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0. Introduction. The cake division problem is the problem of dividing
a cake among a certain number of individuals in such a way that each
individual is “satisfied”, where we assume that each such individual has
some means of comparing the relative worth of different pieces of cake, but
where we do not necessarily assume that different individuals agree with
each other in these evaluations. Of course, it is not yet clear what we mean
by “satisfied”.

To make this precise, let us assume that there are n individuals, and
n associated finitely additive, non-atomic measures m1, . . . ,mn, each de-
fined on some algebra of subsets of our cake C, such that for each such mi,
mi(C) = 1. Various notions of what it means for each of the n individuals
to be satisfied with a partition 〈P1, . . . , Pn〉 of C have been considered. See,
for example, Brams and Taylor [2], or Barbanel [1]. We shall consider, and
then generalize, two of these notions: The partition 〈P1, . . . , Pn〉 of C is
fair with respect to the sequence of measures 〈m1, . . . ,mn〉 if and only if
for each i = 1, . . . , n, mi(Pi) ≥ 1/n, and is strongly fair with respect to
the sequence of measures 〈m1, . . . ,mn〉 if and only if for each i = 1, . . . , n,
mi(Pi) > 1/n. Banach and Knaster (see Steinhaus [6] or [7]) presented an
algorithm for obtaining a partition of a cake C among n individuals that is
fair, and Woodall [8] presented an algorithm for obtaining a partition of a
cake C among n individuals that is strongly fair, assuming that the mea-
sures are not identical and that we are given a witness of the disagreement
of some two of the measures. We note that it is clearly impossible to obtain
a strongly fair partition of C if all of the involved measures are identical.

In this paper, we study a generalization of these notions. Let 〈α1, . . . , αn〉
be a sequence of positive numbers satisfying α1 + . . . + αn = 1. We shall
call such a sequence an entitlement sequence. Then, we say that the par-
tition 〈P1, . . . , Pn〉 of C is fair with respect to the sequence of measures
〈m1, . . . ,mn〉 and the entitlement sequence 〈α1, . . . , αn〉 if and only if for
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each i = 1, . . . , n, mi(Pi) ≥ αi, and is strongly fair with respect to the se-
quence of measures 〈m1, . . . ,mn〉 and the entitlement sequence 〈α1, . . . , αn〉
if and only if for each i = 1, . . . , n, mi(Pi) > αi. We note that these notions
reduce to fairness and strong fairness respectively if α1 = . . . = αn.

Consider the question of whether there exists an algorithm for obtaining
a partition of C among n individuals that is fair, or is strongly fair, with re-
spect to a given sequence of measures and entitlement sequence. As Dubins
and Spanier [4] point out, the Banach and Knaster result discussed above
generalizes easily to yield an algorithm for fairness if all of the elements of the
entitlement sequence are rational. Similarly,Woodall’s result generalizes eas-
ily to yield an algorithm for strong fairness if all of the elements of the entitle-
ment sequence are rational. We shall show, for both fairness and strong fair-
ness, that this rationality assumption is not necessary. In particular, we shall
show that there exists an algorithm for obtaining a partition of C among
n individuals that is fair with respect to a given sequence of measures and
entitlement sequence, and that if the measures are not identical and we are
given a witness of the disagreement of some two measures, then we can find
a partition that is strongly fair with respect to the given sequence of mea-
sures and entitlement sequence. Our proof of the existence of a fair partition
is completely different from the fairness algorithm of Banach and Knaster,
but our proof of the existence of a strongly fair partition is very much in-
spired by the strong fairness algorithm of Woodall. The algorithms we shall
consider will be “game-theoretic”, in a sense that we shall discuss below.

It will be necessary, at various stages in our algorithms, for individuals
to be able to partition C into a certain number of pieces that are equal ac-
cording to that player’s measure. Hence, it will be necessary that measures
satisfy the Partitioning Postulate: A measure m, defined on some algebra of
subsets of C, satisfies the Partitioning Postulate if, for any positive integer
k, there exists a partition of C into k pieces, each of which is in the algebra,
such that each piece is of equal size according to m.

