入-COEFFICIENT OF ORLICZ SEQUENCE SPACES

BY
TINGFU WANG (HARBIN), BAOXIANG W ANG (BAODING) and
MINLI LI (HARBIN)
Let X be a Banach space, and $S(X)$ and $B(X)$ denote the unit sphere and unit ball of X, respectively. For each $x \in B(X)$, write

$$
\lambda(x)=\sup \{\lambda \in[0,1]: x=\lambda e+(1-\lambda) y, y \in B(X), e \in \operatorname{Ext} B(X)\}
$$

If $\lambda(x)>0$ for all $x \in B(X)$, then X is said to have the λ-property. Moreover, if $\inf \{\lambda(x): x \in S(X)\}>0$, then X is said to have the uniform λ-property.

If X has the λ-property, then $B(X)=\operatorname{co}(\operatorname{Ext} B(X))$ and each element $x \in B(X)$ can be expressed as $x=\sum_{i=1}^{\infty} \lambda_{i} e_{i}$, where $e_{i} \in \operatorname{Ext} B(X)$ and $\lambda_{i}>0, \sum_{i=1}^{\infty} \lambda_{i}=1$. Moreover, if X has the uniform λ-property, then the series $x=\sum_{i=1}^{\infty} \lambda_{i} e_{i}$ converges uniformly for all $x \in B(X)$.

Define

$$
\lambda(X)=\inf \{\lambda(x): x \in S(X)\}
$$

Obviously, $\lambda(X)$ expresses the degree of λ-property; we call it the λ-coefficient of X.

The λ-property of Orlicz spaces has been thoroughly discussed in the literature, and it is well known that the Orlicz function space L_{M} endowed with the Luxemburg norm has the uniform λ-property iff $M(u)$ is strictly convex on $[0, \infty)$ (for short, we write $M \in \mathrm{SC}$). Indeed, if $M \notin \mathrm{SC}$, then $\lambda\left(L_{M}\right)=0$, and if $M \in \mathrm{SC}$, then $\lambda\left(L_{M}\right)=1$. In this paper, we discuss Orlicz sequence spaces endowed with the Luxemburg norm, and get an interesting result that $\lambda\left(l_{M}\right)$ may take every value in the harmonic number sequence $\{1 / n\}_{n=1}^{\infty}$ and 0 . Hence, we can easily deduce a sufficient and necessary condition for l_{M} to have the uniform λ-property.

Let $M:(-\infty, \infty) \rightarrow(0, \infty)$ be convex, even, continuous and $M(u)=$ $0 \Leftrightarrow u=0$. For a given sequence $x=\left(x_{n}\right)_{n=1}^{\infty}$, define $\varrho_{M}(x)=\sum_{n=1}^{\infty} M\left(x_{n}\right)$, $l_{M}=\left\{x=\left(x_{n}\right)_{n=1}^{\infty}: \exists \lambda>0, \varrho_{M}(\lambda x)<\infty\right\}$, and $\|x\|=\inf \{\lambda>0:$ $\left.\varrho_{M}(x / \lambda) \leq 1\right\}$ for $x \in l_{M}$. Then $\left(l_{M},\|\cdot\|\right)$ is a Banach space. Ext $B\left(l_{M}\right)$

1991 Mathematics Subject Classification: Primary 46E30.
Key words and phrases: Orlicz sequence spaces, λ-property, λ-coefficient.
Research supported by NSFC and NSFH.
denotes the set of all extreme points of $B\left(l_{M}\right)$. SAI represents a structural affine interval of $M(u)$, i.e. an interval $[a, b]$ such that $M(u)$ is affine on $[a, b]$ and is not affine on $[a-\varepsilon, b]$ and $[a, b+\varepsilon]$ for any $\varepsilon>0$. S_{M} is the set of strictly convex points of $M(u)$ (i.e. $u \in S_{M}$ iff for any $\varepsilon>0$, $M(u)<(M(u-\varepsilon)+M(u+\varepsilon)) / 2)$.

