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BY
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1. Introduction. Let 0 < ¢ <1 <p < o0, -1 <a <0 and G be a
locally compact Vilenkin group. In [5], we have introduced certain new ho-
mogeneous Hardy spaces H K] ,(G) associated with the Herz space K ,(G)
on a locally compact Vilenkin group G. In this paper, we consider their
non-homogeneous versions. More precisely, in Section 2 of this paper we
introduce some non-homogeneous Hardy spaces HA{ ,(G) associated with
the Beurling algebras A ,(G) on a locally compact Vilenkin group G. We
then establish their characterizations in terms of atomic and molecular de-
compositions. Moreover, for the space H A;O(G), we obtain its dual space,
RCMO}(G). Using atomic and molecular characterizations we can show
that Hqum(G) ¢ HK],(G) & HE(G), HK{ (G) N LE(G) C HAZ (G)
and HK, ,(G) N LE(G) = HA] (G) (see [3, 4, 9, 10] for the definitions of
the Hardy spaces HE(G)). In [10] Onneweer and Quek introduce a subspace
Y*(Q) of the Hardy space H'(G). As an application of the theory of §2, in
Section 3 of this paper we discuss the relation between the spaces HA} ,(G)
and Y*(G). In the last section, §4, of this paper, we give another applica-
tion of the theory of §2. We first introduce some general non-homogeneous
Herz spaces K (3, p, ¢; G) on a locally compact Vilenkin group G (see [6, 8]),
where 3 € R, 0 < p,q < oo, K(1/q —1/p,p,q;G) = Al ((G). We then
discuss the relation between the spaces HA] ((G) and K(3,p,q; G) with
B> 1/q — 1/p. Moreover, we state a conjecture about the relation between
HA, (G) and A} (G). Our motivation for this paper comes mainly from
Chen and Lau’s paper [1] and Garcia-Cuerva’s paper [2] in the Euclidean
case.

Now, let us introduce some notation on locally compact Vilenkin groups;
for more details we refer to [3, 4] and [5-11].
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2 S. Z. LU AND D. C. YANG

Throughout this paper, G will denote a locally compact Abelian group
containing a strictly decreasing sequence of open compact subgroups
{Gn}52 _ . such that

U G,=Gand N ___G,={0},

n=—oo n=—odo

(ii) sup{order (G,,/Gp41) : n € Z} < 0.

We choose a Haar measure p on G so that u(Go) = 1 and u(G,,) := (m,)~*

for each n € Z. Then for each o > 0 and k € Z, we have

(1.1) > (ma) ™" < Olmy) ™7,
n==k
k
(1.2) D (ma)* < C(mp)*.

There exists a metric d on G x G defined by d(x,z) = 0 and d(z,y) =
(m)~tifx —y e G\ Gy, for I € Z. Then the topology on G determined
by d coincides with the original topology. For z € G, we set |z| = d(z,0),
and for each « € R define the function v, on G by v,(z) = |z|*; the
corresponding measure v, dpu = |z|“dp is denoted by du,. Moreover, dx
will sometimes be used in place of du. It is easy to deduce that p,(G;) <
C(my)~@tD if o > —1, and if | < n and = € G; \ Gi41, then po(z +G,) =
(ma) =% (ma) ™

In this paper, S(G) and S’'(G) denote the spaces of test functions and
distributions on G respectively. For details, see [9] and [11].

Now, let us make the precise definition.

DEFINITION 1.1. Let 0 < g <1 < p < oo and —1 < a < 0. The
non-homogeneous Herz space A ,(G) is defined by

Al (G) :=={f: f is a measurable function on G and | f[| a2  (a) < o0},

where
-1

1llag.occr = { D2 1alGD " fxancun I e + 1 Xc0lllp @) }

l=—o0

1/q

Here and below we write L (G) = {f : f is a measurable function on G
and (4 /(@) g (@))7 < o).

Obviously, A ,(G) & K} ,(G) & L&(G) (see [5] for the definition of
spaces K ,(G); see also [8]). More precisely, we have the following propo-
sition (see also [6]).

