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HOLOMORPHIC MAPS OF UNIFORM TYPE

BY

LE MAU HAI AND THAI THUAN QUANG (HANOI)

Let E be a locally convex space and X complex manifold modelled on a
locally convex space. A holomorphic map f from E to X is called a map of
uniform type if f can be factorized holomorphically through the canonical
map ω% from E to E% for some continuous seminorm % on E. Here for
each continuous seminorm % on E we denote by E% the canonical Banach
space associated with %, and by ω% the canonical map from E to E%. Now
let H(E,X) and Hu(E,X) denote the sets of holomorphic maps and of
holomorphic maps of uniform type from E to X respectively. The aim of
the present note is to find some necessary and sufficient conditions for the
equality

(UN) H(E,X) = Hu(E,X)

to hold. This problem for vector-valued holomorphic maps, i.e. for the case
where X is a locally convex space, was investigated by some authors. The
first result on this problem belongs to Colombeau and Mujica. In [2] they
have shown that the equality (UN) holds when E is a dual Fréchet–Montel
space and X a Fréchet space. Next, a necessary and sufficient condition
for (UN) to hold in the class of scalar holomorphic functions on a nuclear
Fréchet space was established by Meise and Vogt [7]. An important sufficient
condition for (UN) for scalar holomorphic functions on such a space was also
found recently by those two authors [8]. However, until now, when X does
not have a linear structure, the problem has not been investigated.

Here we consider this problem for holomorphic maps with values in a
complex manifold of infinite dimension, in particular, in the projective space
associated with a Fréchet space (see the definition in §2). In the first section,
by the method of [4], we give a characterization of the uniformity of holo-
morphic maps with values in complex Banach manifolds. The scalar case
has been proved by Meise and Vogt [7] by a different method. Section 2
is devoted to proving the main result (Theorem 2.1) of this note: every
holomorphic map from a dual space of a nuclear Fréchet space (i.e., from
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a (DFN)-space) to the projective space CP(F ) associated with a Fréchet
space F is of uniform type. This is a variant of a result of Colombeau and
Mujica [2].

The main tools for the proof of Theorem 2.1 are the solvability of
∂-equations for C∞ closed differential (0, 1)-forms together with the uni-
formity of C∞ functions on a (DFN)-space which have been shown in [1]
and [2] respectively. However, the factoriality of the ring of germs of holo-
morphic functions in infinitely many complex variables is also used here
(see [6]).

Finally, we shall use standard notations from the sheaf theory of germs
of holomorphic functions as presented in [3] for the finite-dimensional case
and in [6] for the infinite-dimensional case, and from the theory of nuclear
locally convex spaces in [10].

1. An extension characterization of uniformity. In this section we
shall prove the following.

1.1. Theorem. Let E be a nuclear locally convex space and X a complex
Banach manifold. Then the following two conditions are equivalent :

(i) Every holomorphic map from E to X is of uniform type.
(ii) If E is a subspace of a locally convex space F then every holomorphic

map on E with values in X can be holomorphically extended to F .

P r o o f. (i)⇒(ii). Let f : E → X be a holomorphic map. By hypothesis
there exists a continuous seminorm % on E and a holomorphic map g from
E% to X such that f = gω%. Take a continuous seminorm %1 ≥ % on E
such that the canonical map ω%1% from E%1 to E% is nuclear. We can write
ω%1% in the form ω%1% = α ◦ β, where β : E%1 → `∞ and α : `∞ → E% are
continuous linear maps. By the Hahn–Banach theorem, β can be extended
to a continuous linear map β̂ : F%̂1 → `∞, where %̂1 is a continuous seminorm
on F such that %̂1|E = %1. Then gαβ̂ω%̂1 is a holomorphic extension of f
to F .