Lemma 1. If $x, y, z \in B(X)$ and $x=\alpha y+(1-\alpha) z$ for some $\alpha \in[0,1]$, then $\lambda(x) \geq \alpha \lambda(y)$.

Proof. See [2].
Lemma 2. Let $x \in S\left(l_{M}\right)$. Then $x \in \operatorname{Ext} B\left(l_{M}\right)$ iff (i) $\varrho_{M}(x)=1$ and (ii) $\mu\left\{i: x(i) \notin S_{M}\right\} \leq 1$.

Proof. See [5].
Lemma 3. $\lambda\left(l_{M}\right)=\inf \left\{\lambda(x): \varrho_{M}(x)=1\right\}$.
Proof. Define $\lambda^{\prime}=\inf \left\{\lambda(x): \varrho_{M}(x)=1\right\}$. Obviously, $\lambda\left(l_{M}\right) \leq \lambda^{\prime}$. For any $x \in S\left(l_{M}\right)$ with $\varrho_{M}(x)<1$ and $0<\varepsilon<1$, since $\varrho_{M}(x /(1-\varepsilon))=\infty$, there exists n such that

$$
\sum_{j \leq n} M\left(\frac{x(j)}{1-\varepsilon}\right)+\sum_{j>n} M(x(j)) \geq 1
$$

Select $0<\varepsilon^{\prime}<\varepsilon$ satisfying

$$
\sum_{j \leq n} M\left(\frac{x(j)}{1-\varepsilon^{\prime}}\right)+\sum_{j>n} M(x(j))=1
$$

Take

$$
y=\left(\frac{x(1)}{1-\varepsilon^{\prime}}, \frac{x(2)}{1-\varepsilon^{\prime}}, \ldots, \frac{x(n)}{1-\varepsilon^{\prime}}, x(n+1), x(n+2), \ldots\right)
$$

Then $\varrho_{M}(y)=1$. Set $z=(0, \ldots, 0, x(n+1), x(n+2), \ldots)$. Clearly, $z \in$ $B\left(L_{M}\right)$ and $x=\left(1-\varepsilon^{\prime}\right) y+\varepsilon^{\prime} z$. By Lemma $1, \lambda(x) \geq\left(1-\varepsilon^{\prime}\right) \lambda(y) \geq\left(1-\varepsilon^{\prime}\right) \lambda^{\prime}$. Since x, ε^{\prime} are arbitrary, we have $\lambda\left(l_{M}\right) \geq \lambda^{\prime}$.

Now define

$$
d_{M}=\sup \{d \geq 0: M(u) \text { is strictly convex on }[0, d]\} .
$$

The main result of this paper is the following:
Theorem. Let l_{M} be an Orlicz sequence space.
(i) If $d_{M} \geq M^{-1}(1 / 2)$, then $\lambda\left(l_{M}\right)=1$.
(ii) If $M^{-1}(1 /(n+1)) \leq d_{M}<M^{-1}(1 / n)$, then $\lambda\left(l_{M}\right)=1 / n(n=$ $2,3, \ldots)$.
(iii) If $d_{M}=0$, then $\lambda\left(l_{M}\right)=0$.

Proof. (i) For any $x \in l_{M}$ with $\varrho_{M}(x)=1$, since $d_{M} \geq M^{-1}(1 / 2)$ and $M^{-1}(1 / 2) \in S_{M}$, we see that $\left\{j: x(j) \notin S_{M}\right\}$ contains at most one
element. Hence by Lemma $2, x \in \operatorname{Ext} B\left(l_{M}\right)$. According to Lemma 3, $\lambda\left(l_{M}\right)=\inf \left\{\lambda(x): \varrho_{M}(x)=1\right\}=1$.
(ii) First we show