PROPOSITION 1.1. Let 0 < ¢ <1 <p < oo and —1 < a < 0. Then
Al (G) = K] (G)NLE(G) and || fllaz .y ~ Ifllzze) + Il k2 .-
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Proof. Let f € Af ,(G). Since pa(Gi) ~ (my)~ 1+ (see [7]) and
f(l') = Zz;l_oo f(x)XGl\GlJrl (33') + f(x)XGo (.’B), we have
—1
1fllcz @y < Ml fxcolle @) + Z 1 fxanGi Lz (@)

l=—00

-1
< |[[fllas ey + Z Ma(Gl)_(l/q_l/p)||f||A;§,a(G)

l=—00

~1
< ||f||Ag,a(G){1 +C Z (ml)(1+a)(1/q—1/p)}

l=—0oc0

< C|fllaz.(q) < oo,

where we have used (1.2).
On the other hand, by the definition of K ,(G) (see [5] and [8]), we
have

> _ 1/q
Fligaier = D #al@ Pl fxencun e b

l=—c0

< { Z Na(Gl)l_q/p”fXGl\Gl+1H%Z(G)

l=—oc0

= _ 1/q
1 Xl ) D HalG) 97
=0

-1

g{ Y 1@ Fxancin s )

l=—o00

= 1/q
+ CHfXGO ”Lg(g) Z(ml)*u*‘l)(l*qm)}
=0

-1

< C{ Z MOé(Gl)l_q/prXGl\Gl-;_l H%g(g) + HfXGOH%Z(G)}

l=—00
=Cl[fllas,(a) < oo
Thus, f € K2 ,(G) N LE(G), and
1 fllzz @) + 1k o) < Cllfllaz . o)
Conversely, suppose f € L5 (G) N K2 ,(G). Then

-1

”f”Ag,a(G) - { Z iuoc(Gl)l—Q/p”fXGl\GH_1 H%Z(G) + ||fXGOH%g(G)}

l=—o00

1/q
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<1 iy + 1%y}

< C{lfllez e + 1 fllxe )} < oo

P,

That is, f € Af ,(G). The proof of Proposition 1.1 is finished.

2. The Hardy spaces HA] ,(G). Let A, = w(Gn) " Yxa, = maxa, -
For f € §'(G), we define f,(z) = f % A,(z). Then f, is a function on G
which is constant on the cosets of GG,, in G. Moreover, lim,, .o f, = f in
S'(G) (see [11]). For f € 8'(G), we define its maximal function f*(z) by

[ (@) = sup f  An(@)] = sup w(Ga) " [ F) duly)|
neZ neZ 2+G,,

Now we define new Hardy spaces HA{ ,(G) associated with the non-
homogeneous Herz spaces A7 ,(G).

DEFINITION 2.1. Let 0 < ¢<1<p<ooand —1 < a <0. The Hardy
spaces HAJ (G) are defined by

HAJ (G) :={fe€S(G): " € A] ,(G)}
and
[ fllzas ) = 1f"laz . (c)-
Evidently, HAS .(G) ¢ HKY ,(G) ¢ Hi(G).

Remark 2.1. Consider ¢ = 1 < p < o0 and —1 < a < 0. Since
A, L (G) C K, (G) C LL(G), if f* € K} ,(G) then f € L}(G) by Lemma
3.5 of Kitada [3]. Therefore we can redefine HA,, ,(G) by

HA,L (G) ={f € Lo(G) : f* € 4, ,(G)}.

From this definition, we immediately deduce that HA} (G)=HK} ,(G)
N LE(G), and

(2.1) [fllzar e~ Ifllize@e + 1k, )

In fact, let f € HA} ,(G). Then f* € A} (G) = K, ,(G) N L% (G) by
Proposition 1.1. Since f € LL(G), it is easy to verify that f € LL (G),
and therefore |f(z)| < f*(z). Thus, || fllzz) < 1f* ez < oo, that is,
f € LE(G). In addition, since f* € K} ,(G) we know that f € HK} ,(G).

Thus, f € HK, ,(G) N L2(G), and
/]

e T 1 lexe o) < 1 e + 177 ke o)
<Cllf Nax o) =Clfllmay (e < oo
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Conversely, we have the general fact
(2.2) HK] (G)NLE(G) Cc HA] (G)
for0<p<l<g<ooand —1<a<0.

