HOLOMORPHIC MAPS OF UNIFORM TYPE

BY

LE MAU HAI AND THAI THUAN QUANG (HANOI)

Let E be a locally convex space and X complex manifold modelled on a locally convex space. A holomorphic map f from E to X is called a map of uniform type if f can be factorized holomorphically through the canonical map ω_{ϱ} from E to E_{ϱ} for some continuous seminorm ϱ on E. Here for each continuous seminorm ϱ on E we denote by E_{ϱ} the canonical Banach space associated with ϱ , and by ω_{ϱ} the canonical map from E to E_{ϱ} . Now let H(E,X) and $H_{\mathrm{u}}(E,X)$ denote the sets of holomorphic maps and of holomorphic maps of uniform type from E to X respectively. The aim of the present note is to find some necessary and sufficient conditions for the equality

(UN)
$$H(E, X) = H_{u}(E, X)$$

to hold. This problem for vector-valued holomorphic maps, i.e. for the case where X is a locally convex space, was investigated by some authors. The first result on this problem belongs to Colombeau and Mujica. In [2] they have shown that the equality (UN) holds when E is a dual Fréchet–Montel space and X a Fréchet space. Next, a necessary and sufficient condition for (UN) to hold in the class of scalar holomorphic functions on a nuclear Fréchet space was established by Meise and Vogt [7]. An important sufficient condition for (UN) for scalar holomorphic functions on such a space was also found recently by those two authors [8]. However, until now, when X does not have a linear structure, the problem has not been investigated.

Here we consider this problem for holomorphic maps with values in a complex manifold of infinite dimension, in particular, in the projective space associated with a Fréchet space (see the definition in §2). In the first section, by the method of [4], we give a characterization of the uniformity of holomorphic maps with values in complex Banach manifolds. The scalar case has been proved by Meise and Vogt [7] by a different method. Section 2 is devoted to proving the main result (Theorem 2.1) of this note: every holomorphic map from a dual space of a nuclear Fréchet space (i.e., from

¹⁹⁹¹ Mathematics Subject Classification: 32A20, 32C10, 46A04.

a (DFN)-space) to the projective space $\mathbb{CP}(F)$ associated with a Fréchet space F is of uniform type. This is a variant of a result of Colombeau and Mujica [2].

The main tools for the proof of Theorem 2.1 are the solvability of $\overline{\partial}$ -equations for C^{∞} closed differential (0,1)-forms together with the uniformity of C^{∞} functions on a (DFN)-space which have been shown in [1] and [2] respectively. However, the factoriality of the ring of germs of holomorphic functions in infinitely many complex variables is also used here (see [6]).

Finally, we shall use standard notations from the sheaf theory of germs of holomorphic functions as presented in [3] for the finite-dimensional case and in [6] for the infinite-dimensional case, and from the theory of nuclear locally convex spaces in [10].

- **1. An extension characterization of uniformity.** In this section we shall prove the following.
- 1.1. Theorem. Let E be a nuclear locally convex space and X a complex Banach manifold. Then the following two conditions are equivalent:
 - (i) Every holomorphic map from E to X is of uniform type.
- (ii) If E is a subspace of a locally convex space F then every holomorphic map on E with values in X can be holomorphically extended to F.

Proof. (i) \Rightarrow (ii). Let $f: E \to X$ be a holomorphic map. By hypothesis there exists a continuous seminorm ϱ on E and a holomorphic map g from E_{ϱ} to X such that $f=g\omega_{\varrho}$. Take a continuous seminorm $\varrho_1 \geq \varrho$ on E such that the canonical map $\omega_{\varrho_1\varrho}$ from E_{ϱ_1} to E_{ϱ} is nuclear. We can write $\omega_{\varrho_1\varrho}$ in the form $\omega_{\varrho_1\varrho}=\alpha\circ\beta$, where $\beta:E_{\varrho_1}\to\ell^\infty$ and $\alpha:\ell^\infty\to E_{\varrho}$ are continuous linear maps. By the Hahn–Banach theorem, β can be extended to a continuous linear map $\widehat{\beta}:F_{\widehat{\varrho}_1}\to\ell^\infty$, where $\widehat{\varrho}_1$ is a continuous seminorm on F such that $\widehat{\varrho}_1|_E=\varrho_1$. Then $g\alpha\widehat{\beta}\omega_{\widehat{\varrho}_1}$ is a holomorphic extension of f to F.

