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A NOTE ON A MULTI-VARIABLE POLYNOMIAL LINK INVARIANT

BY

ADAM S IKORA (WARSZAWA)

In 1985 the Homfly polynomial was discovered independently by several
groups of authors (see [PT], [FYHLMO]). Various possible generalizations
were also discussed in [PT] and [HW]; see also [L]. In particular, one many-
variable polynomial link invariant was defined in [PT], Example 3.9. In
this note we show that this invariant is in fact equivalent to the Homfly
polynomial.

First of all we recall the definition of the invariant. This is a polynomial
w in variables y±1

1 , x′2
±1, z′2, zi, x±1

i , i ∈ N, satisfying the following three
conditions.

(0) For the trivial link Tn of n components the following equality holds:

w(Tn) =
n−1∏
i=1

(xi + yi) + z1

n−1∏
i=2

(xi + yi) + . . . + zn−2(xn−1 + yn−1) + zn−1.

The next two conditions involve the notion of multiplicity pattern. We
say that a triple D+, D−, D0 of oriented diagrams has multiplicity pattern
(n, k) if D+ and D− have n components each, and D0 has k components.
If the specified crossing of D+ is a self-crossing of one component then
k = n + 1. Otherwise k = n − 1. Thus, the only patterns that may appear
are (n, n + 1) and (n, n− 1). Let w+ = w(D+), w− = w(D−), w0 = w(D0).
Then the next two conditions defining the polynomial w are:

xnw+ + ynw− = w0 − zn for multiplicity pattern (n, n + 1) and(1)
x′nw+ + y′nw− = w0 − z′n for multiplicity pattern (n, n− 1).(2)

Moreover, xi, yi, zi, x′i, y′i, and z′i are supposed to satisfy

(3)
yi = xi

y1

x1
, x′i =

x′2x1

xi−1
, y′i =

x′iy1

x1
,

z′i+1 − zi−1

x1x′2
=

(
1 +

y1

x1

)(
z′i
x′i
− zi

xi

)
,

for i = 1, 2, . . .
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In Problem 4.4 of [PT] it is asked whether the polynomial w is a better
invariant of links than the Homfly polynomial. We will show that the answer
is negative, namely:

Theorem. The polynomial w is equivalent to the Homfly polynomial.

Here “equivalent” means that given the value of h(K) we can calculate
w(K) and conversely.

P r o o f. We will use the Homfly polynomial, denoted by h, in variables
x and y as defined by the equalities

xh+ + yh− = h0, h(Tn) = (x + y)n−1.

Let us observe that if the link K has n components, then deg h(K) =
n−1. Obviously, the substitutions xi = x′2 = x, y1 = y, zi = z′2 = 0 for i ∈ N
yield w(K) = h(K). Therefore, it is enough to show that given the value of
the Homfly polynomial for a link K we can determine the polynomial w(K).

Let us begin with a simplification of the definition of w. Let x := x1,
y := y1. In this notation, after multiplication of both sides of formulas (1)
and (2) by x/xn and xn−1/x′2 respectively, we obtain the following identities:

w(Tn) =
(

1 +
y

x

)n−1

xx2 . . . xn−1(0′)

+
n−1∑
k=1

zk

(
1 +

y

x

)n−1−k

xk+1 . . . xn−1,

xw+ + yw− =
x

xn
(w0 − zn) for (n, n + 1),(1′)

xw+ + yw− =
xn−1

x′2
(w0 − z′n) for (n, n− 1).(2′)

From (3) we have

z′n+1 = zn−1 + xx′2

(
1 +

y

x

)(
z′nxn−1

x′2x
− zn

xn

)
for n ≥ 2.

Lemma 1. The following equality holds:

z′n =
n−1∑
k=1

cn,kzk + cn,2′z
′
2,

where the parameters cn,k, cn,2′ are defined in the following manner. Set

cn,1 =

 (1 + y/x)n−3x2 . . . xn−2 for n > 3,
1 for n = 3,
0 for n ≤ 2.