In fact, if f € HK,(G)NLL(G), then f* € K1 (G)NIL(G) = A% (G).
That is, f € HA? (G) and

[flzas.cy = 1f a2 o) < CUSF Nz ey + 1 ks o}
< Cllfllzee) + 1 laxg )} < oo,
where we use Proposition 1.1 and the fact that f* is bounded on L2 (G) for
l1<p<ooand —1 < a <0 (see Kitada [4]).
In order to establish the characterization of the space H A ,(G) in terms

of decompositions, we need to introduce the following concept of a central
atom of restricted type.

DEFINITION 2.2. Let 0 <¢<1<p<ooand —1 <a <0. A function
a(x) on G is said to be a central (q,p)a-atom of restricted type if

(1) suppa C G,, for some n € Z\ N,

(2) (fGn la(x)[P dﬂa(x))l/p < Na(Gn)l/p_l/qv

(3) [a(z)dx = 0.

Remark 2.2. The definition of a central atom of restricted type is

a modification of the definition of a central atom in [5], where (1) reads:
suppa C G, for some n € Z.

THEOREM 2.1. Suppose 0 < g < 1 <p<ooand -1 < a<0. A

distribution f on G is in HAZ (G) if and only if f = Zj Aja; in S'(G),
where a;’s are central (q,p)a-atoms of restricted type and ) |\;|?7 < oo.

Then
1/q
1 llag.oe ~ {317}
Moreover, for ¢ =1, the equality f(z) =Y Xja;(x) holds pointwise.

Proof. We can prove this theorem by a procedure similar to the proof
of Theorem 2.5 in [5]. However, for ¢ = 1, using (2.1), we can give a simple
proof. In fact, let f € HA} (G). Then f € HK} ,(G)NL.(G). Therefore,

by Theorem 2.5 of [5], we know that f(z) = _, Aja;(z), where each @; is

a central (1,p)q-atom with support G,,, for some n; € Z, and Y [X;| < oco.
Set I} = {] el: n; € NU{O}} and I :Z\Il Write

fl) = Naj(x) + Y Naj(@) = fi(x) + fa(@),

jel j€l2
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where supp f1 C Gp. In addition,
Ifoll oy < D llla@)lie@ < D Xlial(Ga,) /P
jel> jels
< O3 [Al(m,)~@rDA/r-1/0)
JEI2
el PV ESeH PVIRIS
Jjelz J
That is, fo € L2(G), and fi1 = f — fo € LE(G). Thus, b(z) = |]f1||z,}(G)

X pa(Go)/P=1/af (x) is a central (1, p)a-atom of restricted type with sup-
port Gy, and

f(@) = fo(@) + pa(Go) =PV D| fi]l L () bla).

Set Ao = ua(Go)_(l/p_l/q)Hf1HLg(G), ao(x) = b(z), A\; = A; and a;(z) =
aj(z) for j € I,. Then aj(z)’s (j € Io U{0}) are central (1,p),-atoms of
restricted type and

> = pal(Go) M PTYD | fill ey + D N

jeIU{0} Jj€l2

< Clfllee (e + Cllfallzzea) + Z A4

ISP
<C(Ifllezie + D 1)
J

<C(fllez e + HfHHK;,Q(G)) < C||f||HA;,,a(G) < 00,

where we have used (2.1).

Now suppose f(z) = >, A;bj(x) satisfies the hypothesis of the theorem
and suppb; C G, for some n; € Z\ N. By Theorem 2.5 of [5], we know

that f € HK;Q(GJ) and || fllur1 (o) < C{2Z; [A;]}. On the other hand, we
have ’

£z < D INHIB Lz < C A (my, )~ e /p=1/a)
J j
<CY N < oo
j

That is, f € L% (G). By (2.1), we know f € HK ,(G)NLL(G) = HA, ,(G)
and

||f”HA11,’a(G) <C(flle (e + Hf”HK;’a(G)) < CZ RVIE
J

This finishes the proof of Theorem 2.1.
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Similarly to the spaces HK/ ,(G), we have the following molecular de-
composition characterization of the spaces HA{? ,(G) (see [5]).