(ii) \Rightarrow (i). Let cs(E) denote the set of all continuous seminorms on E. Consider the locally convex space

$$F = \prod \{ E_{\varrho} : \varrho \in \operatorname{cs}(E) \}$$

containing E as a subspace. By the hypothesis for every holomorphic map f from E to X there exists a holomorphic map $g: F \to X$ such that $g|_E = f$. Let V be a coordinate neighbourhood in X and $U = g^{-1}(V)$. Since V is isomorphic to an open set in a Banach space we can find a finite set A in cs(E) and a non-empty open subset W of U such that

$$g(z) = g(\{z_{\rho}\}_{\rho \in A})$$

for every $z \in W$. Put

 $G = \{z \in F : \text{there exists a neighbourhood } Z \text{ of } z \text{ in } F \text{ such that } \}$

$$g(y) = g(\{y_{\rho}\}_{{\rho} \in A})$$
 for every $y \in Z\}$.

Since G is a non-empty open subset of F, to complete the proof it suffices to show that G is closed in F.

Let $z_0 \in \partial G$. Take a connected neighbourhood W_0 of z_0 in F such that $g(W_0)$ is contained in a coordinate neighbourhood of X. Consider a holomorphic map $h: W_0 \to X$ given by

$$h(z) = g(\lbrace z_{\varrho} \rbrace_{\varrho \in A}) \quad \text{ for } z \in W_0.$$

Since h and g are holomorphic on W_0 with h = g on $G \cap W \neq \emptyset$, we have $h = g|_{W_0}$. Hence $z_0 \in G$ and G is closed.

2. Uniformity of holomorphic maps with values in the projective space associated with a Fréchet space. Before formulating Theorem 2.1 we describe the projective space $\mathbb{CP}(F)$ associated with a locally convex space F. As in the case where $\dim F < \infty$, $\mathbb{CP}(F)$ is the space of all complex lines in F passing through $0 \in F$. This space is equipped with the quotient topology under the canonical map $F \setminus \{0\} \to \mathbb{CP}(F) : x \mapsto [x]$, the complex line passing through x and $0 \in F$. For each $\alpha \in F^* \setminus \{0\}$ we consider the open subset V_{α} of $\mathbb{CP}(F)$ and the map $\theta_{\alpha} : V_{\alpha} \to \ker \alpha$ given by

$$V_{\alpha} = \{ [x] \in \mathbb{CP}(F) : \alpha(x) \neq 0 \} \text{ and } \theta_{\alpha}([x]) = \frac{\alpha(x)e_{\alpha} - x}{\alpha(x)},$$

where $e_{\alpha} \in F$ is chosen such that $\alpha(e_{\alpha}) = 1$. It is easy to see that θ_{α} is a homeomorphism between V_{α} and $\ker \alpha$ with

$$\theta_{\alpha}^{-1}(z) = [z - e_{\alpha}] \quad \text{for } z \in \ker \alpha.$$

Moreover,

$$\theta_{\beta}\theta_{\alpha}^{-1}(z) = \frac{\beta(z - e_{\alpha})e_{\beta} - (z - e_{\alpha})}{\beta(z - e_{\alpha})}$$

is holomorphic on $\theta_{\alpha}(V_{\alpha} \cap V_{\beta})$. Thus $\mathbb{CP}(F)$ is a complex manifold with the local coordinate system $\{(V_{\alpha}, \theta_{\alpha}) : \alpha \in F^* \setminus \{0\}\}$. From the above relation it follows that $\theta_{\alpha}([x])$ is meromorphic on V_{β} for every $\beta \in F^* \setminus \{0\}$, $\beta \neq \alpha$. Thus θ_{α} can be considered as a meromorphic function on $\mathbb{CP}(F)$ with values in $\ker \alpha \subset F$.

2.1. THEOREM. Let E be a (DFN)-space and F a Fréchet space. Then every holomorphic map from E to $\mathbb{CP}(F)$ is of uniform type.

For proving the theorem we need the following two lemmas.

2.2. Lemma. Let $f: D \to \mathbb{CP}(F)$ be a holomorphic map, where D is an open set in a locally convex space E and F is a Fréchet space. Then for each $z \in D$ there exists a neighbourhood U of z in D and two holomorphic functions h and σ on U with values in F and \mathbb{C} respectively such that

$$Z(h,\sigma) = \emptyset$$
 and $f|_U = [h:\sigma],$

where $Z(h, \sigma)$ denotes the common zero-set of h and σ .

