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THE UNCONDITIONAL POINTWISE
CONVERGENCE OF ORTHOGONAL SERIES
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1. Introduction. The paper is devoted to some problems concerning a
convergence of pointwise type in the L2-space over a von Neumann algebra
M with a faithful normal state Φ [3]. Here L2 = L2(M,Φ) is the completion
of M under the norm x → ‖x‖2 = Φ(x∗x)1/2.

Intuitively, “reducing” L2 to L∞, we can say that |f | is smaller than ε
on a subset Z ∈ F , for f ∈ L2 over a classical measure space (X,F , µ), if
gn → f in L2 and ‖gn1Z‖∞ < ε for some gn ∈ L∞(X,F , µ), n = 1, 2, . . .

This leads us to the following concept. Roughly speaking, ξ ∈ L2(M,Φ)
has “modulus” less than ε on the subspace indicated by a projection p ∈ M
if, for some xn ∈ M , ‖xn − ξ‖ → 0 and ‖xnp‖∞ < ε, n = 1, 2, . . . , where
‖x‖∞ denotes the (operator) norm of x ∈ M .

We say that ξn → 0 “almost surely” if, for any ε > 0, there exists a
projection p ∈ M such that ξn has “modulus” less than ε on the (subspace
indicated by the) projection p for n large enough and, moreover, Φ(1−p) < ε.

Precise definitions are given in the next section.
It is worth noting that several limit theorems can be proved in the

von Neumann algebras context by using the above concept of convergence
[5; 6; 10; 11].

In comparison with other concepts of “almost sure” convergence for (un-
bounded observables forming) L2(M,Φ) [4; 7; 9], our proposal seems to be
intuitively clear. It gives a fairly natural extension of the almost uniform
convergence in an algebra [2; 8; 12; 14; 15; 16; see also 9].

The main method used in the paper is the maximal inequality for a von
Neumann algebra (Theorem 2.2) which can be proved quite elementarily and
is very useful in the study of convergences on subspaces (cf. [7], compare
also the maximal ergodic theorem of M. S. Goldstein [4]).
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As an illustration, we prove the noncommutative extension of the rather
advanced theorem of Tandori [17; 1] which gives the weakest condition im-
plying the unconditional convergence of orthogonal series (Theorem 2.2).
Some discussion of the noncommutative Cauchy condition will also be nec-
essary (cf. Section 3).

2. Notation and main results. Throughout the paper, M is a
σ-finite von Neumann algebra with a faithful normal state Φ [3] (acting
in a Hilbert space K), with the Hilbert space H = L2(M,Φ) being the com-
pletion of the algebra M under the norm ‖x‖ = Φ(x∗x)1/2, given by the
scalar product (x, y) = Φ(y∗x). For x ∈ M , we put |x|2 = x∗x. ProjM will
denote the lattice of all self-adjoint projections in M . We write p⊥ = 1− p
for p ∈ ProjM . The operator norm in M will be denoted by ‖ ‖∞.

For ξ ∈ H and p ∈ ProjM , we set

Sξ,p =
{

(xk) ⊂ M :
∞∑

k=1

xk = ξ in H and
∞∑

k=1

xkp converges in norm in M
}

and

‖ξ‖p = inf
{∥∥∥ ∞∑

k=1

xkp
∥∥∥
∞

: (xk) ∈ Sξ,p

}
(with the usual convention inf ∅ = +∞).

We adopt the following definition.

2.1. Definition. A sequence (ξn) ⊂ H is said to be almost surely (a.s.)
convergent to ξ ∈ H if, for each ε > 0, there exists a projection p in M such
that Φ(p⊥) < ε and ‖ξn − ξ‖p → 0 as n →∞.

The following theorem gives a kind of maximal inequality and is crucial
in our considerations.

2.2. Theorem. Let 0 < ε < 1/16, Dn ∈ M+ for n = 1, 2, . . . and

(1)
∞∑

k=1

Φ(Dk) < ε.

Then there exists p ∈ ProjM such that

(2) Φ(p⊥) < ε1/4,

(3)
∥∥∥p

( n∑
k=1

Dk

)
p
∥∥∥
∞

< 4ε1/2, n = 1, 2, . . .

As a main example of consequences of this maximal inequality we prove
the following extension to the noncommutative context of the classical Tan-
dori theorem on the unconditional almost sure convergence of orthogonal
series.
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2.3. Theorem. Let (ξn)∞n=1 be a sequence of pairwise orthogonal ele-
ments in H and

(4)
∞∑

k=0

( ∑
n∈Ik

‖ξn‖2 log2(n + 1)
)1/2

< ∞,

where Ik = {22k

+ 1, . . . , 22k+1}. Then, for each permutation π of the set N
of positive integers, the series

∑∞
k=0 ξπ(k) is a.s. convergent.