It will also be necessary, at various stages in our algorithms, for players
to be able to trim off a bit of a given subset of C to obtain a set of a given
smaller size. Hence, it will be necessary that measures satisfy the Trimming
Postulate: A measure m, defined on some algebra of subsets of C, satisfies
the Trimming Postulate if, given any set A in our algebra, and given any
positive real number r < m(A), there exists B ⊆ A in our algebra such that
m(B) = r.

Throughout this paper, “measure” shall always mean a finitely additive,
non-atomic measure, defined on some algebra of subsets of C, which gives
measure 1 to C, and which satisfies the Partitioning Postulate and the Trim-
ming Postulate. We assume that all subsets of C that are mentioned are in
some common algebra on which all relevant measures are defined.
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1. Game-theoretic algorithms. We begin by describing in general
terms what we mean by a game-theoretic algorithm. A game-theoretic al-
gorithm consists of three ingredients:

1. A set of rules for the game. The game proceeds by discrete stages.
The players must follow the given rules at each stage. The rules shall contain
no reference to the players’ measures. The intuition is that we may view
a player’s measure as private information that only he or she has access
to, but the rules are such that an outside observer, without access to this
private information, would be able to ascertain whether the rules were being
obeyed.

In general, each player has many choices to make. In other words, each
player can generally obey the rules in many different ways at each stage.

2. A strategy for each player. Each player’s strategy gives instructions
as to how to obey the rules at each stage in which there are choices to be
made. A player’s strategy can involve that player’s measure, but cannot
assume knowledge of the measures of the other players or the strategies of
the other players.

Our general intention is that strategies be purely deterministic (they
may depend only upon the rules and upon the previous actions that the
players have taken), but we will allow three types of “non-deterministic”
exceptions:

(a) By the Partitioning Postulate, there exists a partition of a given piece
of cake into any fixed number of pieces which are of equal size according to
a given player’s measure. We shall assume that each player, in following his
or her strategy, can create such a partition.

(b) By the Trimming Postulate, any piece of cake has a subpiece of any
given smaller size, according to any given player’s measure. We shall assume
that each player, in following his or her strategy, can specify such a subpiece.

(c) A particular player’s strategy may involve, for example, choosing the
p largest (according to that player’s measure) pieces from some collection of
s many pieces of cake created at a previous step in the game. Whenever a
player has such a strategy, we shall assume that if there is a tie for the pth
largest piece, then choices can be made arbitrarily among the pieces that
are tied.

The intuition behind a player’s strategy is that if all players follow the
rules, then each individual player can achieve his or her goals by following his
or her strategy, regardless of whether the other players follow their strategies
or not.

3. A proof that the rules and strategies can be followed, and that each
player’s strategy is “successful” (in the sense given by the previous para-
graph).
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We point out that our notion of a game-theoretic algorithm is the same
as what Even and Paz [5] call a “protocol”. See also Brams and Taylor [3].
We also note that Banach and Knaster’s presentation of an algorithm for
fair division and Woodall’s presentation of an algorithm for strongly fair
division were not explicitly game-theoretic, but it is straightforward to see
that their algorithms can easily be recast as game-theoretic algorithms.

2. Fairness

Theorem. Let C be a non-empty set and suppose n individuals, which
we shall refer to as Player 1, . . . , Player n, have measures m1, . . . ,mn

respectively that each uses to evaluate subsets of C. Let 〈α1, . . . , αn〉 be an
entitlement sequence. Then, there is a game-theoretic algorithm for fairness
with respect to these measures and this entitlement sequence. In other words,
there is a game-theoretic algorithm that produces a partition 〈P1, . . . , Pn〉 of
C such that for each i = 1, . . . , n, if Player i’s strategy was followed , then
mi(Pi) ≥ αi.

We shall prove the theorem by induction on n. The first meaningful case
is n = 2. Thus, we assume that there are two players, Player A and Player B
(which we shall refer to as “she” and “he” respectively), and corresponding
measures ma and mb. Let α be a real number with 0 < α < 1. We must
show that there exists a game-theoretic algorithm for fairness with respect
to the pair of measures 〈ma,mb〉 and the entitlement sequence 〈α, 1− α〉.

We next state the rules and corresponding strategies for our game-
theoretic algorithm. Following this, we will show that it is possible for the
rules and strategies to be followed, and then we will prove that the given
strategies, if followed, produce the desired outcome.