(ii)⇒(i). Let cs(E) denote the set of all continuous seminorms on E.
Consider the locally convex space

F =
∏
{E% : % ∈ cs(E)}

containing E as a subspace. By the hypothesis for every holomorphic map f
from E to X there exists a holomorphic map g : F → X such that g|E = f .
Let V be a coordinate neighbourhood in X and U = g−1(V ). Since V is
isomorphic to an open set in a Banach space we can find a finite set A in
cs(E) and a non-empty open subset W of U such that

g(z) = g({z%}%∈A)
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for every z ∈ W . Put

G = {z ∈ F : there exists a neighbourhood Z of z in F such that
g(y) = g({y%}%∈A) for every y ∈ Z}.

Since G is a non-empty open subset of F , to complete the proof it suffices
to show that G is closed in F .

Let z0 ∈ ∂G. Take a connected neighbourhood W0 of z0 in F such
that g(W0) is contained in a coordinate neighbourhood of X. Consider a
holomorphic map h : W0 → X given by

h(z) = g({z%}%∈A) for z ∈ W0.

Since h and g are holomorphic on W0 with h = g on G ∩W 6= ∅, we have
h = g|W0 . Hence z0 ∈ G and G is closed.

2. Uniformity of holomorphic maps with values in the projec-
tive space associated with a Fréchet space. Before formulating The-
orem 2.1 we describe the projective space CP(F ) associated with a locally
convex space F . As in the case where dim F < ∞, CP(F ) is the space of
all complex lines in F passing through 0 ∈ F . This space is equipped with
the quotient topology under the canonical map F \ {0} → CP(F ) : x 7→ [x],
the complex line passing through x and 0 ∈ F . For each α ∈ F ∗ \ {0} we
consider the open subset Vα of CP(F ) and the map θα : Vα → ker α given
by

Vα = {[x] ∈ CP(F ) : α(x) 6= 0} and θα([x]) =
α(x)eα − x

α(x)
,

where eα ∈ F is chosen such that α(eα) = 1. It is easy to see that θα is a
homeomorphism between Vα and kerα with

θ−1
α (z) = [z − eα] for z ∈ ker α.

Moreover,

θβθ−1
α (z) =

β(z − eα)eβ − (z − eα)
β(z − eα)

is holomorphic on θα(Vα∩Vβ). Thus CP(F ) is a complex manifold with the
local coordinate system {(Vα, θα) : α ∈ F ∗ \ {0}}. From the above relation
it follows that θα([x]) is meromorphic on Vβ for every β ∈ F ∗ \ {0}, β 6= α.
Thus θα can be considered as a meromorphic function on CP(F ) with values
in kerα ⊂ F .

2.1. Theorem. Let E be a (DFN )-space and F a Fréchet space. Then
every holomorphic map from E to CP(F ) is of uniform type.

For proving the theorem we need the following two lemmas.
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2.2. Lemma. Let f : D → CP(F ) be a holomorphic map, where D is an
open set in a locally convex space E and F is a Fréchet space. Then for
each z ∈ D there exists a neighbourhood U of z in D and two holomorphic
functions h and σ on U with values in F and C respectively such that

Z(h, σ) = ∅ and f |U = [h : σ],

where Z(h, σ) denotes the common zero-set of h and σ.

P r o o f. For each z ∈ D we can find a neighbourhood U of z in D such
that if we consider f as a meromorphic function on U with values in F then
f can be written in the form

f |U =
h

σ

with z 6∈ Z(h, σ), where h and σ are holomorphic functions on U . Then
Z(h, σ) = ∅ in a neighbourhood of z in U .

2.3. Lemma. Let β and σ be scalar holomorphic functions on an open
set D in a locally convex space E and let g be a holomorphic function on D
with values in a locally convex space. Assume that βg/σ is holomorphic on
D and Z(g, σ) = ∅. Then β/σ is holomorphic on D.