$$
\lambda\left(l_{M}\right) \leq 1 / n
$$

Since $M^{-1}(1 /(n+1)) \leq d_{M}<M^{-1}(1 / n)$, there exists a SAI $[a, b]$ of $M(u)$ such that $d_{M} \leq a<M^{-1}(1 / n)$. Choose $a<c<b$ satisfying $[a, c] \subset$ $\left[d_{M}, M^{-1}(1 / n)\right)$. Since $M(u)$ is strictly convex on $\left[0, M^{-1}(1 /(n+1))\right)$, we can construct a sequence
with $\varrho_{M}(x)=1$ and $x(j) \in S_{M}(j>n)$.
Let $x=\lambda e+(1-\lambda) y$, where $e \in \operatorname{Ext} B\left(l_{M}\right)$ and $y \in B\left(l_{M}\right)$. Since

$$
\begin{aligned}
1 & =\varrho_{M}(x)=\sum_{j} M(\lambda e(j)+(1-\lambda) y(j)) \\
& \leq \lambda \sum_{j} M(e(j))+(1-\lambda) \sum_{j} M(y(j)) \leq \lambda+(1-\lambda)=1,
\end{aligned}
$$

we get $M(\lambda e(j)+(1-\lambda) y(j))=\lambda M(e(j))+(1-\lambda) M(y(j))$ for any j, which shows that either $x(j), e(j)$ and $y(j)$ are in the same SAI of M, or $x(j)=$ $y(j)=e(j)$. Using $x(j) \in S_{M}$ for any $j>n$, we have $x(j)=y(j)=e(j)$ for any $j>n$. Thus

$$
\begin{aligned}
\sum_{j=1}^{n} M(e(j)) & =1-\sum_{j>n} M(e(j))=1-\sum_{j>n} M(x(j))=\sum_{j=1}^{n} M(x(j)) \\
& =\sum_{j=1}^{n} M\left(\left(1-\frac{1}{n}\right) a+\frac{1}{n} c\right)=(n-1) M(a)+M(c) .
\end{aligned}
$$

Since $e \in \operatorname{Ext} B\left(l_{M}\right)$, all elements of $\{e(j): 1 \leq j \leq n\}$ except possibly one are equal to a or b. By the above equality, there exists no j satisfying $e(j)=b(1 \leq j \leq n)$. So $\{j: e(j)=a\}$ contains $n-1$ elements, and there exists only one index $j_{0}\left(1 \leq j_{0} \leq n\right)$ such that $e\left(j_{0}\right)=c$. Therefore

$$
\begin{aligned}
\left(1-\frac{1}{n}\right) a+\frac{1}{n} c & =x\left(j_{0}\right)=\lambda e\left(j_{0}\right)+(1-\lambda) y\left(j_{0}\right) \\
& =\lambda c+(1-\lambda) y\left(j_{0}\right) \geq(1-\lambda) a+\lambda c .
\end{aligned}
$$

This implies $\lambda \leq 1 / n$ and we have $\lambda(x) \leq 1 / n$ as the decomposition $x=$ $\lambda e+(1-\lambda) y$ is arbitrary. So we get $\lambda\left(l_{M}\right) \leq 1 / n$.

From the above proof, we can deduce (iii).

Now we prove

$$
\lambda\left(l_{M}\right) \geq 1 / n
$$

For any $x \in S\left(l_{M}\right) \backslash \operatorname{Ext} B\left(l_{M}\right)$, by Lemma 3, assume $\varrho_{M}(x)=1$. Without loss of generality, we may assume $x(j) \geq 0$ for any j. This part of the proof will be split into two steps. Let $\left\{\left[a_{k}, b_{k}\right]\right\}_{k=1}^{\infty}$ be all the SAI of M.

Step I: We show that $\lambda(x) \geq \min \{\sigma, 1-\sigma\}$. For each $\lambda \in[0,1]$, define

$$
x_{\lambda}(j)= \begin{cases}b_{k}, & b_{k}>x(j)>\lambda a_{k}+(1-\lambda) b_{k} \\ a_{k}, & \lambda a_{k}+(1-\lambda) b_{k} \geq x(j)>a_{k} \\ x(j), & \text { otherwise }\end{cases}
$$

Then the function $f(\lambda)=\varrho_{M}\left(x_{\lambda}\right)$ is nondecreasing. As $\left\{j: x(j) \notin S_{M}\right\}$ contains at least two elements, $\varrho_{M}\left(x_{0}\right)<\varrho_{M}(x)=1$ and $\varrho_{M}\left(x_{1}\right)>\varrho_{M}(x)$ $=1$.

