COLLOQUIUM MATHEMATICUM

VOL. LXIX

A NOTE ON STRICTLY POSITIVE RADON MEASURES

ВY

GRZEGORZ PLEBANEK (WROCŁAW)

Recently van Casteren [1] presented the following characterization of topological spaces admitting a strictly positive Radon measure.

THEOREM 1. The following are equivalent for a topological space X:

(i) there exists a strictly positive Radon measure on X;

(ii) for every open subset U of X one can choose a compact set $K(U) \subseteq U$ such that for every sequence $(U_n)_{n \in \omega}$ with $\operatorname{int}(\bigcap_{n \in \omega} U_n) \neq \emptyset$ there is a set $A \subseteq \omega$ of non-zero density such that $\bigcap_{n \in A} K(U_n) \neq \emptyset$.

Here and below every topological space is assumed to be Hausdorff. By a *Radon measure* on a space X we mean a finite compact-regular measure defined on the Borel σ -algebra of X. A measure is said to be *strictly positive* if it is non-zero on every non-empty open set. Thus a Radon measure μ on a space X is strictly positive if and only the support of μ is the whole space. A subset A of the set ω of natural numbers is said to be of *non-zero density* if

$$\limsup_{n \to \infty} \frac{|A \cap n|}{n} > 0,$$

where $n = \{0, 1, \dots, n-1\}.$

We find the condition (ii) of Theorem 1 to be a concise topological characterization of spaces admitting a strictly positive measure. However, the proof given in [1] is rather complicated. In this note we present a shorter argument based on some classical results.

We shall first recall the notion of intersection numbers introduced by Kelley [4].

Given a finite sequence (P_1, \ldots, P_n) of sets, $\operatorname{cal}(P_1, \ldots, P_n)$ is the maximum of k such that there are $1 \leq m_1 < \ldots < m_k \leq n$ with $\bigcap_{i=1}^k P_{m_i} \neq \emptyset$. Note that

$$\operatorname{cal}(P_1,\ldots,P_n) = \Big\| \sum_{i=1}^n \chi_{P_i} \Big\|,$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 28C15. Supported in part by KBN grant 2 P 301 043 07.

where $\|\cdot\|$ denotes the supremum norm and χ_P is the characteristic function of a set P. The *intersection number* $\kappa(\mathcal{P})$ of an arbitrary family \mathcal{P} is defined as

$$\kappa(\mathcal{P}) = \inf\{\operatorname{cal}(P_1, \dots, P_n)/n : P_i \in \mathcal{P}, n \ge 1\}.$$

THEOREM 2 (Kelley [4], see also [2] and [10]). Given a family \mathcal{P} of subsets of a set X and r > 0, the following are equivalent:

(a) there is a probability quasi-measure μ with $\mu(P) \ge r$ for all $P \in \mathcal{P}$; (b) $\kappa(\mathcal{P}) \ge r$.

By a *quasi-measure* we mean a finitely additive and non-negative set function defined on an algebra of sets. The condition ensuring the existence of a measure as in (a) of Theorem 2 is much more complicated (see [9]). However, in special cases σ -additivity is for free—the following Theorem 3 seems to be well known (see the remark at the end of this paper).

THEOREM 3. If \mathcal{P} is a family of compact subsets of a space X then there exists a probability Radon measure μ such that $\mu(K) \geq \kappa(\mathcal{P})$ for $K \in \mathcal{P}$.

Theorem 2 made it possible to give a combinatorial characterization of measurable Boolean algebras and was subsequently used to describe compact spaces having a strictly positive Radon measure; this is exposed in Chapter 6 of [2]. As we noted in [8], Theorem 3 yields the following:

THEOREM 4. A topological space X has a strictly positive Radon measure if and only if there exists a family \mathcal{P} of non-empty compact subsets of X such that $\mathcal{P} = \bigcup_{n \in \omega} \mathcal{P}_n$, where $\kappa(\mathcal{P}_n) > 0$, and \mathcal{P} is a π -base for X (that is, every non-empty open set contains an element of \mathcal{P}).