Rules Player A’s strategy Player B’s strategy

1. Player B partitions C into
w + 1 pieces Q1, . . . , Qw+1,
where w is the unique pos-
itive integer satisfying that
wα ≤ 1 < (w + 1)α.

Partition C into w+1 many
pieces Q1, . . . , Qw+1 such
that for i = 1, . . . , w,mb(Qi)
= α. (Then, mb(Qw+1)
< α.)

2. Player A either takes one
of Q1, . . . , Qw+1, or says
some positive integer s. If
she takes one of these sets,
let Fa be the chosen set, let
Fb equal C \Fa, and declare
the game to be over.

If, for some i = 1, . . . , w+1,
ma(Qi) ≥ α, choose the Qi
which is biggest according
to ma. Otherwise, say “s”,
where s is the least posi-
tive integer such that 1s ≤
(1−α)[ma(Qw+1)+αw−1]

α(1−ma(Qw+1)) .
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Rules Player A’s strategy Player B’s strategy

3. For each i = 1, . . . , w,
Player B partitions Qi into
s many pieces Ri1, . . . , Ris.

Partition each Qi so that for
all i, i′ = 1, . . . , w, and all
j, j′ = 1, . . . , s, mb(Rij) =
mb(Ri′j′ ).

4. Player A chooses t many
of the Rij ’s, where t is the
greatest non-negative inte-
ger such that tαs ≤ α − 1 +
wα. Let Fa be the union
of these Rij ’s together with
Qw+1, let Fb equal C \ Fa,
and declare the game to be
over.

Choose the tmanyRij ’s that
are largest according to ma.

We next show that it is possible for the players to follow the rules and
their respective strategies.

The only rule where this is not obvious is Rule 4. In order to see that
there must be a non-negative integer t such that tα/s ≤ α − 1 + wα, we
simply observe that by Rule 1, 1 < (w + 1)α, and hence α − 1 + wα > 0.
Thus, it is possible for both players to follow the rules.

The only part of the strategies where it is not obvious that it is possible
to follow the given strategy is in Player A’s strategy for Rule 2. Suppose
that for each i = 1, . . . , w + 1, ma(Qi) < α, and hence Player A’s strategy
calls for her to pick the least positive integer s such that

1
s
≤ (1− α)[ma(Qw+1) + αw − 1]

α[1−ma(Qw+1)]
.

To establish that such an s exists, we must show that

(1− α)[ma(Qw+1) + αw − 1]
α[1−ma(Qw+1)]

> 0.

Since, by assumption, 0 < α < 1, it suffices to show that ma(Qw+1) + αw−
1 > 0 and 1−ma(Qw+1) > 0.

Since, for each i = 1, . . . , w, we have ma(Qi) < a, it follows that
ma(Qw+1) = 1−ma(Q1∪. . .∪Qw) > 1−αw. Hence, ma(Qw+1)+αw−1 > 0.
Also, since ma(Qw+1) < α < 1, it follows that 1−ma(Qw+1) > 0. Thus, it
is possible for both players to follow their respective strategies.

We must show that each player’s strategy is successful. Thus, we must
show that:

(a) ma(Fa) ≥ α if Player A follows her strategy, and
(b) mb(Fb) ≥ 1− α if Player B follows his strategy.
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Proof that Player A’s strategy is successful . We assume that Player A
follows her strategy. We must show that ma(Fa) ≥ α. There are two cases
to consider.

Suppose first that Fa was defined by Rule 2. Then, by Player A’s strategy
for Rule 2, ma(Qi) ≥ α for some i = 1, . . . , w + 1. But in this case Fa = Qi

for the Qi which is biggest according to ma, and hence ma(Fa) ≥ α, as
desired.

Now suppose that Fa was defined by Rule 4. Let R be the union of the
t many Rij ’s chosen by Player A, and let Q = Qw+1. Then Fa = Q ∪R.

Since ma(Q1 ∪ . . . ∪Qw) = 1−ma(Q), it follows that according to ma,
the average size of each of the sw many Rij ’s created by Player B in Rule 3
is (1−ma(Q))/(sw). Then, since Player A’s strategy for Rule 4 is to choose
the t largest of the Rij ’s, it follows that

ma(R) ≥ t[1−ma(Q)]
sw

.