LINK INVARIANT 55

Let α = 1− xx′2(1 + y/x)2. For k ≥ 2 define cn,k as

cn,k =


α(1 + y/x)n−k−2xk+1 . . . xn−2 for n > k + 2,
α for n = k + 2,
−(x′2/xk)(x + y) for n = k + 1,
0 for n ≤ k,

and

cn,2′ =
{

1 for n = 2,
(1 + y/x)n−2x1 . . . xn−2 for n ≥ 3.

P r o o f. By induction on n.

We will prove the next two lemmas using the method described in [K]
and [PT], namely: Let D be an oriented diagram of n components, and let
cr(D) denote the number of crossings in D. Let b = (b1, . . . , bn) be base
points of D, one point for each component of D, none of them a crossing
point. Now, one travels along D (according to the orientation of D) starting
from b1, then (when the walk along the first component is completed) from
b2 and so on. Any crossing that is passed by a tunnel when first encountered
is called a bad crossing .

Let us consider all possible choices of (b1, . . . , bn). We denote the minimal
number of bad crossings in D (over all possible choices of base points) by
χ(D). For a given diagram D let (b1, . . . , bn) be base points of D such that
the number of bad crossings in D is minimal possible. We may assume
that the first bad crossing is positive. We denote D by D+ with respect
to this crossing. Then χ(D−) < χ(D+), and D0 has less crossings than D.
Therefore, in order to prove some property of w(D), it is convenient to use
induction on cr(D) and χ(D).

Lemma 2. For every diagram D of n components we can group the terms
of w(D) as follows:

w(D) = w0(D) + w1(D)z1 +
∞∑

k=2

dn,kzk + w2′(D)z′2,

where

dn,k =

 (xk+1 + yk+1) . . . (xn−1 + yn−1) for n ≥ k + 2,
1 for n = k + 1,
0 for n ≤ k,

and w0, w1, w2′ are polynomials in the variables y±1, x′2
±1, and x±1

i , i ∈ N.

P r o o f (by induction on cr and χ). If cr(D) = 0 then from (0′) the
lemma is true. Let us assume that it holds for all D such that cr(D) ≤ c.
Let cr(D) ≤ c+1. Now we apply induction on χ(D). If χ(D) = 0 then D is
a trivial link and the lemma is true. Let us assume that it holds for D such
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that χ(D) ≤ s. If χ(D) = s+1 then there is a crossing in D (we assume that
it is positive) such that D = D+, cr(D0) ≤ c and χ(D−) ≤ s. Therefore D0

and D− satisfy the inductive hypothesis. If D+, D0 have respectively n and
n + 1 components then we have

w(D0) = w0(D0) + w1(D0)z1 +
∞∑

k=2

dn+1,kzk + w2′(D0)z2′ ,

w(D−) = w0(D−) + w1(D−)z1 +
∞∑

k=2

dn,kzk + w2′(D−)z2′ .

Then from (1′) for n > 2 we obtain

w(D+) =
1
xn

w(D0)−
zn

xn
− y

x
w(D−)

=
[

1
xn

w0(D0)−
y

x
w0(D−)

]
+

[
1
xn

w1(D0)−
y

x
w1(D−)

]
z1

+
n−1∑
k=2

(
1
xn

dn+1,k −
y

x
dn,k

)
zk +

[
1
xn

dn+1,n −
y

x
dn,n −

1
xn

]
zn

+
[

1
xn

w2′(D0)−
y

x
w2′(D−)

]
z′2.

One readily sees that
1
xn

dn+1,n −
y

x
dn,n −

1
xn

= 0

and
1
xn

dn+1,k −
y

x
dn,k = dn,k for k = 2, . . . , n− 1.