The proof of Theorem 1 we shall present below shows that characterizations of spaces having a strictly positive Radon measure contained in Theorem 1 and Theorem 4 are in fact closely related. Our proof is based on two lemmata we shall now prove.

LEMMA 1. If μ is a finite measure and P_n 's are measurable sets with $\mu(P_n) \geq r$, where r > 0, then $\bigcap_{n \in A} P_n \neq \emptyset$ for some set $A \subseteq \omega$ of non-zero density.

Proof. Let $g_n = (1/n) \sum_{i=1}^n \chi_{P_i}$ and $g = \limsup_{n \to \infty} g_n$. Since $\int g_n d\mu \ge r$, it follows from Fatou's lemma that $\int g d\mu \ge r$. Hence $g(x_0) > 0$ for some x_0 , and, consequently, $A = \{n \in \omega : x_0 \in P_n\}$ has non-zero density.

LEMMA 2. For a family \mathcal{P} of sets the following are equivalent:

(a) $\kappa(\mathcal{P}) > 0;$

(b) for every sequence $(P_n)_{n \in \omega}$ from \mathcal{P} there exists a set $A \subseteq \omega$ of nonzero density such that the family $\{P_n : n \in A\}$ has the finite intersection property. Proof. (a) \Rightarrow (b). Put $r = \kappa(\mathcal{P})$ and let \mathcal{A} be the algebra generated by \mathcal{P} . By the Stone representation theorem there is an isomorphism $\widehat{}$ between \mathcal{A} and the algebra of open and closed subsets of a certain compact space S. Clearly $\kappa(\{\hat{P} : P \in \mathcal{P}\}) = r$, so by Theorem 3 there is a Radon measure μ on S with $\mu(\hat{P}) \geq r$ for $P \in \mathcal{P}$. Now to check (b) it suffices to apply Lemma 1, and notice that $\bigcap_{n \in \mathcal{A}} \widehat{P}_n \neq \emptyset$ means that the family $\{P_n : n \in \mathcal{A}\}$ has the finite intersection property.

(b) \Rightarrow (a). Suppose that $\kappa(\mathcal{P}) = 0$. This means that for every k there are $n_k \in \omega$ and $P_1^k, \ldots, P_{n_k}^k \in \mathcal{P}$ such that $\|\sum_{i=1}^{n_k} \chi_{P_i^k}\| \leq n_k 2^{-k}$. Put $m_k = \sum_{i=1}^k n_i$, and let $(Q_n)_n$ be an enumeration of the sequence

$$P_1^1, \ldots, P_{n_1}^1, P_1^2, \ldots, P_{n_2}^2, \ldots$$

We have $\|\sum_{i=1}^{m_k} \chi_{Q_i}\| \le n_1 2^{-1} + \ldots + n_k 2^{-k}$, which implies easily that $(1/m_k) \|\sum_{i=1}^{m_k} \chi_{Q_i}\|$ tends to 0. Note that this would give $(1/n) \|\sum_{i=1}^n \chi_{Q_i}\| \to 0$ if we knew that the sequence m_{k+1}/m_k were bounded from above.

Consider now a sequence R_1, R_2, \ldots in which the segment $P_1^k, \ldots, P_{n_k}^k$ appears $r_k = [n_{k+1}/n_k] + 1$ times. We just apply the above remarks to R_j 's and the subsequence of natural numbers that can be written as $r_1n_1 + \ldots + r_in_i + jn_{i+1}$, where $j \leq r_{i+1}$.

It follows that $(1/n) \| \sum_{i=1}^{n} \chi_{R_i} \| \to 0$, which means that $A \subseteq \omega$ has zero density whenever $\bigcap_{n \in A} R_n \neq \emptyset$, a contradiction.

Proof of Theorem 1. If μ is a strictly positive Radon measure on X we can find for every open $V \subseteq X$ a compact $K(V) \subseteq V$ with $\mu(K(V)) \ge (1/2)\mu(V)$. Now (ii) follows immediately from Lemma 1.