Define

$$
\sigma=\sup \left\{\lambda: \varrho_{M}\left(x_{\lambda}\right) \leq 1\right\} .
$$

As $d_{M} \geq M^{-1}(1 /(n+1)),\left\{j: x(j) \notin S_{M}\right\}$ is a finite set. Clearly, $0<\sigma<1$. Write

$$
N_{k}=\left\{j: x(j)=\sigma a_{k}+(1-\sigma) b_{k}\right\} .
$$

If $\varrho_{M}\left(x_{\sigma}\right)=1$, then set $e=x_{\sigma}$. If $\varrho_{M}\left(x_{\sigma}\right)<1$, then $\bigcup_{k} N_{k} \neq \emptyset$. Thus there exist $E_{k} \subset N_{k}(k \geq 1)$ such that $\varrho_{M}\left(u_{\sigma}\right) \leq 1$, where

$$
u_{\sigma}(j)= \begin{cases}b_{k}, & b_{k}>x(j)>\sigma a_{k}+(1-\sigma) b_{k} \text { or } j \in E_{k}, \\ a_{k}, & \sigma a_{k}+(1-\sigma) b_{k}>x(j)>a_{k} \text { or } j \in N_{k} \backslash E_{k} \\ x(j), & \text { otherwise },\end{cases}
$$

and for any $j \in N_{k} \backslash E_{k}$, if we set $u_{\sigma}(j)=b_{k}$, then $\varrho_{M}\left(u_{\sigma}\right)>1$.
If $\varrho_{M}\left(u_{\sigma}\right)=1$, set $e=u_{\sigma}$. If $\varrho_{M}\left(u_{\sigma}\right)<1$, we can take an index k^{\prime} such that $N_{k^{\prime}} \backslash E_{k^{\prime}} \neq \emptyset$. Select $\alpha \in\left(a_{k^{\prime}}, b_{k^{\prime}}\right)$ and $j^{\prime} \in N_{k^{\prime}} \backslash E_{k^{\prime}}$ satisfying $\varrho_{M}(e)=1$, where

$$
e(j)= \begin{cases}\alpha, & j=j^{\prime}, \\ u_{\sigma}(j), & j \neq j^{\prime}\end{cases}
$$

By Lemma $2, e \in \operatorname{Ext} B\left(l_{M}\right)$.
If $\sigma \geq 1 / 2$, take z with $x=(1-\sigma) e+\sigma z$, and if $\sigma<1 / 2$, take z with $x=\sigma e+(1-\sigma) z$. In both these cases, we can prove $\varrho_{M}(z)=1$. We only discuss the case $\sigma \geq 1 / 2$ (the case $\sigma<1 / 2$ is similar).

If $x(j)=e(j)$, then $z(j)=x(j)=e(j)$.

If $x(j) \leq \sigma a_{k}+(1-\sigma) b_{k}$ and $e(j)=a_{k}$, then

$$
\begin{aligned}
a_{k} & <x(j) \leq z(j)=\frac{1}{\sigma}(x(j)-(1-\sigma) e(j)) \\
& \leq \frac{1}{\sigma}\left(\sigma a_{k}+(1-\sigma) b_{k}-(1-\sigma) a_{k}\right)=a_{k}+\left(\frac{1}{\sigma}-1\right)\left(b_{k}-a_{k}\right) \\
& \leq a_{k}+\left(b_{k}-a_{k}\right)=b_{k} .
\end{aligned}
$$

If $x(j) \geq \sigma a_{k}+(1-\sigma) b_{k}$ and $e(j)=b_{k}$, then

$$
b_{k}>x(j) \geq z(j) \geq \frac{1}{\sigma}\left(\sigma a_{k}+(1-\sigma) b_{k}-(1-\sigma) b_{k}\right)=a_{k} .
$$