DEFINITION 2.3. Suppose 0 < ¢ < 1 < p < 00, =1 < a < 0 and
b>max{(1+a)(1/¢—1/p),1 —(1+ «a)/p}. A function M(z) on G is said
to be a central (q,p,b)o-molecule of restricted type if

(W) M|z <1,
(2) Rpa (M) = |M | 5 e IHa" M5 ) < o0,
(3) [ M(z)dz =0,

where 6 = (1/q — 1/p)(1 + ) /b.

Remark 2.3. The definition of a central molecule of restricted type is
a modification of the definition of a central molecule in [5], where condition
(1) is absent.

THEOREM 2.2. Let 0 < ¢ <1 < p < oo, =1 < a <0 and suppose that
b > max{(l+ «a)(1/qg—1/p),1 — (1 + «)/p}. A distribution f on G is in
HAZ (G) if and only if f =, Ae My, both in S'(G) and pointwise, where
each My, is a central (q,p,b)o-molecule of restricted type, Rp o(My) < C
< 00, C is independent of My and ), |\i|? < co. Moreover,

1/q
1Nz~ (D 1wl?)

Proof. We can show this theorem using the same procedure as in the
proof of Theorem 3.3 of [5]. For ¢ = 1 we can once again give a sim-
ple proof using (2.1). In fact, let f € HA, ,(G). Then by (2.1), f €
HK} ,(G)NLE(G). Thus, from Theorem 3.3 of [5], we deduce that f(x) =

> re | MMy (), where each My (x) is a central (1, p, b),-molecule, Ry.o(My)
< Cy < oo with Cp independent of My, and >~72 ; [Mg| < Clifllax: () Let

I = {If eN: HMkHLg(G) < 1} and I :N\Il Write

F@) = NMp(x) =Y MNMp(z) + Y MMy(z) = fil2) + fa(2).
k=1

kel kels
We have
I fillor ) < Z Akl 1Ml 22 ) < Z Xe| < o0,
kel kel
that is, f1 € LE(G). Therefore, fo = f — f1 € LP(G) and

1 f2llzz ) < W flleee) + 1l S W fllee@) + Z [ A&| < o0.
k=1
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Thus, Mo(z) := (| fllrz(e) + Yonet [Akl) "1 f2 is a (1, p, b)q-molecule of re-
stricted type, and

(-1
R (M) = (Il + Do wl) 12l izl el 211
k=1

< (920 + S 1) ™ (32 Pel Ml g
k=1

kels
< (Cp < 0.
If we set Ao = || fllzz(q) + Donet [Mkls Ak = Ak and My, = My, for k € I,
then f(z) = > 4cr 000y MMr(z), where each My is a (1,p,b)a-molecule of
restricted type, Rp o (M) < Cp < oo with Cy independent of M}, and

Sl (I leaie + D Al

kel 0{0} =1
<C(flleze) + Iz @) < Cllifllgas (o

P,
by (2.1).

Conversely, suppose f(z) = > 7o Ae My () satisfies the hypothesis of
the theorem. Then, by Theorem 3.3 of [5], we know that fe€ HK} ,(G) and

(o]
1F iy .0 < (31wl ) < o
k=1
On the other hand, we have

1£lzee) < D Ml Ml ey < ) 1Ak < oo
k=1 k=1
That is, f € LE(G). Thus, by (2.1), f € HK ,(G) N LA(G) = HA} ,(G)
and

[fllzay @) < CUIfllz e + 1fllar @)} < C(Z ’/\k\)-
k=1

This finishes the proof of the theorem.

Similarly to the case of the space HK!(G), when a = 0, for HA%(G)
= HAJ ,(G), we can also obtain the dual space RCMOJ(G) consisting of
functions of central mean oscillation of restricted type.