The theorem below, an analogue of Orlicz’s theorem, can be deduced
from the previous one.

2.4. Theorem. Let (ξn)∞n=1 be an orthogonal sequence in H. Let (wn)
be a nondecreasing sequence of positive numbers such that

∞∑
m=1

1/wνm < ∞

for some increasing sequence (νm) of positive integers satisfying the inequal-
ities

log νm+1 ≤ c log νm (c > 1, m = 1, 2, . . .).
If

∞∑
n=1

‖ξn‖2wn log2(n + 1) < ∞,

then, for each permutation π of N, the series
∑∞

k=1 ξπ(k) is a.s. convergent.

3. Noncommutative Cauchy condition. We start with some prop-
erties of a.s. convergence, interesting in their own right.

3.1. Lemma. Let (ηn) ⊂ H and p ∈ ProjM . If
∑∞

n=1 ηn is convergent
in H, then

(5)
∥∥∥ ∞∑

n=1

ηn

∥∥∥
p
≤

∞∑
n=1

‖ηn‖p.

P r o o f. Without any loss of generality we may assume that

(6)
∞∑

n=1

‖ηn‖p < ∞.

Let ε > 0 and εn = ε2−n, εn,s = ε2−n−s (n = 1, 2, . . .). Then there exist
yn,k ∈ M (n, k = 1, 2, . . .) such that

(7)
∥∥∥ηn −

s∑
k=1

yn,k

∥∥∥ < εn,s,

(8) ‖yn,s+1p‖∞ < εn,s,
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(9)
∥∥∥ s∑

k=1

yn,kp
∥∥∥
∞

< ‖ηn‖p + εn, n, s = 1, 2, . . .

Put ξ =
∑∞

k=1 ηk and xn =
∑n

k,l=1 yk,l for n = 1, 2, . . . Then xn ∈ H.
First, we remark that ‖ξ − xn‖ → 0. In fact, by (7), we have

‖ξ − xn‖ ≤
n∑

k=1

∥∥∥ηk −
n∑

l=1

yk,l

∥∥∥ +
∥∥∥ ∞∑

k=n+1

ηk

∥∥∥
≤

n∑
k=1

εk,n + %n < εn + %n,

where %n = ‖
∑∞

k=n+1 ηk‖ → 0 as n →∞. Now, we notice that (xnp)∞n=1 is
convergent in M . Indeed, by (8) and (9), we have

‖(xn+1 − xn)p‖∞ ≤
n∑

k=1

‖yk,n+1p‖∞ +
∥∥∥ n+1∑

l=1

yn+1,lp
∥∥∥
∞

<

n∑
k=1

εk,n + ‖ηn+1‖p + εn < 2εn + ‖ηn+1‖p,

and (6) yields the Cauchy condition for (xnp)∞n=1. Finally, by (9), we have

‖xnp‖∞ ≤
n∑

k=1

∥∥∥ n∑
l=1

yk,lp
∥∥∥
∞
≤

n∑
k=1

(‖ηk‖p + εk) <

n∑
k=1

‖ηk‖p + ε.

Hence we get (5).

The next theorem gives a kind of noncommutative Cauchy condition for
a.s. convergence.

3.2. Proposition. Let (σn) ⊂ H and ‖σn − σ‖ → 0 as n → ∞, where
σ ∈ H. If , for each ε > 0, there exists some p ∈ ProjM with Φ(p⊥) < ε
such that ‖σn − σm‖p → 0 as n, m →∞, then σn → σ a.s.

P r o o f. By the assumption, for ε > 0, there are p ∈ ProjM with
Φ(p⊥) < ε and a sequence of indices m0 < m1 < . . . such that

(10) ‖σn − σm‖p < ε2−k for n, m ≥ mk.

Let n ≥ m0. Fix k such that n < mk. Putting η0 = σmk
− σn,

η1 = σmk+1 − σmk
, . . . , ηj = σmk+j

− σmk+j−1 , . . . , we obtain σ − σn =∑∞
j=0 ηj , where the series is convergent in H. Moreover, by (10), we have

‖η0‖p < ε, ‖η1‖p < ε2−k, . . . , ‖ηj‖p < ε2−k−j+1, . . . Thus
∑∞

j=0 ‖ηj‖p < 2ε
and, by Lemma 3.1, we get ‖σ− σn‖p < 2ε for n > m0. This completes the
proof.
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4. Auxiliary consequences of the maximal inequality. For the
sake of completeness we reproduce the proof given in [7, 3.10].