Proof. For each $z \in D$ we can find a neighbourhood U of z in D such that if we consider f as a meromorphic function on U with values in F then f can be written in the form

$$f|_U = \frac{h}{\sigma}$$

with $z \notin Z(h, \sigma)$, where h and σ are holomorphic functions on U. Then $Z(h, \sigma) = \emptyset$ in a neighbourhood of z in U.

2.3. Lemma. Let β and σ be scalar holomorphic functions on an open set D in a locally convex space E and let g be a holomorphic function on D with values in a locally convex space. Assume that $\beta g/\sigma$ is holomorphic on D and $Z(g,\sigma) = \emptyset$. Then β/σ is holomorphic on D.

Proof. Let $z_0 \in D$. Since the local ring \mathcal{O}_{E,z_0} of germs of holomorphic functions at z_0 is factorial [6, Proposition 5.15] we can write

$$\sigma = \sigma_1^{p_1} \dots \sigma_n^{p_n}$$

in a neighbourhood U of z_0 with the germs $(\sigma_1)_{z_0},\ldots,(\sigma_n)_{z_0}$ being irreducible. By hypothesis and from the equality $\beta g/\sigma_1=(\beta g/\sigma)\sigma_1^{p_1-1}\ldots\sigma_n^{p_n}$ it follows that $\beta g/\sigma_1$ is holomorphic at z_0 . On the other hand, since by hypothesis $Z(g,\sigma)=\emptyset$ and $Z(\sigma)=\bigcup_{i=1}^n Z(\sigma_i)$ it follows that $Z(g,\sigma_i)=\emptyset$ for $i=1,\ldots,n$. Hence, from the irreducibility of σ_1 we infer that $Z(\sigma_1)_{z_0}\subseteq Z(\beta)_{z_0}$. Since $(\sigma_1)_{z_0}$ is irreducible, it follows that $\beta=\beta_1\sigma_1$ in a neighbourhood U_1 of z_0 in U, where β_1 and σ_1 are holomorphic on U_1 . Hence β/σ_1 is holomorphic on U_1 . Applying the above argument to β_1, σ_1 and g we get the holomorphy of β/σ_1^2 at z_0 . Continuing this process we infer that β/σ is holomorphic at z_0 .

Now we can prove Theorem 2.1 as follows.

Let $f: E \to \mathbb{CP}(E)$ be a holomorphic map, where E is a (DFN)-space. We denote by \mathcal{O}_E (resp. M_E) the sheaf of germs of holomorphic (resp. meromorphic) functions on E. Let

$$\mathcal{O}_E^* = \{ \sigma \in \mathcal{O}_E : \sigma \text{ is invertible} \},$$

 $M_E^* = M_E \setminus \{0\} \text{ and } D_E = M_E^* / \mathcal{O}_E^*.$

Here as in the finite-dimensional case, D_E is called the sheaf of germs of divisors on E. We denote by \mathbb{Z} the sheaf of integers on E. Then we have two exact sheaf sequences on E:

$$0 \to \mathbb{Z} \to \mathcal{O}_E \xrightarrow{\exp} \mathcal{O}_E^* \to 0,$$

$$0 \to \mathcal{O}_E^* \to M_E^* \xrightarrow{\eta} D_E \to 0,$$

where $\exp(\sigma) = e^{2\pi i \sigma}$ and η is the canonical projection. By [6, p. 266, Proposition 3.6] we have $H^1(E, \mathcal{O}_E) = 0$. On the other hand, since $H^2(E, \mathbb{Z}) = 0$, considering the exact cohomology sequences associated with the above exact sheaf sequences it follows that for every divisor $d \in H^0(E, D_E)$ there exists a meromorphic function $\sigma \in H^0(E, M_E^*)$ such that $\widehat{\eta}(\sigma) = d$, where $\widehat{\eta}$ is the map from $H^0(E, M_E^*)$ to $H^0(E, D_E)$ induced by η . By applying Lemma 2.2 to f we can find an open cover $\{U_j\}$ of E and holomorphic functions h_j and σ_j on U_j such that

$$Z(h_j, \sigma_j) = \emptyset$$
 and $f|_{U_j} = [h_j : \sigma_j]$

for every j. Since $h_i/\sigma_i=h_j/\sigma_j$ on $U_i\cap U_j$, Lemma 2.3 implies that the formula

$$z \mapsto (\sigma_j)_z \mathcal{O}_{E,z}^*$$

for $z \in U_j$ defines a divisor d on E. Thus there exists a meromorphic function β on E with $\beta \neq 0$ such that $\beta_z/d_z \in \mathcal{O}_{E,z}^*$ for $z \in E$.