DEFINITION 2.4. Let 0 < ¢ <1 < p < co. A function f € LI (G) is

said to belong to RCMOJ(G) if and only if for every n € Z \ N, there exists
a constant C, such that

1/
sup u(G)' V1 (1(Ga) [ 1f (@)~ Calrda) T < oo
n€Z\N G,



HARDY SPACES 9

It is easy to verify that, if such C),’s exist, we can take C,, = mgq, (f) =
1(Gn)~" [, flx)de. Set

1/
I lremogc) = sup p(Gn) " Y1(u(G) ™ [ 1£(@) = ma, (£ dz) .
n€Z\N

n

Remark 2.4. The definition of the space RCMOJ(G) is a modifica-
tion of the definition of CMO}(G), the space of functions of central mean
oscillation, where the supremum is taken over Z instead of Z \ N.

Similarly to Theorem 2.9 of [5], we can prove the following duality the-
orem (see [5] for the details).

THEOREM 2.3. Let 0 < g<1<p<oo and 1/p+1/p' =1. Then
(HAL(G))" = RCMOY, (G)
in the following sense: given g € RCMOZ/(G), the functional A, defined for
finite combinations of atoms f = Zﬁm.te Ajaj € HAL(G) by

Ag(f) = [ f(2)g(x)dx
G

*

extends uniquely to a continuous linear functional A, € (HA%(G))*, whose

(HAL(G))* norm satisfies
[ Aq]l < CHQHRCMOZ,(G)-

Conversely, given A € (HAL(G))*, there exists a unique (up to a con-
stant) g € RCMOJ, (G) such that A = A,. Moreover,

lgllrcnos, (o) < ClIAJl

In addition, as an application of the theory of atomic-molecular decom-
positions of HAJ ,(G), we can establish certain interpolation theorems and
prove boundedness theorems on multipliers (see Theorems 2.6-2.7 and Theo-
rems 4.1-4.4 of [5]). We omit the details. In the following sections, we obtain
some other applications of the atomic theory of the spaces H AZ,O(G)'

3. The relation between HA) ((G) and Y*(G). In order to estab-
lish certain H?(G) multiplier results, Onneweer and Quek [10] introduce a
subspace Y*(G) of H'(G) as follows:

Y*(G) = {f € LYG) ff(x)dz =0 and

1 N f\)
1z + Hflog (Hf”Ll(G)

1 1f @) log™ 12 [l < oo}.
LY(G)
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On the other hand, as we point out in §2, HA},’O(G) is also a subspace of
H'(G). In this section, as another application of atomic theory for the space
HA] ,(G), we discuss the relation between HA) ;(G) and Y*(G). First, we
have HA,, (G) ¢ Y*(G) for 1 < p < oc.

Let I" denote the dual group of G and for eachn € Zlet I, = {y € I :
v(x) =1 for all z € G, }. Take 79 € I \ Iy and define

m
f@) = { e 0(@) @€ G\ G and b= —1,-2,3, ...
0, otherwise.

For k € Z\ ({0} UN), let bx(z) = miv0(T)X @\ Grys (2)- Then supp by C Gy
and

f b () de = my f ~Yo(x) dx

Gr\Gr+1
:mk< f Yo(x) dx — f ’Vo(.%)dl‘) =0.
Gy Gri1

Moreover,

1/p
el =mn( [ o)l dz)
Gr\Gri1

< g (m) THP < p(Gr)VPTL

Thus, by (z) is a central (1, p)g-atom of restricted type. Since Z,::l_oo 1/|k|3/?

< oo and f(z) = ZI;:l—oo bi(z)/|k[*/2, by Theorem 2.1 we know that
f e HA] ((G) and

-1
1
17 lag o <€ D <
=—00

But note that |y| = (my)~' > 27%ify € Gx\Gry1, and so log™ |y| > C(—k).
Therefore,

-1

[lf@og® lyldy=>_ [ |fw)llog" lyldy

k=—o0 Gk\Gk+1
—1

> ¥ %(—km«;k\cm:oo.

k=—c0

Thus, f € Y*(G).
However, we have the following theorem:
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THEOREM 3.1. Let 1 < p < co. Then
{f € Al,O(G) :f f(x)dx =0 and

11z + @) log™ ol |z a) < oo} © HAL(G).
From this theorem we can deduce that (Y*(G) N A, (G)) C HA, 4(G).