P r o o f o f T h e o r e m 2.2. For brevity, we define Bn =
∑n

k=1 Dk,
n = 1, 2, . . . Put

(11) pn = eBn
([0, ε1/2]), n = 1, 2, . . . ,

where Bn =
∫∞
0

λ eBn(dλ) is the spectral representation. The sequence
(pn)∞n=1 of projections is conditionally weakly operator compact. Let a be
a limit point, i.e.

(12) a = w.o.- lim
k→∞

pn(k)

for some subsequence (n(k)). Obviously, a ∈ M , 0 ≤ a ≤ 1. Put

(13) p = ea([1− ε1/4, 1]),

where a =
∫ 1

0
λea(dλ).

By (1) and (11), we obtain

Φ(p⊥n ) = Φ(eBn((ε1/2,∞))) ≤ ε−1/2Φ(Bn) < ε1/2.

Consequently, Φ(a) = limk→∞ Φ(pn(k)) ≥ 1− ε1/2 and, finally,

(14) Φ(1− a) ≤ ε1/2.

On the other hand, by (13), we can write p = e1−a([0, ε1/4]). Then, by (14),
we obtain

Φ(p⊥) = Φ(e1−a((ε1/4, 1])) ≤ e−1/4Φ(1− a) ≤ ε1/4,

which proves (2).
To show (3), we estimate (Bnξ, ξ) for all ξ ∈ pK with ‖ξ‖ = 1.
Obviously, the subspace pK is invariant for a. Moreover, by (13), the

spectrum of the operator ap = a|pK is contained in the interval [1− ε1/4, 1].
Thus, ap is invertible, a−1

p is defined on pK and ‖a−1
p ‖∞ ≤ (1−ε1/4)−1. Fix

ξ ∈ pK, ‖ξ‖ = 1 and put ζ = a−1
p ξ. Then ζ ∈ pK and

(15) ‖ζ‖ ≤ (1− ε1/4)−1.

Define ηk = pn(k)ζ − ξ. By (12), ηk converges weakly to 0 as k → ∞.
Therefore, by the positivity of Bn,

lim inf
k→∞

((Bnηk, ηk) + (Bnηk, ξ) + (Bnξ, ηk)) ≥ 0.

Hence, by (11) and (15), we get
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(Bnξ, ξ) ≤ lim inf
k→∞

(Bn(ηk + ξ), ηk + ξ) = lim inf
k→∞

(Bnpn(k)ζ, pn(k)ζ)

≤ lim inf
k→∞

‖pn(k)Bnpn(k)‖∞ ‖ζ‖2

≤ lim inf
k→∞

‖pn(k)Bn(k)pn(k)‖∞ ‖ζ‖2

≤ ε1/2(1− ε1/4)−2 < 4ε1/2,

which gives (3). The proof is complete.

4.1. Lemma. Let 0 < ε < 1/16, Dn ∈ M+, ζn ∈ H for n = 1, 2, . . . and

(16 )
∞∑

k=1

Φ(Dk) < ε,

(17 )
∞∑

k=1

‖ζk‖1/2 < ε.

Then there exists p ∈ ProjM such that

(18 ) Φ(p⊥) < 2ε1/4,

(19 )
∥∥∥p

( n∑
k=1

Dk

)
p
∥∥∥
∞

< 9ε1/2, n = 1, 2, . . . ,

(20 )
∞∑

k=1

‖ζk‖p < 8ε5/4.

Moreover , if condition (17) is replaced by

(21)
∞∑

k=1

‖ζk‖2 < ε,

then (20) can be replaced by

(22) ‖ζn‖p < 8ε1/4, n = 1, 2, . . .

P r o o f. Choose zk,l ∈ M such that ζk =
∑∞

l=1 zk,l in H, and

(23) ‖zk,l‖ ≤ 2−l+1‖ζk‖, k, l = 1, 2, . . .

Putting

Dk,0 = Dk, Dk,l = 2l‖ζk‖−1|zk,l|2, k, l = 1, 2, . . . ,

we obtain, by (23), Φ(Dk,l) ≤ 2−l+2‖ζk‖ for k, l = 1, 2, . . . Thus, by (16)
and (17),
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∞∑
k=1

∞∑
l=0

Φ(Dk,l) ≤
∞∑

k=1

Φ(Dk) +
∞∑

k=1

∞∑
l=1

2−l+2‖ζk‖

< ε + 4
∞∑

k=1

‖ζk‖ < 5ε.

