1995

FASC. 1

ON SYSTEMS OF COMPOSITE LEHMER NUMBERS WITH PRIME INDICES

	BY
J.	WÓJCIK*

1. Introduction. I proved in [3] two theorems about the so-called Lehmer numbers:

THEOREM I. If α, β are different from zero and α/β is not a root of unity, then there exists an integer k > 0 such that for every integer $D \neq 0$ there exists a prime q satisfying the condition

$$q \mid P_{(q-1)/k}(\alpha,\beta), \quad \left(\frac{q-1}{k}, D\right) = 1.$$

THEOREM II. If α, β are different from zero and α/β is not a root of unity, then Conjecture H implies the existence of infinitely many primes p such that $P_p(\alpha, \beta)$ is composite.

The Lehmer numbers are defined as follows:

$$P_n(\alpha,\beta) = \begin{cases} (\alpha^n - \beta^n)/(\alpha - \beta) & \text{if } n \text{ is odd,} \\ (\alpha^n - \beta^n)/(\alpha^2 - \beta^2) & \text{if } n \text{ is even,} \end{cases}$$

where α, β are the roots of the trinomial $z^2 - \sqrt{L}z + M$ and L, M are rational integers.

Here is an equivalent definition:

$$P_1 = P_2 = 1, \quad P_n = \begin{cases} LP_{n-1} - MP_{m-2} & \text{if } n \text{ is odd,} \\ P_{n-1} - MP_{n-2} & \text{if } n \text{ is even,} \end{cases} \quad n \ge 3.$$

Conjecture H was put forward by A. Schinzel (see [2], p. 188) and reads as follows:

H. If f_1, \ldots, f_k are irreducible polynomials with integral coefficients and positive leading coefficients such that the product $f_1(x) \ldots f_k(x)$ has no constant factor greater than 1, then there exist infinitely many positive integers x such that $f_1(x), \ldots, f_k(x)$ are primes.

¹⁹⁹¹ Mathematics Subject Classification: Primary 11B39.

^{*} J. Wójcik died on March 1, 1994 and the paper has been edited by A. Schinzel.

^[43]

The aim of this paper is to extend the above results to the system of Lehmer numbers. Let $1 \leq j \leq s$ and let α_j, β_j be the roots of the trinomial $z^2 - \sqrt{L_j}z + M_j$, where L_j, M_j are rational integers.

We shall show

THEOREM 1. If $\alpha_j, \beta_j, \alpha_j - \beta_j$ $(1 \leq j \leq s)$ are different from zero and the multiplicative group generated by the numbers $\alpha_1/\beta_1, \ldots, \alpha_s/\beta_s$ is torsion-free, then there exists a positive integer k such that for every positive integer D there exists a prime q satisfying the condition

$$q \mid P_{(q-1)/k}(\alpha_1, \beta_1), \dots, q \mid P_{(q-1)/k}(\alpha_s, \beta_s), \quad \left(\frac{q-1}{k}, D\right) = 1$$

THEOREM 2. If $\alpha_j, \beta_j, \alpha_j - \beta_j$ $(1 \le j \le s)$ are different from zero and the multiplicative group generated by the numbers $\alpha_1/\beta_1, \ldots, \alpha_s/\beta_s$ is torsion-free, then Conjecture H implies the existence of infinitely many primes p such that the numbers $P_p(\alpha_1, \beta_1), \ldots, P_p(\alpha_s, \beta_s)$ are all composite.

It is easy to see that all assumptions of Theorem 1 are essential. As to Theorem 2 we shall prove much more. Namely, we shall prove that the numbers $P_p(\alpha_1, \beta_1), \ldots, P_p(\alpha_s, \beta_s)$ are positive and divisible by the same prime not dividing $pM_1 \ldots M_s$.

The proof of Theorems 1 and 2 is based on Theorem 1 of [4] which we quote below with some changes in notation:

THEOREM 1'. Let K be an algebraic number field. Let $\alpha'_1, \ldots, \alpha'_s \in K^*$. Assume that the multiplicative group generated by $\alpha'_1, \ldots, \alpha'_s$ is torsionfree. There exists a positive integer k_0 such that for every positive integer k divisible by k_0 and for all positive integers F and t, with (t, F) = 1, $t \equiv 1 \mod k$ and $F \equiv 0 \mod k$, there exist infinitely many prime ideals \mathfrak{q} of degree one of $K(\zeta_k)$ such that

$$\left(\frac{\alpha_1'}{\mathfrak{q}}\right)_k = 1, \dots, \left(\frac{\alpha_s'}{\mathfrak{q}}\right)_k = 1, \quad N\mathfrak{q} \equiv t \mod F.$$

2. Proof of Theorems 1 and 2. Let D be any positive integer. Put $\alpha'_j = \alpha_j/\beta_j$ $(1 \le j \le s), K = \mathbb{Q}(\alpha'_1, \ldots, \alpha'_s), k = 2k_0$, where k_0 denotes the constant in Theorem 1'. Moreover, let $K_2 = K(\zeta_k)$, let n_2 be the degree of K_2 and $N(\cdot) = N_{K_2/\mathbb{Q}}(\cdot)$. If an extension Ω_1/Ω_2 is abelian, $f(\Omega_1/\Omega_2)$ denotes its conductor. Let g be the minimal polynomial of an integer θ such that $K_2 = \mathbb{Q}(\theta)$. Let us put

(1)
$$F = k(2n_2)! \left| \operatorname{disc}(g) \prod_{j=1}^{s} N(f(K_2(\sqrt[k]{\alpha_j})/K_2)) \right| D.$$

Further, put $\overline{F} = kF$ and $F = F_1F_2$, where F_1 contains only prime factors dividing k and $(F_2, k) = 1$.