Proof of Theorem 3.1. Let f*(x) =sup,¢z |f * An(z)|. Write

-1

1fllar e = 1 ) = D )~V Fxanain e

l=—0o0

+ 1 f*xcollzr@) = 1 + L.

We first estimate I;. Suppose € G;\Gj41 for some ! € Z\ (NU{0}). Let
n < 1. Then z € G; C Gy, and A, (x) = my,. In addition, since [, f(y) dy
= 0, we have

@) = | [ F@)(An(e —y) = Anlx)) dy
G

< f ’f(y)HAn(x_y) —An(l')’dy,
G\G;

where we have used the fact that if y € Gy, then  — y € G, and therefore
Ap(z —y) = An(x) = my,. Further, we have

[ An(@) <2m, [ |f)ldy <2mi [ |f(y)]dy.
G\Gl G\Gl
Thus,

-1

Il = Z (ml)i(lil/p)||f*XGz\Gz+1||LT’(G)

l=—0c0

<cY [ Wy

l=—00 G\G,
-1

+ ) (mz)‘“‘”p)ll(sglf* An(@)xencin (@)llr )

l=—o00

=:CIL + IL;.

Note that if y € G; \ Gj41, we have |y| = (m;)~! > 277, so that
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—j < Clogly| = Clog™ |y| as long as j < —1. From this, we deduce that

-1 1 -1
m= > [ lfwldy= > > [ |fwldy

l=—0o0 G\Gl l:—OOj:—OO Gj\Gj+1

= fj _Zl [ 1f@)ldy

jzfoo l=]+1 Gj\Gj+1
-2

=Y » [ |f(y)|dy§0i: I 1f)loglyl dy

J=—00 Gi\Gj+1 Jj=—00 G;\Gjt1
< Ol |f(@)[log™ |z] || L1(q) < o0

Now we estimate Il;. Set Ei(r) = (fxa,\q,.,)(z). Note that

I An(@)| < [ [f W) An(z — y) dy.
G

If n >1and z € G;\ Gi41, then x ¢ G,,. Note that if y € = + G,,, then
Az —y)=0and 2+ G, Cx+ G141 C (G;\ Gi41). Thus, A, (x —y) #0
only if y € G;\ Gj4+1. From this it follows that for x € G;\ G417 and [ < —1,

sup|f + An(@)| S swp [ IE W)l An(z —y) dy < (B)" (a).

n>l
Therefore,

-1

oy= (m))" VP (sup | f * Au(@))xanaup (2) oo

I—— oo n>l

<C 3 () CYIEY @)oo

l=—0c0
-1
<C Y ) OBl < ClilLar oy < 0,

l=—0c0

where we have used the LP(G)-boundedness of (E;)* (see Kitada [4]).
For I, we first deduce that if x € Gy and n < 0, then

[fAn@) <mn [ 1F @)l dy < ||fllLic)-
z+Gp,
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If n >0 and z € Gy, then A, (z —y) =0 for y & Gy. Thus,

A f@)] < [ 1f@)An(@ —y)dy < [ |f(y)|An(z —y) dy
G Go

= [ Bo(y)An(z - y) dy,
G

where we set Eo(y) := f(y)xc, (y). Therefore, if x € G, we have
[ (z) =sup|f *x Ap(x)] <sup|f * Ap(z)| +sup|f *x A, (x)]
nez n>0 n<0

< fllzray + (Eo)* (x).

Thus,
L = ||f*(x)xc,(@)lzr @) < 1fllzre) + 1 (Eo)* e
<|[fllzr @) + CllEollzra) < [IfllLr ) + Cllf] ax

p,0

That is, f € HA}, ,(G) and we finish the proof of Theorem 3.1.

(@) < Q0.

4. The relation between H AZ,O(G) and the general non-homo-
geneous Herz spaces. In this section, we first introduce general non-
homogeneous Herz spaces K (3, p, ¢; G) on locally compact Vilenkin groups.
For the definitions of the general homogeneous Herz spaces on locally com-
pact Vilenkin groups see [8] and [6].

