is not possible to prove anything much stronger than (1.1) valid for any
univalent function f off sets of capacity zero.

Theorem B. There exist a function f analytic and univalent in ∆ and
a set E ⊂ ∂∆ of positive logarithmic capacity such that

lim
r→1

(1− r)1/2|f ′(reiθ)| = ∞ for all eiθ ∈ E.
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In view of this result, MacGregor raised the following question [10, p. 75].
Is there a number α (1/2 < α < 3) such that each analytic univalent

function f satisfies (1− r)α|f ′(reiθ)| = O(1) (r → 1), except for some set of
values of θ having capacity zero?

Our first result implies that the answer to this question is affirmative,
with α = 1.

Theorem 1. Let f be a function which is analytic in ∆. If f ∈ D ∪ U
then the set of points eiθ such that

(1.3) (1− r)|f ′(reiθ)| 6= o(1) as r → 1

is of logarithmic capacity zero.

Our next result improves Theorem B and shows that Theorem A(i) and
Theorem 1 are sharp in a very strong sense and, in particular, implies that
1 is the greatest possible value of α for which MacGregor’s condition is
satisfied.

Theorem 2. Let φ : [0, 1) → (0,∞) be an increasing function and let
Ψ : [1,∞) → (0,∞) be defined by the relation

(1.4) φ(r) = Ψ

(
1

1− r

)
, 0 ≤ r < 1.

Suppose that

(1.5) (1− r)φ(r) is decreasing,

(1.6)
1∫

0

φ(r) dr < ∞,

(1.7) Ψ(x)− log(Ψ(xeΨ(x))) →∞ as x →∞.

Then there exist a function f analytic, univalent and bounded in ∆ (hence
f ∈ D ∩U) and a closed set Γ ⊂ ∂∆ with positive logarithmic capacity such
that

(1.8) |f ′(reiθ)|φ(r)−1 →∞ as r → 1,

for every eiθ ∈ Γ .

We remark that, if n is a positive integer and β > 1, then the function
φ of Theorem 1 can be taken to be

φ(r) =
1

(1− r)
(
log 1

1−r

)(
log log 1

1−r

)
. . . (log . . . log︸ ︷︷ ︸

n times

1
1−r )β

for all r sufficiently close to 1.
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2. Proof of the results. First of all, let us fix some notation. If I is
an interval of R then |I| will denote the length (one-dimensional Lebesgue
measure) of I. Also, if G is any Borel subset of C, Cap(G) will denote the
(inner) logarithmic capacity of G, that is,

Cap(G) = sup
F⊂E

F closed

Cap(F ).

P r o o f o f T h e o r e m 1. Let f be as in Theorem 1 and let Ff be the
Fatou set of f , that is,

Ff = {eiθ : f has a finite non-tangential limit at eiθ}.
A result of Zygmund [16, p. 181] proves that

(2.1) (1− r)|f ′(reiθ)| → 0 as r → 1 for all eiθ ∈ Ff .

Using Theorem A(ii), we see that ∂∆\Ff has logarithmic capacity zero. This
and (2.1) prove that the set of those eiθ which satisfy (1.3) has logarithmic
capacity zero. This finishes the proof of Theorem 1.

The following lemma is a generalization of the lemma proved in [9, p.
592] and will be used in the proof of Theorem 2.

Lemma 1. Let φ : [0, 1) → (0,∞) be an increasing function and let F be
a 2π-periodic function defined on R which is increasing in (−π, π]. Let u be
the Poisson–Stieltjes integral P(dF ), that is,

u(reiθ) =
1
2π

π∫
−π

1− r2

1 + r2 − 2r cos(θ − t)
dF (t), 0 ≤ r < 1, θ ∈ R.

Let θ0 ∈ (−π, π) and suppose that

(2.2)
F (θ0 + h)− F (θ0 − h)

hφ(1− h)
→∞ as h → 0+.

Then

(2.3) u(reiθ0)φ(r)−1 →∞ as r → 1.

P r o o f. We may assume without loss of generality that θ0 = 0. Then,
for 0 < r < 1, we have

u(r) =
1
2π

π∫
−π

1− r2

1 + r2 − 2r cos t
dF (t) ≥ 1

2π

1−r∫
−(1−r)

1− r2

1 + r2 − 2r cos t
dF (t),

which, upon using the simple inequality

1− r2

1 + r2 − 2r cos t
≥ 1− r2

(1− r)2 + rt2
≥ 1

1− r
, |t| < 1− r,
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implies

u(r) ≥ 1
2π

1−r∫
−(1−r)

1
1− r

dF (t)

=
1
2π

1
1− r

[F (1− r)− F (−(1− r))], 0 < r < 1.