If $x(j)=\sigma a_{k}+(1-\sigma) b_{k}<\alpha=e(j)$, then

$$
\begin{aligned}
b_{k} & >x(j) \geq z(j)=\frac{1}{\sigma}\left(\sigma a_{k}+(1-\sigma) b_{k}-(1-\sigma) \alpha\right) \\
& \geq \frac{1}{\sigma}\left(\sigma a_{k}+(1-\sigma) b_{k}-(1-\sigma) b_{k}\right)=a_{k} .
\end{aligned}
$$

If $x(j)=\sigma a_{k}+(1-\sigma) b_{k} \geq \alpha=e(j)$, then

$$
a_{k}<x(j) \leq z(j)=\frac{1}{\sigma}\left(\sigma a_{k}+(1-\sigma) b_{k}-(1-\sigma) \alpha\right)
$$

$$
\leq \frac{1}{\sigma}\left(\sigma a_{k}+(1-\sigma) b_{k}-(1-\sigma) a_{k}\right)=a_{k}+\left(\frac{1}{\sigma}-1\right)\left(b_{k}-a_{k}\right) \leq b_{k}
$$

Thus either $x(j)=e(j)=z(j)$, or $x(j), e(j)$ and $z(j)$ are in the same SAI of M. Hence

$$
\begin{aligned}
1 & =\varrho_{M}(x)=\varrho_{M}((1-\sigma) e+\sigma z)=(1-\sigma) \varrho_{M}(e)+\sigma \varrho_{M}(z) \\
& =1-\sigma+\sigma \varrho_{M}(z)
\end{aligned}
$$

This shows that $\varrho_{M}(z)=1$, and thus $\lambda(x) \geq 1-\sigma$. Similarly, if $\sigma<1 / 2$, we can get $\lambda(x) \geq \sigma$. Consequently, $\lambda(x) \geq \min \{\sigma, 1-\sigma\}$.

Step II: We prove $\lambda(x) \geq 1 / n$. If $\sigma \geq 1 / 2$, then by Step I, $\lambda(x) \geq 1-\sigma$. If $1-\sigma \geq 1 / n$, then the proof is complete. Conversely, if $1-\sigma<1 / n$, then rearrange $x(j)$ by putting $x(j)$ at the beginning if $x(j) \notin S_{M}$. Assume $x(j) \notin S_{M}(j=1, \ldots, m)$, i.e. for $1 \leq j \leq m, x(j)=\left(1-\lambda_{j}\right) a_{j}+\lambda_{j} b_{j}$, where $0<\lambda_{j}<1$ and $\left[a_{j}, b_{j}\right]$ is a SAI of M.

Now $x \notin \operatorname{Ext} B\left(l_{M}\right)$ implies $m \geq 2$. Notice that $d_{M} \geq M^{-1}(1 /(n+1))$. We deduce that

$$
\begin{aligned}
1 & =\varrho_{M}(x) \geq \sum_{j=1}^{m} M(x(j))>\sum_{j=1}^{m} M\left(d_{M}\right) \\
& \geq \sum_{j=1}^{m} M\left(M^{-1}\left(\frac{1}{n+1}\right)\right)=\frac{m}{n+1} .
\end{aligned}
$$

So $m \leq n$. Define
$J=\left\{1 \leq j \leq m: \lambda_{j} \leq 1 / n, \lambda_{j}\right.$ is the coefficient of

$$
\left.x(j)=\left(1-\lambda_{j}\right) a_{j}+\lambda_{j} b_{j}\right\} .
$$

Then $J \neq \emptyset$. Otherwise, if $\lambda_{j}>1 / n$ for any $1 \leq j \leq m$, then $x_{1-1 / n}(j)=$ $b_{j}(1 \leq j \leq m)$. Hence $\varrho_{M}\left(x_{1-1 / n}\right)>1$. But $\varrho_{M}\left(x_{\sigma}\right) \leq 1$, and we obtain $\sigma<1-1 / n$, which contradicts $1-\sigma<1 / n$.