These relations imply that β is holomorphic on E and $h = \beta f$ is holomorphic on E with $Z(h,\beta) = \emptyset$. Let $\{x_j^*\}$ be a sequence of continuous linear functionals on E which separates the points of E0. Since E1 in E3, E4, E5, it follows from [6, p. 247, Proposition 3.2] that there exist E5 functions E6, ye on that

$$\sum_{j>1} \varphi_j |x_j^* h|^2 + \varphi_0 |\beta|^2 = 1.$$

By applying a result of Colombeau and Mujica [2] we find a continuous seminorm ϱ on E and C^{∞} functions $\widehat{\varphi}_{j},\ j \geq 0$, together with holomorphic functions $\widehat{h}_{j},\ j \geq 1$, $\widehat{\beta}$ and \widehat{h} on E_{ϱ} such that $\varphi_{j} = \widehat{\varphi}_{j}\omega_{\varrho},\ x_{j}^{*}h = \widehat{h}_{j}\omega_{\varrho}$ for $j \geq 1$ and $\varphi_{0} = \widehat{\varphi}_{0}\omega_{\varrho},\ \beta = \widehat{\beta}\omega_{\varrho},\ h = \widehat{h}\omega_{\varrho}$. Then $\sum_{j\geq 1}\widehat{\varphi}_{j}|\widehat{h}_{j}|^{2} + \widehat{\varphi}_{0}|\widehat{\beta}|^{2} = 1$ on E_{ϱ} . Thus $Z(\{\widehat{h}_{j}\}_{j\geq 1},\widehat{\beta}) = \emptyset$ and, hence, $Z(\widehat{h},\widehat{\beta}) = \emptyset$. Consequently, the formula

$$\widehat{f}(z) = [\widehat{h}(z) : \widehat{\beta}(z)] \quad \text{ for } z \in E_{\varrho}$$

defines a holomorphic map \widehat{f} from E_{ϱ} to $\mathbb{CP}(F)$ such that $f = \widehat{f}\omega_{\varrho}$. Theorem 2.1 is proved.

Acknowledgements. The authors would like to thank Prof. N.V. Khue for helpful advice, and also the referees for their suggestions.

REFERENCES

- [1] J. F. Colombeau, *Differential Calculus and Holomorphy*, North-Holland Math. Stud. 65, North-Holland, Amsterdam, 1982.
- [2] J. F. Colombeau and J. Mujica, *Holomorphic and differentiable mappings of uniform bounded type*, in: Functional Analysis, Holomorphy and Approximation Theory, J. A. Barroso (ed.), North-Holland Math. Stud. 71, North-Holland, Amsterdam, 1982, 179–200.
- [3] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, Berlin, 1976.
- [4] N. V. Khue, On the extension of holomorphic maps on locally convex spaces with values in Fréchet spaces, Ann. Polon. Math. 44 (1984), 163–175.
- [5] —, On meromorphic functions with values in locally convex spaces, Studia Math. 73 (1982), 201–211.
- [6] P. Mazet, Analytic Sets in Locally Convex Space, North-Holland, Amsterdam, 1984.
- [7] R. Meise and D. Vogt, Extension of entire functions on locally convex spaces, Proc. Amer. Math. Soc. 92 (1984), 495–500.
- [8] —, —, Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces, Studia Math. 83 (1986), 147–166.
- [9] J. Mujica, Domains of holomorphy in (DFC)-spaces, in: Functional Analysis, Holomorphy and Approximation Theory, Lecture Notes in Math. 843, Springer, 1981, 500-533.
- [10] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972.

DEPARTMENT OF MATHEMATICS PEDAGOGICAL INSTITUTE 1 HANOI TULIEM, HANOI, VIETNAM

> Reçu par la Rédaction le 26.1.1993; en version modifiée le 11.7.1994