C OLLOQUIUM MATHEMATICUM

ON SYSTEMS OF COMPOSITE LEHMER NUMBERS WITH PRIME INDICES

$\frac{\text { By }}{}{ }^{\text {J. W Ó J C I K * }}$

1. Introduction. I proved in [3] two theorems about the so-called Lehmer numbers:

THEOREM I. If α, β are different from zero and α / β is not a root of unity, then there exists an integer $k>0$ such that for every integer $D \neq 0$ there exists a prime q satisfying the condition

$$
q \mid P_{(q-1) / k}(\alpha, \beta), \quad\left(\frac{q-1}{k}, D\right)=1
$$

Theorem II. If α, β are different from zero and α / β is not a root of unity, then Conjecture H implies the existence of infinitely many primes p such that $P_{p}(\alpha, \beta)$ is composite.

The Lehmer numbers are defined as follows:

$$
P_{n}(\alpha, \beta)= \begin{cases}\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) & \text { if } n \text { is odd } \\ \left(\alpha^{n}-\beta^{n}\right) /\left(\alpha^{2}-\beta^{2}\right) & \text { if } n \text { is even }\end{cases}
$$

where α, β are the roots of the trinomial $z^{2}-\sqrt{L} z+M$ and L, M are rational integers.

Here is an equivalent definition:

$$
P_{1}=P_{2}=1, \quad P_{n}= \begin{cases}L P_{n-1}-M P_{m-2} & \text { if } n \text { is odd, } \\ P_{n-1}-M P_{n-2} & \text { if } n \text { is even, } \quad n \geq 3\end{cases}
$$

Conjecture H was put forward by A. Schinzel (see [2], p. 188) and reads as follows:
H. If f_{1}, \ldots, f_{k} are irreducible polynomials with integral coefficients and positive leading coefficients such that the product $f_{1}(x) \ldots f_{k}(x)$ has no constant factor greater than 1 , then there exist infinitely many positive integers x such that $f_{1}(x), \ldots, f_{k}(x)$ are primes.

[^0]The aim of this paper is to extend the above results to the system of Lehmer numbers. Let $1 \leq j \leq s$ and let α_{j}, β_{j} be the roots of the trinomial $z^{2}-\sqrt{L_{j}} z+M_{j}$, where L_{j}, M_{j} are rational integers.

We shall show
Theorem 1. If $\alpha_{j}, \beta_{j}, \alpha_{j}-\beta_{j}(1 \leq j \leq s)$ are different from zero and the multiplicative group generated by the numbers $\alpha_{1} / \beta_{1}, \ldots, \alpha_{s} / \beta_{s}$ is torsion-free, then there exists a positive integer k such that for every positive integer D there exists a prime q satisfying the condition

$$
q\left|P_{(q-1) / k}\left(\alpha_{1}, \beta_{1}\right), \ldots, q\right| P_{(q-1) / k}\left(\alpha_{s}, \beta_{s}\right), \quad\left(\frac{q-1}{k}, D\right)=1
$$

Theorem 2. If $\alpha_{j}, \beta_{j}, \alpha_{j}-\beta_{j}(1 \leq j \leq s)$ are different from zero and the multiplicative group generated by the numbers $\alpha_{1} / \beta_{1}, \ldots, \alpha_{s} / \beta_{s}$ is torsionfree, then Conjecture H implies the existence of infinitely many primes p such that the numbers $P_{p}\left(\alpha_{1}, \beta_{1}\right), \ldots, P_{p}\left(\alpha_{s}, \beta_{s}\right)$ are all composite.

It is easy to see that all assumptions of Theorem 1 are essential. As to Theorem 2 we shall prove much more. Namely, we shall prove that the numbers $P_{p}\left(\alpha_{1}, \beta_{1}\right), \ldots, P_{p}\left(\alpha_{s}, \beta_{s}\right)$ are positive and divisible by the same prime not dividing $p M_{1} \ldots M_{s}$.