P r o o f. Let z0 ∈ D. Since the local ring OE,z0 of germs of holomorphic
functions at z0 is factorial [6, Proposition 5.15] we can write

σ = σp1
1 . . . σpn

n

in a neighbourhood U of z0 with the germs (σ1)z0 , . . . , (σn)z0 being irre-
ducible. By hypothesis and from the equality βg/σ1 = (βg/σ)σp1−1

1 . . . σpn
n

it follows that βg/σ1 is holomorphic at z0. On the other hand, since by
hypothesis Z(g, σ) = ∅ and Z(σ) =

⋃n
i=1 Z(σi) it follows that Z(g, σi) = ∅

for i = 1, . . . , n. Hence, from the irreducibility of σ1 we infer that Z(σ1)z0 ⊆
Z(β)z0 . Since (σ1)z0 is irreducible, it follows that β = β1σ1 in a neighbour-
hood U1 of z0 in U , where β1 and σ1 are holomorphic on U1. Hence β/σ1

is holomorphic on U1. Applying the above argument to β1, σ1 and g we get
the holomorphy of β/σ2

1 at z0. Continuing this process we infer that β/σ is
holomorphic at z0.

Now we can prove Theorem 2.1 as follows.
Let f : E → CP(E) be a holomorphic map, where E is a (DFN)-space.

We denote by OE (resp. ME) the sheaf of germs of holomorphic (resp.
meromorphic) functions on E. Let

O∗E = {σ ∈ OE : σ is invertible},
M∗

E = ME \ {0} and DE = M∗
E/O∗E .
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Here as in the finite-dimensional case, DE is called the sheaf of germs of
divisors on E. We denote by Z the sheaf of integers on E. Then we have
two exact sheaf sequences on E:

0 → Z → OE
exp−→O∗E → 0,

0 → O∗E → M∗
E

η−→DE → 0,

where exp(σ) = e2πiσ and η is the canonical projection. By [6, p. 266, Propo-
sition 3.6] we have H1(E,OE) = 0. On the other hand, since H2(E, Z) = 0,
considering the exact cohomology sequences associated with the above exact
sheaf sequences it follows that for every divisor d ∈ H0(E,DE) there exists
a meromorphic function σ ∈ H0(E,M∗

E) such that η̂(σ) = d, where η̂ is the
map from H0(E,M∗

E) to H0(E,DE) induced by η. By applying Lemma 2.2
to f we can find an open cover {Uj} of E and holomorphic functions hj and
σj on Uj such that

Z(hj , σj) = ∅ and f |Uj
= [hj : σj ]

for every j. Since hi/σi = hj/σj on Ui ∩ Uj , Lemma 2.3 implies that the
formula

z 7→ (σj)zO∗E,z

for z ∈ Uj defines a divisor d on E. Thus there exists a meromorphic
function β on E with β 6= 0 such that βz/dz ∈ O∗E,z for z ∈ E.

These relations imply that β is holomorphic on E and h = βf is holo-
morphic on E with Z(h, β) = ∅. Let {x∗j} be a sequence of continuous linear
functionals on F which separates the points of h(E). Since Z({x∗jh}, β) = ∅,
it follows from [6, p. 247, Proposition 3.2] that there exist C∞ functions
ϕj , j ≥ 0, such that ∑

j≥1

ϕj |x∗jh|2 + ϕ0|β|2 = 1.

By applying a result of Colombeau and Mujica [2] we find a continuous
seminorm % on E and C∞ functions ϕ̂j , j ≥ 0, together with holomorphic
functions ĥj , j ≥ 1, β̂ and ĥ on E% such that ϕj = ϕ̂jω%, x∗jh = ĥjω% for
j ≥ 1 and ϕ0 = ϕ̂0ω%, β = β̂ω%, h = ĥω%. Then

∑
j≥1 ϕ̂j |ĥj |2 + ϕ̂0|β̂|2 = 1

on E%. Thus Z({ĥj}j≥1, β̂) = ∅ and, hence, Z(ĥ, β̂) = ∅. Consequently, the
formula

f̂(z) = [ĥ(z) : β̂(z)] for z ∈ E%

defines a holomorphic map f̂ from E% to CP(F ) such that f = f̂ω%. Theo-
rem 2.1 is proved.
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