By rearranging again, assume $J=\{1, \ldots, r\}(r \leq m)$ with

$$
\lambda_{r}\left(M\left(b_{r}\right)-M\left(a_{r}\right)\right)=\max _{i \leq r} \lambda_{i}\left(M\left(b_{i}\right)-M\left(a_{i}\right)\right)
$$

For each $\delta \in[0,1]$, consider

$$
y_{\delta}(j)= \begin{cases}a_{j}, & j<r, \\ (1-\delta) a_{j}+\delta b_{j}, & j=r, \\ b_{j}, & r<j \leq m, \\ x(j), & j>m .\end{cases}
$$

Clearly the function $f(\delta)=\varrho_{M}\left(y_{\delta}\right)$ is nondecreasing, and $\varrho_{M}\left(y_{0}\right)=$ $\varrho_{M}\left(x_{1-1 / n}\right) \leq \varrho_{M}\left(x_{\sigma}\right) \leq 1$. Notice that $r \lambda_{r} \leq m / n \leq 1$, and therefore, $y_{r \lambda_{r}}$ has a meaning. We have

$$
\begin{aligned}
\varrho_{M}\left(y_{r \lambda_{r}}\right)-1= & \sum_{j<r} M\left(a_{j}\right)+M\left(\left(1-r \lambda_{r}\right) a_{r}+r \lambda_{r} b_{r}\right) \\
& +\sum_{j=r+1}^{m} M\left(b_{j}\right)+\sum_{j>m} M(x(j)) \\
& -\sum_{j=1}^{r}\left(\left(1-\lambda_{j}\right) M\left(a_{j}\right)+\lambda_{j} M\left(b_{j}\right)\right) \\
& -\sum_{j=r+1}^{m} M(x(j))-\sum_{j>m} M(x(j)) \\
\geq & -\sum_{j=1}^{r} \lambda_{j}\left(M\left(b_{j}\right)-M\left(a_{j}\right)\right)+r \lambda_{r}\left(M\left(b_{r}\right)-M\left(a_{r}\right)\right) \\
\geq & -r \lambda_{r}\left(M\left(b_{r}\right)-M\left(a_{r}\right)\right)+r \lambda_{r}\left(M\left(b_{r}\right)-M\left(a_{r}\right)\right)=0 .
\end{aligned}
$$

Hence there exists $\delta \in\left[0, r \lambda_{r}\right]$ such that $\varrho_{M}\left(y_{\delta}\right)=1$.
By Lemma 1, $y_{\delta} \in \operatorname{Ext} B\left(l_{M}\right)$. Suppose that z satisfies $x=(1 / n) y_{\delta}+$ $(1-1 / n) z$. To prove $\lambda(x) \geq 1 / n$, it suffices to verify $z \in B\left(l_{M}\right)$. As in Step I, we need to show that either $z(j)=y_{\delta}(j)=x(j)$, or $z(j), y_{\delta}(j)$ and $x(j)$ are in the same SAI of M.

If $j>m$, then $z(j)=y_{\delta}(j)=x(j)$.

If $j<r$, notice that $\lambda_{j} \leq 1 / n$ and $n \geq 2$; then

$$
\begin{aligned}
a_{j} & <x(j) \leq z(j)=\frac{1}{1-1 / n}\left(x(j)-\frac{1}{n} y_{\delta}(j)\right) \\
& =\frac{1}{1-1 / n}\left(\left(1-\lambda_{j}\right) a_{j}+\lambda_{j} b_{j}-\frac{1}{n} a_{j}\right) \\
& \leq \frac{1}{1-1 / n}\left(\left(1-\frac{1}{n}\right) a_{j}+\frac{1}{n}\left(b_{j}-a_{j}\right)\right) \\
& =a_{j}+\frac{1 / n}{1-1 / n}\left(b_{j}-a_{j}\right) \leq a_{j}+\left(b_{j}-a_{j}\right)=b_{j} .
\end{aligned}
$$