DEFINITION 4.1. Let 8 € R and 0 < ¢,p < co. The non-homogeneous
Herz space K(3,p,q; G) is defined by

K(B,p,q;G) :={f: f is a measurable function on G and
”fHK(ﬁ,p,q;G) < 00}7

where
-1

1/q
1k (8.p,0:6) = { > G xanc e + ||fXGoH%p(G)} -

l=—00

Obviously, K(1/q —1/p,p,q;G) = Al ((G) for 0 < ¢ <1 < p < oo,
Concerning the relation between the spaces K (3, p, ¢; G) and HAZyO(G), we
have the following fact.

THEOREM 4.1. Let 0 < g <1<p<oo. If > 1/q—1/p, then
K(8,p.a:G) 0 {f € L'(G): [ f(2)dw =0} € HALo(G).

Remark 4.1. If ¢ =1 < p < 00, by Theorem 2.1 and the definition of
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the space HA) 1(G), we obviously have

HAL,(G) C K<1 - ;,p, 1;G) N {f eLY(G): [ f(x)de = 0}
= AL (@)N {f eLY(G): [ f(x)de = o}.
Thus, a natural question is whether the following equality holds:
HAL (@) = AL o(G) N {f eLY(G): [ flx)de = o}.

Proof of Theorem 4.1. Let f € K(8,p,¢;G) N {f € LYG) :
ff(!E) dr = 0} Set CO = Go, Cz = G_i \ G—i+l7 1= ].,2, ... Write

fl@) =Y (f@) = fe)xe, (@) + Y feuxe, (@) = E(2) + F(2),
n=0 n=0

where fc, = u(Cp)~" [, f(t)dt.
If we set

M = sup{order(Gi/Gr+1)} < o0,
then from [ f(y)dy = 0 we deduce that

[e.o]

Fa)=Y (Cf 7(t)dt) 20(0(5))

n=0

= > ( i f f(t)at) <>;((72:+(T)) _ 200(53))>

=) APal (@),
n=0
where
a0 () = MVPL (14 M1V (G )Y
X <XC7L+1 ($) _ ch (:U))
#(Cry1) w(Chr)
and

)\7(11) :Ml—l/p(l_{_Ml—l/p)lu(G_n_l)l/q_l( Z f f(t) dt).
j=n+1 C’j
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It is easy to see that Suppa ) ¢ G_pn_1, fa x)dxr =0 and

1
MV (L M) G =)

HCLS)HLP(G) <

1 1
8 <M(G—n)1_1/p * M(G—n+1)l_1/p>
1

= W(G_ ) a1/

That is, ag)(m) is a central (g, p)o-atom. Also, by (1.1), we have

<C). Z ( f ’f(t”pdt)q/pﬂ(cj)(1_1/p)qﬂ(G7n—1)1_q

<oy S ([ uornera)”

n=0j=n+1 Cj
« (m_j)ﬁq—(l—l/p)q(m_n_l)q—l

< Ci( f |f(t)‘p|t|6pdt)q/p(m_j)BQ*(lfl/p)q
=1 Cy

jf

(S

n=0

i( f P dr)” " (m_jyas=1/a+1/)

Cj

2
o [1rwpar)””

—_

| /\

| /\

<cf 3 WG N1 XenGu ey + 11X L)}

l=—00

- CHf”%(ﬂ,p,q;G) < o0

Thus, by Theorem 2.1 we know that F' € HA} (G).
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Now, we turn to E(x). Write

E(x) = Y (f(&) = fo.)xe, (z)

n=0

= Z WG )P (f = fe)xen @)
n=0

{f(z) = fe, (x)}xc, (x)

I(f = fe)xenllLe ey u(G—n)t/a=1/p
=: Z A2 a2 ().
n=0
It is easy to see that
@ (z) = {f(x) — fe.bxe. (@)

I = fe)xen

is a central (g, p)o-atom, and

YR = D G- TS = e )xen b
n=0 n=0

LG T

< G ) (I fxe e + e w(Ca) P
n=0

<C Z M(G—n)liq/prch Hqu(c,')
n=0

= CHfH(;((l/q—l/p,p,q;G) < CHng((ﬂ,p,q;G) < 00

Thus, by Theorem 2.1 we know that E € HA} ,(G). Therefore, f = E+F €
HA, ((G). This finishes the proof of Theorem 4.1.
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