Consequently, we obtain

u(r)φ(r)−1 ≥ 1
2π

1
(1− r)φ(r)

[F (1− r)− F (−(1− r))], 0 < r < 1.

Since θ0 = 0, by (2.2) this implies u(r)φ(r)−1 →∞ as r → 1.

P r o o f o f T h e o r e m 2. Let φ and Ψ be as in Theorem 2. It is trivial
to see that, in addition to (1.7),

(2.4) Ψ is increasing in [1,∞),
(2.5) Ψ(x)/x is decreasing in [1,∞),

(2.6)
∞∫

1

Ψ(x)
x2

dx < ∞.

Define

(2.7) p0 = 1, pk = expΨ(2k), k ≥ 1.

Using (2.4) we see that

∞∫
1

Ψ(x)
x2

dx =
∞∑

k=0

2k+1∫
2k

Ψ(x)
x2

dx ≥
∞∑

k=0

Ψ(2k)
2k+1∫
2k

1
x2

dx

=
1
2

∞∑
k=0

Ψ(2k)
2k

,

which, together with (2.6) and (2.7), implies

(2.8)
∞∑

k=0

log pk

2k
< ∞.

Now we take a linear Cantor set E constructed as follows. We set E0 =
[0, 1]. Now, remove an open interval J1

1 of length 1− 1/p1 from E0 so that
E0 \ J1

1 is the union of two closed intervals I1
1 , I1

2 of length 1/(2p1). We set

E1 = I1
1 ∪ I1

2 = E0 \ J1
1 .

Now, for k = 1, 2 we remove an open interval J2
k of length |I1

k |(1 − 1/p2)
from I1

k so that I1
k \ J2

k is the union of two closed intervals I2
2k−1, I2

2k of
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length |I1
k |/(2p2). Then we set

E2 =
4⋃

k=1

I2
k = E1

∖ 2⋃
k=1

J2
k .

We repeat this procedure to obtain an infinite sequence of nested closed sets
E0 ⊃ E1 ⊃ E2 ⊃ . . . At stage n we have

(2.9) En =
2n⋃

k=1

In
k = En−1

∖ 2n−1⋃
k=1

Jn
k ,

where each In
k is a closed interval and each Jn

k is an open interval, Jn
k ⊂ In−1

k ,

|In
k | =

1
2np1 . . . pn

,(2.10)

|Jn
k | =

1
2n−1p1 . . . pn−1

(
1− 1

pn

)
.(2.11)

Finally, we set E =
⋂∞

n=1 En.
Let F be the nondecreasing singular Cantor function associated with the

set E. Hence

(2.12) F (t) =
2k − 1

2n
if t ∈ Jn

k , k = 1, . . . , 2n−1, n = 1, 2, . . .

We extend F to [−π, π] by defining F (t) = 0 if −π < t ≤ 0 and F (t) = 1 if
1 ≤ t ≤ π. We have

Lemma 2. If t ∈ E then

(2.13)
F (t + h)− F (t− h)

hφ(1− h)
→∞ as h → 0+.

P r o o f. Take t ∈ E. For simplicity, suppose that t 6= 0, 1. Let h be a
positive number so small that 0 < t− h < t + h < 1. Since t ∈ E, for each
n there exists kn ∈ {1, . . . , 2n} such that t ∈ In

kn
. Let N = N(h) be the

natural number such that

(2.14) t ∈ IN
kN

⊂ (t− h, t + h),

but

(2.15) IN−1
kN−1

6⊂ (t− h, t + h).

We easily see that (2.15) implies

(2.16) h ≤ |IN−1
kN−1

| = 1
2N−1p1 . . . pN−1

.
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On the other hand, (2.14) implies that the interval IN
kN

separates the points
t− h and t + h and then it follows easily that

(2.17) F (t + h)− F (t− h) ≥ 1
2N

.

Using (1.4), (2.5) and (2.16) we obtain

hφ(1− h) = hΨ

(
1
h

)
≤ Ψ(2N−1p0p1 . . . pN−1)

2N−1p0p1 . . . pN−1
,

which, together with (2.17), implies

(2.18)
F (t + h)− F (t− h)

hφ(1− h)
≥ 1

2
p0p1 . . . pN−1

Ψ(2N−1p0p1 . . . pN−1)
.

Since, clearly, N →∞ as h → 0, using (2.18) we see that (2.13) will follow
from

(2.19)
p0p1 . . . pn

Ψ(2np0p1 . . . pn)
→∞ as n →∞.

Now, using (2.7), we see that (2.19) is equivalent to

(2.20)
n∑

k=0

Ψ(2k)− log Ψ
(
2n exp

( n∑
k=0

Ψ(2k)
))

→∞ as n →∞.