Since Fa = R ∪Q, we have

ma(Fa) ≥ t[1−ma(Q)]
sw

+ ma(Q).

Hence, to establish that ma(Fa) ≥ α, it suffices to show that
t[1−ma(Q)]

sw
+ ma(Q) ≥ α.

Suppose, by way of contradiction, that
t[1−ma(Q)]

sw
+ ma(Q) < α, i.e.,

t

sw
<

α−ma(Q)
1−ma(Q)

.

Consider the expression
(1− α)[ma(Q) + αw − 1]

α[1−ma(Q)]
from Player A’s strategy for Rule 2. Straightforward algebra yields

(1− α)[ma(Q) + αw − 1]
α[1−ma(Q)]

=
α− 1 + αw

α
− w[α−ma(Q)]

1−ma(Q)
.

Then, Player A’s strategy for Rule 2 implies that
1

sw
≤ α− 1 + αw

αw
− α−ma(Q)

1−ma(Q)
.

This, together with our assumption above, tells us that
t

sw
<

α− 1 + αw

αw
− 1

sw
.

This implies that tα < s(α− 1 + αw)− α, and hence
(t + 1)α

s
< α− 1 + αw.
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But this contradicts the definition of t given in Rule 4. This establishes that
ma(F1) ≥ α, as desired.

Proof that Player B’s strategy is successful . We now assume that Player
B follows his strategy. We must show that mb(Fb) ≥ 1− α. There are two
cases to consider.

Suppose first that Fb was defined by Rule 2. Let Qi be the piece chosen
by Player A. By Player B’s strategy for Rule 1, we must have mb(Qi) = α.
But Fa = Qi, and hence mb(Fa) = α. It follows that mb(Fb) = mb(C\Fa) =
1− α.

Suppose next that Fb was defined by Rule 4. There are sw many Rij ’s.
Each Rij is one piece of a partition of Qi into s many pieces. By Player
B’s strategy for Rule 3, each of these pieces is the same size, according to
mb. Then, since for each i = 1, . . . , w, mb(Qi) = α, it must be that for each
Rij , mb(Rij) = α/s. Fb is the union of the sw − t many Rij ’s not chosen
by Player A. Hence,

mb(Fb) = (sw − t)
α

s
= wα− tα

s
.

By the definition of t given in Rule 4,
tα

s
≤ α− 1 + wα.

It follows that

mb(Fb) = wα− tα

s
≥ wα− α + 1− wα = 1− α,

as desired. This establishes that the partition 〈Fa, Fb〉 of C is fair with
respect to the pair of measures 〈ma,mb〉 and the entitlement sequence
〈α, 1− α〉.

We now assume that the theorem is true for n = k, and we wish to show
that it holds for n = k+1. Hence, we suppose that there are k+1 individuals,
which we shall refer to as Player 1, . . . , Player k + 1, with corresponding
measures m1, . . . ,mk+1. Let 〈a1, . . . , ak+1〉 be an entitlement sequence. We
must show that there is a game-theoretic algorithm for fairness with respect
to the sequence of measures 〈m1, . . . ,mk+1〉 and the entitlement sequence
〈a1, . . . , ak+1〉. For convenience, we shall refer to each of Player 1, . . . ,
Player k as “she” and shall refer to Player k + 1 as “he”.

We describe the desired game-theoretic algorithm in two parts.

Part 1. Let β = α1+ . . .+αk. Then, 〈α1/β, . . . , αk/β〉 is an entitlement
sequence. By assumption, there exists a game-theoretic algorithm for pro-
ducing a partition 〈P ′

1, . . . , P
′
k〉 of C that is fair with respect to the sequence

of measures 〈m1, . . . ,mk〉 and the entitlement sequence 〈α1/β, . . . , αk/β〉.
Part 1 of the game-theoretic algorithm for producing the desired partition
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among Player 1, . . . , Player k + 1 consists of playing this n-person fairness
game to obtain 〈P ′

1, . . . , P
′
k〉.

Part 2. We proceed by repeatedly playing the two-player fairness game,
with Player k + 1 playing this game with each of Player 1, . . . , Player k
successively. In this way, if relevant strategies are followed, Player k + 1
receives an appropriate portion of P ′

1, . . . , and P ′
k.