If $r<j \leq m$, notice that $\lambda_{j}>1 / n$; then

$$
\begin{aligned}
b_{j} & >x(j) \geq z(j)=\frac{1}{1-1 / n}\left(\left(1-\lambda_{j}\right) a_{j}+\lambda_{j} b_{j}-\frac{1}{n} b_{j}\right) \\
& \geq \frac{1}{1-1 / n}\left(\left(1-\frac{1}{n}\right) a_{j}+\frac{1}{n} b_{j}-\frac{1}{n} b_{j}\right)=a_{j} .
\end{aligned}
$$

If $j=r$ and $(1-\delta) a_{r}+\delta b_{r} \leq\left(1-\lambda_{r}\right) a_{r}+\lambda_{r} b_{r}=x(r)$, then

$$
\begin{aligned}
a_{r} & <x(r) \leq z(r) \\
& =\frac{1}{1-1 / n}\left(\left(1-\lambda_{r}\right) a_{r}+\lambda_{r} b_{r}-\frac{1}{n}\left((1-\delta) a_{r}+b_{r}\right)\right) \\
& \leq \frac{1}{1-1 / n}\left(\left(1-\frac{1}{n}\right) a_{r}+\frac{1}{n} b_{r}-\frac{1}{n} a_{r}\right) \\
& =a_{r}+\frac{1 / n}{1-1 / n}\left(b_{r}-a_{r}\right) \leq b_{r} .
\end{aligned}
$$

If $j=r$ and $(1-\delta) a_{r}+\delta b_{r}>\left(1-\lambda_{r}\right) a_{r}+\lambda_{r} b_{r}=x(r)$, then

$$
\begin{aligned}
b_{r} & >x(r) \geq z(r) \\
& =\frac{1}{1-1 / n}\left(\left(1-\lambda_{r}\right) a_{r}+\lambda_{r} b_{r}-\frac{1}{n}\left((1-\delta) a_{r}+\delta b_{r}\right)\right) \\
& =\frac{1}{1-1 / n}\left(\left(1-\frac{1}{n}\right) a_{r}+\left(\lambda_{r}-\frac{\delta}{n}\right)\left(b_{r}-a_{r}\right)\right) \\
& =a_{r}+\frac{1}{1-1 / n}\left(\lambda_{r}-\frac{\delta}{n}\right)\left(b_{r}-a_{r}\right) .
\end{aligned}
$$

By $\lambda_{r} \geq \delta / r \geq \delta / n$, we have $b_{r}>z(r) \geq a_{r}$. Thus $\lambda(x) \geq 1 / n$. Since x is arbitrary, by Lemma 3 we conclude that $\lambda\left(l_{M}\right) \geq 1 / n$.

The theorem immediately yields
Corollary. l_{M} has the uniform λ-property iff $d_{M}>0$.

REFERENCES

[1] R. M. Aron and R. H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math. 127 (1987), 209-231.
[2] S. Chen, H. Sun and C. Wu, λ-property of Orlicz spaces, Bull. Polish Acad. Sci. Math. 39 (1991), 63-69.
[3] A. S. Granero, λ-property in Orlicz spaces, ibid. 37 (1989), 421-431.
[4] C. Wu and H. Sun, On the λ-property of Orlicz space L_{M}, Comment. Math. Univ. Carolin. 31 (1991), 731-741.
[5] C. Wu, T. Wang, S. Chen and Y. Wang, Geometry of Orlicz Spaces, HIT Press, Harbin, 1986.

HARBIN UNIVERSITY OF SCIENCE \& TECHNOLOGY DEPARTMENT OF MATHEMATICS BOX 610

HEBEI UNIVERSITY
HARBIN 150080, P.R. CHINA
BAODING 071002, P.R. CHINA

Reçu par la Rédaction le 20.4.1994;
en version modifiée le 28.8.1994