Now, by Theorem 2.2, there exists p ∈ ProjM such that Φ(p⊥) < (5ε)1/4 <
2ε1/4 and∥∥∥p

( n∑
k=1

m∑
l=0

Dk,l

)
p
∥∥∥
∞

< 4(5ε)1/2 < 9ε1/2, n = 1, 2, . . . , m = 0, 1, 2, . . .

In particular, ‖p(
∑n

k=1 Dk)p‖∞ < 9ε1/2 and ‖zk,lp‖2∞ ≤ 2−l‖ζk‖ 9ε1/2 for
k, l = 1, 2, . . . Thus

‖ζk‖p ≤
∥∥∥ ∞∑

l=1

zk,l

∥∥∥
∞
≤

∞∑
l=1

2−l/2 3ε1/4‖ζk‖1/2 < 8ε1/4‖ζk‖1/2,

which, by (17), gives (20) easily.
The last part of the theorem can be proved in the same manner.

The following two propositions are simple consequences of Lemma 4.1.

4.2. Proposition. Let Dn ∈ M+, ζn ∈ H for n = 1, 2, . . . and
∞∑

k=1

Φ(Dk) < ∞,

∞∑
k=1

‖ζk‖1/2 < ∞.

Then for each ε > 0 there exists p ∈ ProjM with Φ(p⊥) < ε such that the
sequence (‖p(

∑n
k=1 Dk)p‖∞)∞n=1 is bounded and

∞∑
k=1

‖ζk‖p < ∞.

4.3. Proposition. Let Dn ∈ M+, Bn ∈ M+, ζn ∈ H for n = 1, 2, . . .
and

∞∑
k=1

Φ(Dk) < ∞,

∞∑
k=1

Φ(Bk) < ∞,

∞∑
k=1

‖ζk‖2 < ∞.

Then for each ε > 0 there exists p ∈ ProjM with Φ(p⊥) < ε such that the
sequence (‖p(

∑n
k=1 Dk)p‖∞)∞n=1 is bounded , ‖pBnp‖∞ → 0 and ‖ζn‖p → 0

as n →∞.

P r o o f. Consider (Dk + Bk)∞k=1 and apply Lemma 4.1.

5. Other auxiliary results. The following simple lemma is in the spirit
of the classical Schwarz inequality and is very useful in many estimations.
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5.1. Lemma. Let εk > 0, xk ∈ M , Ek ∈ M+ and |xk|2 ≤ εkEk for
k = 1, . . . , n. Then∥∥∥ n∑

k=1

xk

∥∥∥
∞
≤

∥∥∥ n∑
k=1

Ek

∥∥∥1/2

∞

( n∑
k=1

εk

)1/2

.

P r o o f. For ξ ∈ K with ‖ξ‖ = 1, we have∥∥∥ n∑
k=1

xkξ
∥∥∥2

≤
( n∑

k=1

ε
−1/2
k ‖xkξ‖ε1/2

k

)2

≤
( n∑

k=1

ε−1
k ‖xkξ‖2

) n∑
k=1

εk ≤
( n∑

k=1

Ekξ, ξ
) n∑

k=1

εk

≤
∥∥∥ n∑

k=1

Ek

∥∥∥
∞

n∑
k=1

εk.

The following lemma is, in fact, an easy modification of the Lemma of
[8] (cf. also Proposition 4.2 of [9]).

5.2. Lemma. Let J ⊂ N have cardinality #J = µ. Let (yi)∞i=1 be a
sequence of operators in M such that yi = 0 for i 6∈ J . Then there exists an
operator B ∈ M+ such that∣∣∣ n∑

j=1

yj

∣∣∣2 ≤ B, n = 1, 2, . . . ,

and

Φ(B) ≤ (1 + log µ)2
∑

i,j∈J

|Φ(y∗i yj)|.

The next lemma is also a slight modification of Lemma 4.2 of [6] (cf.
also Lemma 5.2.2 of [11]).