Hence we proceed to prove (2.20). For simplicity, define ϕ : (0,∞) →
(0,∞) by

(2.21) ϕ(x) =
{

Ψ(1) if 0 < x < 1,
Ψ(x)/x if x ≥ 1.

Then ϕ is decreasing in (0,∞) and, hence, we have

2n+1∫
0

ϕ(x) dx = ϕ(1) +
n∑

k=0

2k+1∫
2k

ϕ(x) dx(2.22)

≤ ϕ(1) +
n∑

k=0

ϕ(2k)2k = ϕ(1) +
n∑

k=0

Ψ(2k).

Since ϕ is decreasing, we easily obtain

(2.23) Ψ(s) ≤
s∫

0

ϕ(x) dx, s ≥ 1.

Using (2.22) and (2.23), we see that

2n expΨ(2n+1) ≤ 2neϕ(1) exp
( n∑

k=0

Ψ(2k)
)
,
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which, upon using (2.5), implies

Ψ(2n exp[Ψ(2n+1)])
2n exp[Ψ(2n+1)]

≥
Ψ(2neϕ(1) exp[

∑n
k=0 Ψ(2k)])

2neϕ(1) exp[
∑n

k=0 Ψ(2k)]
,

or, equivalently,

log Ψ(2n exp[Ψ(2n+1)]) + ϕ(1) +
n∑

k=0

Ψ(2k)− Ψ(2n+1)

≥ log Ψ
(
2neϕ(1) exp

[ n∑
k=0

Ψ(2k)
])

.

Since Ψ is increasing, this implies
n∑

k=0

Ψ(2k)− log Ψ
(
2n exp

[ n∑
k=0

Ψ(2k)
])

≥
n∑

k=0

Ψ(2k)− log Ψ
(
2neϕ(1) exp

[ n∑
k=0

Ψ(2k)
])

≥ Ψ(2n+1)− log Ψ(2n exp[Ψ(2n+1)])− ϕ(1)

≥ Ψ(2n+1)− log Ψ(2n+1 exp[Ψ(2n+1)])− ϕ(1).

Then (2.20) follows from (1.7).
A minor modification of the above argument shows that (2.13) also holds

for t = 0 and for t = 1. Hence Lemma 2 is proved.

Having established Lemma 2 we continue with the proof of Theorem 2
as follows. Let

(2.24) Γ1 = {eit : t ∈ E}.

Then Γ1 is a closed subset of ∂∆. Notice that the set E is E(p0p1 . . .) in
the notation of Chapter V of [12] and hence, using Theorem 3 on p. 153 of
[12], we see that (2.8) implies that

(2.25) Cap(Γ1) > 0.

We set u = P(dF ) and we let g be the function which is analytic in ∆ with
g(0) ∈ R and <g = u. Set

h(z) =
∫

[0,z]

g(ξ) dξ, z ∈ ∆.

Since <h′ = u > 0, it is clear that h is univalent in ∆ and using Lemmas 2
and 1, we deduce that

(2.26) |h′(reiθ)|φ(r)−1 →∞ as r → 1, for every eiθ ∈ Γ1.
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To finish the proof of Theorem 2 we use a standard method which relates
any univalent function to a bounded univalent function (see e.g. [4, p. 11] or
[10, p. 70]). Let c ∈ C\h(∆). Then h1 = (h−c)1/2 is analytic and univalent
in ∆. Moreover, h1 has the property that if ξ ∈ h1(∆) then −ξ 6∈ h1(∆)
and then, since h1 is an open mapping, we deduce that there exists d ∈ C
and r > 0 such that h1(∆) does not meet the disc {w ∈ C : |w − d| < r}.
Consequently, the function f = 1/(h1−d) is analytic, univalent and bounded
in ∆ and we have

(2.27) |f ′| = 1
2 |h− c|−1/2|h1 − d|−2|h′|.

Let G1 be the set of those eiθ such that h has a finite non-tangential limit
h(eiθ) not equal to c, let G2 be the set of those eiθ such that h1 has a finite
non-tangential limit h(eiθ) not equal to d and let Fj = ∂∆ \ Gj (j = 1, 2).
Clearly, (2.26) and (2.27) show that

(2.28) |f ′(reiθ)|φ(r)−1 →∞ as r → 1, for every eiθ ∈ Γ1 \ (F1 ∪ F2).

Having in mind that h and h1 are univalent and using Theorem A(ii), we
see that F1 and F2 are sets of logarithmic capacity zero and hence

Cap(Γ1 \ (F1 ∪ F2)) > 0.

Now take a closed set Γ ⊂ Γ1 \ (F1 ∪ F2) with Cap(Γ ) > 0. Clearly (2.28)
implies

|f ′(reiθ)|φ(r)−1 →∞ as r → 1, for every eiθ ∈ Γ.

This finishes the proof.
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