We now describe precisely how each of the k many two-player games is
played. For each i = 1, . . . , k, we define

m′
i =

mi

mi(P ′
i )

and m′
k+1 =

mk+1

mk+1(P ′
i )

.

For each such i, the two-person game is now played with Player i playing
the role of Player A, Player k +1 playing the role of Player B, with Player i
and Player k +1 having measures m′

i and m′
k+1 respectively on the cake P ′

i ,
and with α = β. Let Pi be the resultant subset of P ′

i which the game awards
to Player i (i.e., Pi is what was called Fa in the two-person game), and let
P i be the resultant subset of P ′

i which the game awards to Player k+1 (i.e.,
P i is what was called Fb in the two-person game). Set Pk+1 =

⋃k
i=1 P i.

Then 〈P1, . . . , Pk+1〉 is a partition of C.
This completes our description of the game.

In summary, what we have done is to describe a game-theoretic algorithm
which consists of first playing the k-person fairness game (which exists by
our induction hypothesis), and then playing the two-player fairness game
(which we have previously described explicitly) k many times.

By induction hypothesis, it is possible for each player to follow the rules
and to follow their respective strategies for Part 1. We have already shown
that each player can follow the rules and their respective strategies for the
two-person fairness game, and hence the rules and strategies for Part 2 can
be followed.

We must show that each player’s strategy is successful. Hence, we must
show that for each i = 1, . . . , k + 1, if Player i follows his or her strategy,
then mi(Pi) ≥ αi.

Proof that Player 1’s, . . . , Player k’s strategies are successful . Fix some
i = 1, . . . , k, and assume that Player i follows her strategy.

Our induction hypothesis tells us that the set P ′
i that results from the

k-person fairness game of Part 1 is such that mi(P ′
i ) ≥ αi/β.

The two-person fairness game of Part 2 played between Player 1 and
Player k +1 results in a set Pi satisfying m′

i(Pi) ≥ β. Recalling that m′
i was

defined by m′
i = mi/mi(P ′

i ), we have

mi(Pi) = m′
i(Pi)mi(P ′

i ) ≥ β
αi

β
= αi.
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Proof that Player k + 1’s strategy is successful. We assume that Player
k + 1 follows his strategy in each of the k many two-person fairness games
that make up Part 2. Then

mk+1(Pk+1) = mk+1

( k⋃
i=1

P i
)

=
k∑

i=1

mk+1(P i)

=
k∑

i=1

m′
k+1(P

i)mk+1(P ′
i ) ≥ (1− β)

k∑
i=1

mk+1(P ′
i )

= 1− β = αk+1.

We have shown that the partition 〈P1, . . . , Pk+1〉 of C is fair with respect
to the sequence of measures 〈m1, . . . ,mk+1〉 and the entitlement sequence
〈α1, . . . , αk+1〉. This establishes the theorem.

3. Strong fairness. As noted previously, Woodall’s algorithm for
strong fairness requires not only that the measures not be identical, but
also requires that we be given a witness of the disagreement of some two
measures (Brams and Taylor make the same assumption in their game-
theoretic algorithm for strong envy-freeness in [2]). We make this same
type of assumption to obtain a strongly fair partition in our present context
involving entitlements.

We point out that when we say that we are “given” a witness of the
disagreement of two measures, our intention is that this set and the values
of these measures on this set can be mentioned in the rules of the game.

Theorem. Let C be a non-empty set and suppose n individuals, which
we shall refer to as Player 1, . . . , Player n, have measures m1, . . . ,mn

respectively that each uses to evaluate subsets of C. Let 〈α1, . . . , αn〉 be an
entitlement sequence. Suppose that the n measures are not identical and ,
in particular , we are given a 5-tuple 〈i, j, D, γ, δ〉 such that D ⊆ C and
mi(D) = γ > δ = mj(D). Then there is a game-theoretic algorithm for
strong fairness with respect to these measures and this entitlement sequence.
In other words, there is a game-theoretic algorithm that produces a partition
〈P1, . . . , Pn〉 of C such that for each i = 1, . . . , n, if Player i’s strategy is
followed , then mi(Pi) > αi.