This completes the proof for this case.
For n = 1 and n = 2 the proof is similar and even simpler. What

remains to prove is the case when D+ and D0 have respectively n and n− 1
components. In this situation (2′) implies

w(D+) =
xn−1

xx′2
w(D0)−

xn−1z
′
n

xx′2
− y

x
w(D−)

=
[
xn−1

xx′2
w0(D0)−

y

x
w0(D−)

]
+

[
xn−1

xx′2
w1(D0)−

y

x
w1(D−)− xn−1

xx′2
cn,1

]
z1

+
∞∑

k=2

[
xn−1

xx′2
(dn−1,k − cn,k)− y

x
dn,k

]
zk

+
[
xn−1

xx′2
w2′(D0)−

xn−1

xx′2
cn,2′ −

y

x
w2′(D−)

]
z2′ .
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It is easy to prove that the equalities
xn−1

xx′2
(dn−1,k − cn,k)− y

x
dn,k = dn,k

hold for k ≥ 2 by checking directly the cases n ≥ k+3, n = k+2, n = k+1,
and n ≤ k. This completes the proof of Lemma 2.

Lemma 3. Let D have n components. Then w0(D), w1(D), and w2′(D)
are sums of monomials of the form

cx2 . . . xn−1x
αyβ 1

x′2
γ for n ≥ 3,

cxαyβ 1
x′2

γ for n ≤ 2,

and the sum of the exponents of x, y, 1/x′2, x2, . . . , xn−1 in each of these
monomials is equal to n− 2 for w1, and to n− 1 for w0 and w2′ .

P r o o f. Follows from (1′) and (2′) by induction on cr(D) and χ(D).

Let v0, v1, v2′ be polynomials (in the variables x±1, y±1, x′2
±1) equal

to w0, w1, w2′ after substitution xi := x, i ∈ N, and let v0, v1, v2′ be the
polynomials obtained respectively from v0, v1, v2′ by putting x in place of
x′2. Now from (0′), (1′), and (2′) we have

xv0+ + yv0− = v00 and v0(Tn) = (x + y)n−1.

Therefore v0(D) = h(D) for each D.
For v1 the identities (0′), (1′), and (2′) take the form

xv1+ + yv1− = v10 − 1 for (1, 2) pattern,
xv1+ + yv1− = v10 for (2, 1) and (n, n + 1) patterns,

n 6= 1,
xv1+ + yv1− = v10 − (x + y)(n−3) for (n, n− 1) pattern, n 6= 2,
v1(T1) = 0,
v1(Tn) = (x + y)n−2 for n ≥ 2.

One readily sees that the polynomial

x + y

(x + y)2 − 1
(h− (x + y)n−1) +

{
(x + y)n−2 for n ≥ 2,
0 for n = 1,

satisfies all the above conditions. Since these conditions uniquely define v1,
therefore

v1 =
x + y

(x + y)2 − 1
(h− (x + y)n−1) +

{
(x + y)n−2 for n ≥ 2,
0 for n = 1.
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Finally, v2′ is defined by
xv2′+

+ yv2′−
= v2′0

for (n, n + 1) pattern,
xv2+ + yv2′−

= v2′0
− (x + y)n−2 for (n, n− 1) pattern,

v2′(Tn) = 0.

In the same way we prove that v2′ = (h − (x + y)n−1)/((x + y)2 − 1).
Since the number of components of D is equal to deg h(D) + 1 we have the
following:

Corollary. From h we can calculate v0, v1 and v2′ .

If we know the form of v0 then we can reconstruct v0: if a monomial
cxayb appears in v0 then a monomial cxαyb 1

x′2
γ appears in v0 with α, γ ∈ Z

satisfying
α− γ = a, α + γ + b = n− 1.

In a similar way we can deal with v1 and v2′ . If we know v0(D) we can
calculate w0(D): if n ≤ 2 then w0(D) = v0(D), and for n > 2 the monomials
of the form cxαyβ 1

x′2
γ in v0(D) correspond to monomials

cx2 . . . xn−2x
α−(n−3)yβ 1

x′2
γ

in w0(D). The case of v1 and v2′ is similar. This completes the proof of the
Theorem.

The author wishes to express his gratitude to Prof. P. Traczyk for his
help and inspiration, which resulted in this work.
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