The proof of Theorems 1 and 2 is based on Theorem 1 of [4] which we quote below with some changes in notation:

Theorem 1^{\prime}. Let K be an algebraic number field. Let $\alpha_{1}^{\prime}, \ldots, \alpha_{s}^{\prime} \in$ K^{*}. Assume that the multiplicative group generated by $\alpha_{1}^{\prime}, \ldots, \alpha_{s}^{\prime}$ is torsionfree. There exists a positive integer k_{0} such that for every positive integer k divisible by k_{0} and for all positive integers F and t, with $(t, F)=1$, $t \equiv 1 \bmod k$ and $F \equiv 0 \bmod k$, there exist infinitely many prime ideals \mathfrak{q} of degree one of $K\left(\zeta_{k}\right)$ such that

$$
\left(\frac{\alpha_{1}^{\prime}}{\mathfrak{q}}\right)_{k}=1, \ldots,\left(\frac{\alpha_{s}^{\prime}}{\mathfrak{q}}\right)_{k}=1, \quad N \mathfrak{q} \equiv t \bmod F
$$

2. Proof of Theorems 1 and 2. Let D be any positive integer. Put $\alpha_{j}^{\prime}=\alpha_{j} / \beta_{j}(1 \leq j \leq s), K=\mathbb{Q}\left(\alpha_{1}^{\prime}, \ldots, \alpha_{s}^{\prime}\right), k=2 k_{0}$, where k_{0} denotes the constant in Theorem 1^{\prime}. Moreover, let $K_{2}=K\left(\zeta_{k}\right)$, let n_{2} be the degree of K_{2} and $N(\cdot)=N_{K_{2} / \mathbb{Q}}(\cdot)$. If an extension Ω_{1} / Ω_{2} is abelian, $f\left(\Omega_{1} / \Omega_{2}\right)$ denotes its conductor. Let g be the minimal polynomial of an integer θ such that $K_{2}=\mathbb{Q}(\theta)$. Let us put

$$
\begin{equation*}
F=k\left(2 n_{2}\right)!\left|\operatorname{disc}(g) \prod_{j=1}^{s} N\left(f\left(K_{2}\left(\sqrt[k]{\alpha_{j}}\right) / K_{2}\right)\right)\right| D \tag{1}
\end{equation*}
$$

Further, put $\bar{F}=k F$ and $F=F_{1} F_{2}$, where F_{1} contains only prime factors dividing k and $\left(F_{2}, k\right)=1$.

Let t satisfy the congruences

$$
t \equiv\left\{\begin{array}{l}
k+1 \bmod k^{2}, \\
2 \bmod F_{2}
\end{array}\right.
$$

Now, F_{2} is odd since k is even. Hence

$$
\begin{equation*}
(t, \bar{F})=1, \quad t \equiv 1 \bmod k \quad \text { and } \quad\left(\frac{t-1}{k}, F\right)=1 \tag{2}
\end{equation*}
$$

By Theorem 1^{\prime} there exists a prime ideal \mathfrak{q}_{0} of degree one of K_{2} such that

$$
\begin{align*}
& \left(\frac{\alpha_{1}^{\prime}}{\mathfrak{q}_{0}}\right)_{k}=1, \ldots,\left(\frac{\alpha_{s}^{\prime}}{\mathfrak{q}_{0}}\right)_{k}=1, \quad N \mathfrak{q}_{0} \equiv t \bmod \bar{F}, \tag{3}\\
& N \mathfrak{q}_{0} \text { is sufficiently large so that } \mathfrak{q}_{0} \nmid \beta_{j}\left(\alpha_{j}-\beta_{j}\right) .
\end{align*}
$$

By (1)-(3),

$$
\begin{align*}
& F \equiv 0 \bmod k\left(2 n_{2}\right)!\operatorname{disc}(g), \quad N \mathfrak{q}_{0} \equiv 1 \bmod k, \\
& \left(\mathfrak{q}_{0}, F\right)=1, \quad\left(\frac{N \mathfrak{q}_{0}-1}{k}, F\right)=1 . \tag{4}
\end{align*}
$$

Put $q=N \mathfrak{q}_{0}$. Then q is a prime. By (3) and Euler's criterion,

$$
\left(\alpha_{j} / \beta_{j}\right)^{(q-1) / k} \equiv\left(\frac{\alpha_{j}^{\prime}}{\mathfrak{q}_{0}}\right)_{k}=1 \bmod \mathfrak{q}_{0} .
$$