We shall prove the theorem by induction on n. As in the previous sec-
tion, the first meaningful case is n = 2. We again assume that there are two
players, Player A and Player B (which we shall refer to as “she” and “he” re-
spectively), and corresponding measures ma and mb. Let α be a real number
with 0 < α < 1. We must show that there exists a game-theoretic algorithm
for strong fairness with respect to the pair of measures 〈ma,mb〉 and the
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entitlement sequence 〈α, 1−α〉. We assume, without loss of generality, that
ma(D) = γ > δ = mb(D).

Before stating the rules and strategies for our game, we fix some con-
stants that will be used. It is important to note that these constants could
easily be specified within the rules. We specify them here simply for ease of
presentation.

We wish to let r be any rational number such that γ > r > δ. For
definiteness (in keeping with the fact that r will be used in an algorithmic
procedure in which “arbitrary choices” of numbers are prohibited), we define
r to be the rational number satisfying γ > r > δ and with the property that
among all rational numbers in this interval, r is expressible with the least
denominator and the least numerator corresponding to this denominator.

Next, we let q be the least positive integer such that for some positive
integer p,(

α

1− α

)(
r

1− r

)(
1− γ

γ

)
<

p

q
<

(
α

1− α

)(
r

1− r

)(
1− δ

δ

)
,

and we let p be the least such positive integer corresponding to q. We note
that since γ > δ, it follows that

1− γ

γ
<

1− δ

δ
,

and hence our definition of p and q makes sense.
Finally, we let s and t be the least positive integers such that r = s

t ,
p ≤ s, and q ≤ t− s.

We are now ready to describe our game. We do this in two parts.

Part 1
Rules Player A’s strategy Player B’s strategy

1. Player B partitions D
into s many pieces.

Partition D into s many pie-
ces which are equal accord-
ing to mb.

2. Player A partitions C \D
into t− s many pieces.

Partition C \ D into t − s
many pieces which are equal
with respect to ma.

3. Player A chooses p many
of the s sets created inRule 1.
Let S1a be the union of these
sets.

Choose the p many sets
which are largest according
to ma.

4. Player B chooses q many
of the t − s sets created in
Rule 2. Let S1b be the union
of these sets.

Choose the q many sets
which are largest according
to mb.
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Part 2. Define measures m′
a and m′

b on C \ (S1
a ∪ S1

b ) as follows:

m′
a =

ma

ma[C \ (S1
a ∪ S1

b )]
and m′

b =
mb

mb[C \ (S1
a ∪ S1

b )]
.

Now play the two-person fairness game from the previous section, with
C \ (S1

a ∪ S1
b ) playing the role of C, with α playing the role of α, and with

Player A and Player B using measures m′
a and m′

b respectively. Let S2
a be

the subset of C \ (S1
a ∪ S1

b ) which the game awards to Player A (i.e., S2
a

is what was called Fa in the two-person fairness game) and let S2
b be the

subset of C \ (S1
a ∪ S1

b ) which the game awards to Player B (i.e., S2
b is what

was called Fb in the two-person fairness game).
Finally, let Sa = S1

a ∪ S2
a and let Sb = S1

b ∪ S2
b . This completes our

description of the game.

Clearly, Parts 1 and 2 together define a game-theoretic algorithm. There
is certainly no question that the rules can be followed. We must show that
each player’s strategy is successful. Thus, we must show that:

(a) ma(Sa) > α if Player A follows her strategy, and
(b) mb(Sb) > 1− α if Player B follows his strategy.

Proof that Player A’s and Player B’s strategies are successful . We as-
sume that Player A follows her strategy. We must show that ma(Sa) > α.
We first consider ma(S1

a). We claim that ma(S1
a) > αma(S1

a ∪ S1
b ). By

assumption,
p

q
>

(
α

1− α

)(
r

1− r

)(
1− γ

γ

)
.

We note that since r = s/t, we have r/(1− r) = s/(t− s). Hence,

p

q
>

(
α

1− α

)(
s

t− s

)(
1− γ

γ

)
.

This implies that
(p/s)γ

(q/(t− s))(1− γ)
>

α

1− α
.

By following her strategy for Rule 3 of Part 1, Player A guarantees that
ma(S1

a) ≥ (p/s)ma(D). Recalling that ma(D) = γ, we have ma(S1
a) ≥

(p/s)γ. Also, in following her strategy for Rule 2 of Part 1, Player A guar-
antees that

ma(S1
b ) =

q

t− s
ma(C \D) =

q

t− s
(1−ma(D)) =

q

t− s
(1− γ).