5.3. Lemma. Let J ⊂ N with #J = µ. Let (ηi)∞i=1 be a sequence of
pairwise orthogonal elements in H such that ηi = 0 for i 6∈ J . Let (εi) be
a sequence of positive numbers. Then there exist operators B ∈ M+ and
yi ∈ M (i ∈ N) with yi = 0 when ηi = 0, such that

‖ηi − yi‖ < εi, i = 1, 2, . . . ,∣∣∣ n∑
i=1

yi

∣∣∣2 ≤ B, n = 1, 2, . . . ,

Φ(B) ≤ 2(1 + log µ)2
∞∑

i=1

‖ηi‖2.
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6. Proof of Tandori’s theorem

P r o o f o f T h e o r e m 2.3. First, we notice that, by assumption (4),
the sequence (σn) = (

∑n
k=1 ξπ(k))∞n=1 is convergent in H. By Proposition

3.2, it remains to prove the Cauchy condition for a.s. convergence. We put
additionally I0 = {1, . . . , 4}.

For brevity, we write

(24) αk =
( ∑

n∈Ik

‖ξn‖2 log2(n + 1)
)1/2

, k = 1, 2, . . . ,

and set

ηk,i =
{

α−1
k ξπ(i) as π(i) ∈ Ik,

0 otherwise.

Fix k and, taking J = π−1[Ik], apply Lemma 5.3 to the sequence
(ηk,i)∞i=1. Then there exist operators Dk ∈ M+, yk,i ∈ M (i = 1, 2, . . .)
such that

(26)
‖ηk,i − yk,i‖ < 2−i if π(i) ∈ Ik,

yk,i = 0 if π(i) 6∈ Ik,

(27) |sk,l|2 ≤ Dk for l = 1, 2, . . . ,

where sk,l = yk,1 + . . . + yk,l (l = 1, 2, . . .) and

Φ(Dk) ≤ 2(2k+1 + 1)2
∞∑

i=1

‖ηk,i‖2

(the cardinality #Ik is less than 22k+1
).

Thus, by (25), (24) and the definition of Ik, we obtain

Φ(Dk) ≤ 4
∑
n∈Ik

(1 + log n)2α−1
k ‖ξn‖2

≤ 16α−1
k

∑
n∈Ik

log2(n + 1)‖ξn‖2 = 16αk.

Therefore, by assumption (4) of our theorem, we get

(28)
∞∑

k=1

Φ(Dk) < ∞.

Now, put

(29) ζi = α
1/2
k (ηk,i − yk,i), i = 1, 2, . . . ,
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where k is uniquely determined by i via π(i) ∈ Ik. From (26) and (4) we
obtain

(30)
∞∑

i=1

‖ζi‖1/2 < ∞.

From (28) and (30), by Proposition 4.2, for every ε > 0, there exists
p ∈ ProjM with Φ(p⊥) < ε such that∥∥∥p

( n∑
k=1

Dk

)
p
∥∥∥
∞
≤ C, n = 1, 2, . . . ,

and

(31)
∞∑

k=1

‖ζk‖p < ∞.

Now, let us define two sequences of indices. Namely, for n = 1, 2, . . . ,
denote by k(n) the smallest k such that

{π(1), . . . , π(n)} ⊂ I1 ∪ . . . ∪ Ik,

whereas j(n) is the greatest j satisfying

I1 ∪ . . . ∪ Ij ⊂ {π(1), . . . , π(n)}.

Obviously, both (k(n)) and (j(n)) are nondecreasing and tend to infinity as
n →∞.

Then, for m < n, by (25), (27), (29), we have

σn − σm = ξπ(m+1) + . . . + ξπ(n) =
k(n)∑

k=j(m)+1

n∑
i=m+1

α
1/2
k ηk,i

=
k(n)∑

k=j(m)+1

α
1/2
k (sk,n − sk,m) +

n∑
i=m+1

ζi.

Consequently,

(32) ‖σn − σm‖p ≤
∥∥∥ k(n)∑

k=j(m)+1

α
1/2
k sk,np

∥∥∥
∞

+
∥∥∥ k(n)∑

k=j(m)+1

α
1/2
k sk,mp

∥∥∥
∞

+
n∑

i=m+1

‖ζi‖p.

By (27) and Lemma 5.1, we have
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(33)
∥∥∥ k(n)∑

k=j(m)+1

α
1/2
k sk,np

∥∥∥
∞
≤

∥∥∥p
( k(n)∑

k=j(m)+1

Dk

)
p
∥∥∥1/2

∞

( k(n)∑
k=j(m)+1

αk

)1/2

≤ C1/2
( k(n)∑

k=j(m)+1

αk

)1/2

.

Analogously,

(34)
∥∥∥ k(n)∑

k=j(m)+1

α
1/2
k sk,m

∥∥∥
∞
≤ C1/2

( k(n)∑
k=j(m)+1

αk

)1/2

.

By (32), (33), (34), (1) and (31), the proof is complete.
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