Hence $\mathfrak{q}_{0} \mid P_{(q-1) / k}\left(\alpha_{j}, \beta_{j}\right)$ and

$$
q \mid P_{(q-1) / k}\left(\alpha_{j}, \beta_{j}\right) \quad(1 \leq j \leq s)
$$

Further, by (4) and (1), $\left(\frac{q-1}{k}, D\right)=1$, which proves Theorem 1 .
Next we shall prove Theorem 2. By Lemma 5 of [4] and by (4) there exists a polynomial $f_{1}(x)$ such that the polynomials $f_{1}(x)$ and $f_{2}(x)=$ $\left(f_{1}(x)-1\right) / k$ satisfy the assumption of Conjecture H. By this conjecture there exist infinitely many positive integers x such that $q=f_{1}(x)$ and $p=f_{2}(x)$ are primes. Again by Lemma 5 of [4],

$$
\begin{equation*}
q=N \mathfrak{q}^{\prime}, \quad \mathfrak{q}^{\prime} \sim \mathfrak{q}_{0}^{-1} \bmod F, \tag{5}
\end{equation*}
$$

where \mathfrak{q}^{\prime} is a prime ideal of degree one of K_{2}.
By (5), (3), (1) and Euler's criterion,

$$
\left(\alpha_{j} / \beta_{j}\right)^{(q-1) / k} \equiv\left(\frac{\alpha_{j}^{\prime}}{\mathfrak{q}^{\prime}}\right)_{k}=\left(\frac{\alpha_{j}^{\prime}}{\mathfrak{q}_{0}}\right)_{k}^{-1}=1 \bmod \mathfrak{q}^{\prime}
$$

in view of Artin's reciprocity law. Hence $\mathfrak{q}^{\prime} \mid P_{(q-1) / k}\left(\alpha_{j}, \beta_{j}\right)$ and

$$
\begin{equation*}
q \mid P_{p}\left(\alpha_{j}, \beta_{j}\right) \quad(1 \leq j \leq s) \tag{6}
\end{equation*}
$$

because $(q-1) / k=p$.
Put $\Delta_{j}=L_{j}-4 M_{j}(1 \leq j \leq s)$. We may assume without loss of generality that $L_{j}>0$ for each j. Assume that $\Delta_{1}>0, \ldots, \Delta_{u}>0, \Delta_{u+1}<$ $0, \ldots, \Delta_{s}<0$.

For $1 \leq j \leq u$ by inequality (5) of [1] we have

$$
\begin{equation*}
\left|P_{p}\left(\alpha_{j}, \beta_{j}\right)\right| \geq\left(\frac{1+\sqrt{5}}{2}\right)^{p-2} \tag{7}
\end{equation*}
$$

and for $u+1 \leq j \leq s$ by inequality (5^{\prime}) of [1] we obtain

$$
\begin{equation*}
\left|P_{p}\left(\alpha_{j}, \beta_{j}\right)\right| \geq(\sqrt{2})^{p-\log ^{3} p} \quad \text { for } p>N\left(\alpha_{j}, \beta_{j}\right) \tag{8}
\end{equation*}
$$

By (7) and (8) for sufficiently large p we have

$$
\left|P_{p}\left(\alpha_{j}, \beta_{j}\right)\right|>k p+1=q
$$

and (6) implies that the numbers $P_{p}\left(\alpha_{j}, \beta_{j}\right)$ are composite.

REFERENCES

[1] A. Schinzel, On the composite Lehmer numbers with prime indices, I, Prace Mat. 9 (1965), 95-103.
[2] A. Schinzel et W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208, Correction, ibid. 5 (1959), 259.
[3] J. Wójcik, On the composite Lehmer numbers with prime indices, III, Colloq. Math. 45 (1981), 81-90.
[4] -, On a problem in algebraic number theory, Math. Proc. Cambridge Philos. Soc., to appear.

[^0]: 1991 Mathematics Subject Classification: Primary 11B39.

 * J. Wójcik died on March 1, 1994 and the paper has been edited by A. Schinzel.