Then
ma(S1

a)
ma(S1

b )
≥ (p/s)γ

(q/(t− s))(1− γ)
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and so, by the inequality above,

ma(S1
a)

ma(S1
b )

>
α

1− α
.

This implies that ma(S1
a) > αma(S1

a ∪ S1
b ), as desired.

Next, we consider ma(S2
a). Recall that by definition

m′
a =

ma

ma[C \ (S1
a ∪ S1

b )]
.

In following her strategy for Part 2, Player A guarantees that m′
a(S2

a) > α.
Hence, ma(S2

a) ≥ αma[C \ (S1
a ∪ S1

b )].
Finally, we have

ma(Sa) = ma(S1
a ∪ S2

a) = ma(S1
a) + ma(S2

a)

> αma(S1
a ∪ S2

a) + αma[C \ (S1
a ∪ S2

a)]

= α[ma(S1
a ∪ S2

a) + ma(C \ (S1
a ∪ S2

a))] = αma(C) = α,

as desired.
The proof that Player B’s strategy is successful is similar, and we omit it.

This establishes that the partition 〈Sa, Sb〉 of C is strongly fair with respect
to the pair of measures 〈ma,mb〉 and the entitlement sequence 〈α, 1− α〉.

Assume now that the theorem is true for n = k. We wish to show that
it holds for n = k + 1. We suppose that there are k + 1 individuals, which
we shall refer to as Player 1, . . . , Player k +1, with corresponding measures
m1, . . . ,mk+1. Assume that these measures are not identical and that we
are given 〈i, j, D, γ, δ〉 such that D ⊆ C and mi(D) = γ > δ = mj(D). Let
〈α1, . . . , αk+1〉 be an entitlement sequence. We must show that there is a
game-theoretic algorithm for strong fairness with respect to the sequence of
measures 〈m1, . . . ,mk+1〉 and the entitlement sequence 〈α1, . . . , αk+1〉. As
in the previous section, we shall refer to each of Player 1, . . . , Player k as
“she” and shall refer to Player k + 1 as “he”.

We may assume, without loss of generality, that i = 1 and j = 2. We
define the desired game-theoretic algorithm in three parts.

Part 1. As in the previous section, if we let β = α1 + . . . + αk, then
〈α1/β, . . . , αk/β〉 is an entitlement sequence. By assumption, there exists a
game-theoretic algorithm for producing a partition 〈P ′

1, . . . , P
′
k〉 of C that

is strongly fair with respect to the sequence of measures 〈m1, . . . ,mk〉 and
the entitlement sequence 〈α1/β, . . . , αk/β〉. Part 1 of the desired game-
theoretic algorithm for producing a partition which is strongly fair with
respect to the sequence of measures 〈m1, . . . ,mk+1〉 and the entitlement se-
quence 〈α1, . . . , αk+1〉 consists of playing this n-person strong fairness game.
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Part 2. We proceed in precisely the same manner as we did in Part 2 of
the induction step in the previous section. Thus, Part 2 consists of playing
the two-person fairness game k times, with Player k+1 successively playing
with Player 1, . . . , Player k. As in the previous section, for each i = 1, . . . , k,
the ith game is played with Player i using measure m′

i = mi/mi(P ′
i ), with

Player k + 1 using measure m′
k+1 = mk+1/mk+1(P ′

i ), with P ′
i in the role

of C, and with α = β. For each such i, let P ′′
i be the resultant subset of

P ′
i which the game awards to Player i and let P i be the resultant subset

of P ′
i which the game awards to Player k + 1. Set P ′′

k+1 =
⋃k

i=1 P i. Then
〈P ′′

1 , . . . , P ′′
k+1〉 is a partition of C.

As we shall show, the partition 〈P ′′
1 , . . . , P ′′

k+1〉 is “almost” strongly fair.
More specifically, we shall see that for i = 1, . . . , k, mi(P ′′

i ) > αi and that
mk+1(P ′′

k+1) ≥ αk+1. However, it need not be true that mk+1(P ′′
k+1) >

αk+1. What Part 3 will do is to allow Player k + 1 to grab a small piece of
P ′′

j for some j = 1, . . . , k. This piece will increase the size of Player k + 1’s
portion so that he will believe that his piece has measure strictly greater
than αk+1, but will be sufficiently small so that Player j will still believe
that her piece has measure strictly greater than αj . Any j = 1, . . . , k will
be sufficient, as long as mk+1(Pj′′) > 0.