Let t satisfy the congruences

$$t \equiv \begin{cases} k + 1 \mod k^2, \\ 2 \mod F_2. \end{cases}$$

Now, F_2 is odd since k is even. Hence

(2)
$$(t,\overline{F}) = 1, \quad t \equiv 1 \mod k \quad \text{and} \quad \left(\frac{t-1}{k},F\right) = 1.$$

By Theorem 1′ there exists a prime ideal \mathfrak{q}_0 of degree one of K_2 such that

(3)
$$\left(\frac{\alpha_1'}{\mathfrak{q}_0}\right)_k = 1, \dots, \left(\frac{\alpha_s'}{\mathfrak{q}_0}\right)_k = 1, \quad N\mathfrak{q}_0 \equiv t \mod \overline{F},$$

 $N\mathfrak{q}_0$ is sufficiently large so that $\mathfrak{q}_0 \nmid \beta_j (\alpha_j - \beta_j)$.

By (1)-(3),

(4)

$$F \equiv 0 \mod k(2n_2)! \operatorname{disc}(g), \qquad N\mathfrak{q}_0 \equiv 1 \mod k,$$

$$(\mathfrak{q}_0,F)=1, \quad \left(\frac{N\mathfrak{q}_0-1}{k},F\right)=1.$$

Put $q = N\mathfrak{q}_0$. Then q is a prime. By (3) and Euler's criterion,

$$(\alpha_j/\beta_j)^{(q-1)/k} \equiv \left(\frac{\alpha'_j}{\mathfrak{q}_0}\right)_k = 1 \mod \mathfrak{q}_0$$

Hence $\mathfrak{q}_0 | P_{(q-1)/k}(\alpha_j, \beta_j)$ and

$$q \mid P_{(q-1)/k}(\alpha_j, \beta_j) \quad (1 \le j \le s).$$

Further, by (4) and (1), $\left(\frac{q-1}{k}, D\right) = 1$, which proves Theorem 1.

Next we shall prove Theorem 2. By Lemma 5 of [4] and by (4) there exists a polynomial $f_1(x)$ such that the polynomials $f_1(x)$ and $f_2(x) = (f_1(x) - 1)/k$ satisfy the assumption of Conjecture H. By this conjecture there exist infinitely many positive integers x such that $q = f_1(x)$ and $p = f_2(x)$ are primes. Again by Lemma 5 of [4],

(5)
$$q = N\mathfrak{q}', \quad \mathfrak{q}' \sim \mathfrak{q}_0^{-1} \operatorname{mod} F,$$

where q' is a prime ideal of degree one of K_2 .

By (5), (3), (1) and Euler's criterion,

$$(\alpha_j/\beta_j)^{(q-1)/k} \equiv \left(\frac{\alpha'_j}{\mathfrak{q}'}\right)_k = \left(\frac{\alpha'_j}{\mathfrak{q}_0}\right)_k^{-1} = 1 \mod \mathfrak{q}'$$

in view of Artin's reciprocity law. Hence $\mathfrak{q}' | P_{(q-1)/k}(\alpha_j, \beta_j)$ and

(6)
$$q | P_p(\alpha_j, \beta_j) \quad (1 \le j \le s)$$

because (q-1)/k = p. Put $\Delta_j = L_j - 4M_j$ $(1 \le j \le s)$. We may assume without loss of generality that $L_j > 0$ for each j. Assume that $\Delta_1 > 0, \ldots, \Delta_u > 0, \ \Delta_{u+1} < 0$ $0,\ldots,\Delta_s<0.$

For $1 \leq j \leq u$ by inequality (5) of [1] we have

(7)
$$|P_p(\alpha_j, \beta_j)| \ge \left(\frac{1+\sqrt{5}}{2}\right)^{p-2}$$

and for $u + 1 \le j \le s$ by inequality (5') of [1] we obtain

(8)
$$|P_p(\alpha_j,\beta_j)| \ge (\sqrt{2})^{p-\log^3 p} \quad \text{for } p > N(\alpha_j,\beta_j).$$

By (7) and (8) for sufficiently large p we have

$$|P_p(\alpha_j, \beta_j)| > kp + 1 = q$$

and (6) implies that the numbers $P_p(\alpha_j, \beta_j)$ are composite.

REFERENCES

- A. Schinzel, On the composite Lehmer numbers with prime indices, I, Prace Mat. [1] 9 (1965), 95-103.
- A. Schinzel et W. Sierpiński, Sur certaines hypothèses concernant les nombres [2]premiers, Acta Arith. 4 (1958), 185–208, Correction, ibid. 5 (1959), 259.
- J. Wójcik, On the composite Lehmer numbers with prime indices, III, Colloq. Math. [3] 45 (1981), 81-90.
- [4]-, On a problem in algebraic number theory, Math. Proc. Cambridge Philos. Soc., to appear.

Reçu par la Rédaction le 15.6.1994