Part 3
Rules Player j’s strategy Player k + 1’s strategy

1. Player k+1 says some po-
sitive integer j = 1, . . . , k.

Say “j” where P ′′j is the
biggest set among P ′′1 , . . . ,
P ′′k according to mk+1.

2. Player j chooses a positive
integer w and partitions P ′′j
into w many pieces.

Let w be the least positive
integer such that

mj(P
′′
j )/w < mj(P

′′
j )− αj .

Partition P ′′j into w many
pieces which are equal with
respect to mj .

3. Player k + 1 chooses one
of the w many pieces created
in Rule 2.

Choose the set which is
biggest according to mk+1.

4. Let Pj be the union of
the w − 1 sets which were
not chosen by Player k + 1
in Rule 3. For i = 1, . . . ,
j−1, j+1, . . . , k, letPi equal
P ′′i . Let Pk+1 be the union
of P ′′k+1 and the piece chosen
by Player k + 1 in Rule 3.
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This completes our description of the game.

To show that all rules and strategies can be followed, we first note that
there is nothing to show for Part 1, since the required result follows from
our induction hypothesis. There is also nothing to show for Part 2, since
Part 2 involves a repeated use of a game-theoretic algorithm whose rules
and strategies were previously analyzed. For Part 3, there is no difficulty in
following the rules and strategies as long as we know that if Player j follows
her strategy, then mj(P ′′

j )−αj > 0. We will establish this as part of proving
that Player j’s strategy is successful.

Next, we show that each player’s strategy is successful. Thus, we must
show that for each i = 1, . . . , k + 1, mi(Pi) > αi.

Proof that Player j’s strategy is successful . We assume that Player j
follows her strategy.

By induction hypothesis, the set P ′
j that results from the k-person strong

fairness game of Part 1 is such that mj(P ′
j) > αj/β.

The two-person fairness game of Part 2 played between Player j and
Player k + 1 results in a set P ′′

j satisfying that m′
j(P

′′
j ) ≥ β. But m′

j was
defined by m′

j = mj/mj(P ′
j). Hence, we have

mj(P ′′
j ) = m′

j(P
′′
j )mj(P ′

j) > β
αj

β
= αj .

Let Q be the set chosen by Player k+1 in Rule 3 of the two-player game
of Part 3. Then Pj = P ′′

j \Q. By Player j’s strategy for Rule 2,

mj(Q) =
mj(P ′′

j )
w

< mj(P ′′
j )− αj .

Hence,
mj(Pj) = mj(P ′′

j )−mj(Q) > αj .

Proof that Player 1’s, . . . , Player j− 1’s, Player j + 1’s, . . . , Player k’s
strategies are successful . Fix any i = 1, . . . , j − 1, j + 1, . . . , k. We assume
that Player i follows her strategy. Then, precisely as in the proof above that
Player j’s strategy is successful, we have mi(P ′′

i ) > αi. By Rule 4 of Part
3, Pi = P ′′

i . Hence, mi(Pi) > αi.

Proof that Player k + 1’s strategy is successful . We assume that Player
k + 1 follows his strategy. Then, precisely as in Part 2 of the fairness game
of the previous section, we have mk+1(P ′′

k+1) ≥ αk+1.
As above, we assume that Q is the set chosen by Player k + 1 in Rule

3 of the two-player game of Part 3. Then Pk+1 = P ′′
k+1 ∪ Q. By Player

k + 1’s strategy for Rule 1, mk+1(P ′′
j ) > 0, and by Player k + 1’s strategy

for Rule 3, mk+1(Q) > 0. Hence,

mk+1(Pk+1) = mk+1(P ′′
k+1) + mk+1(Q) > αk+1.
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We have shown that the partition 〈P1, . . . , Pk+1〉 of C is strongly fair
with respect to the sequence of measures 〈m1, . . . ,mk+1〉 and the entitlement
sequence 〈α1, . . . , αk+1〉. This establishes the theorem.
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