To check that (ii) is sufficient for the existence of a strictly positive Radon measure on X, consider the family S of all (closed) subsets of X which are supporting some Radon measure. Note that if $S_0, S_1, \ldots \in S$ then $S = \bigcup_{n \in \omega} S_n$ is again in S. Indeed, if S_n is the support of a probability Radon measure μ_n then S is the support of $\sum_{n \in \omega} 2^{-n} \mu_n$. We are to check that $X \in S$.

Let \mathcal{C} be the family of sets K(V), where $X \setminus S \subseteq V$ for some $S \in \mathcal{S}$. Then $\kappa(\mathcal{C}) = 0$; indeed, otherwise by Theorem 3 there is a Radon measure μ which is positive on elements from \mathcal{C} . In particular, $\mu(K(X \setminus S)) > 0$, where S is the support of μ , a contradiction with $K(X \setminus S) \subseteq X \setminus S$.

It follows that there is $S_0 \in \mathcal{S}$ such that $\kappa(\{K(V) : V \supseteq X \setminus S_0\}) = 0$ (since the intersection number is attained on some countable subfamily; this is a consequence of the fact that \mathcal{S} is countably upward directed). Now (ii) and Lemma 2 imply that $X \setminus S_0 = \emptyset$ and we are done. G. PLEBANEK

Let us note that subsets of ω of non-zero density play a crucial role in (b) of Lemma 2. Consider, for instance, the following example of a family \mathcal{C} with $\kappa(\mathcal{C}) = 0$, having the property that every sequence from \mathcal{C} has a subsequence with non-empty intersection.

Put $K = \{A \subseteq \omega : |A \cap n| \leq \sqrt{n}\}$. Identifying the power set of ω with the Cantor set 2^{ω} , we may treat K as a closed subset of 2^{ω} . Let the family \mathcal{C} consist of the sets $C_n = \{A \in K : n \in A\}$. Since every $A \in K$ has zero density, using Lemma 2 we get $\kappa(\mathcal{C}) = 0$. On the other hand, for every increasing sequence $(n_k)_{k \in \omega}, A = \{n_{k^2} : k \in \omega\} \in K$, so $\bigcap_{k \in \omega} C_{n_{k^2}} \neq \emptyset$.

Some of the results from [1] dealing with families of functions rather than families of sets can be proved accordingly. In our opinion, it is convenient to start such considerations from the following.

Consider a lattice \mathcal{L} of subsets of an abstract set X, and an algebra \mathcal{A} generated by \mathcal{L} . Note that for every quasi-measure on \mathcal{A} the associated integral is well defined for all functions that are uniform limits of \mathcal{A} -measurable simple functions.

Recall that a quasi-measure μ on \mathcal{A} is said to be \mathcal{L} -regular if

$$\mu(A) = \sup\{\mu(L) : L \in \mathcal{L}, \ L \subseteq A\}$$

for every $A \in \mathcal{A}$.

THEOREM 5. Let G be a family of non-negative and bounded functions on X such that $\{g \ge t\} \in \mathcal{L}$ whenever $g \in G$ and $t \ge 0$. The following are equivalent for $r \ge 0$:

(a) there exists an \mathcal{L} -regular probability quasi-measure μ on \mathcal{A} such that $\int g \, d\mu \geq r$ for every $g \in G$;

(b) $\|\sum_{i=1}^{n} g_i\| \ge nr$ whenever $g_1, \ldots, g_n \in G$ and $n \ge 1$.

Theorem 5 is likely to be known but we do not know whether its proof is written down somewhere. We shall sketch a possible argument.

 $(a) \Rightarrow (b)$ follows immediately from the inequality

$$\left\|\sum_{i=1}^{n} g_i\right\| \ge \int \sum_{i=1}^{n} g_i \, d\mu.$$

To prove the reverse implication one can apply the Mazur–Orlicz–Kaufman interpolation theorem, stating that if p is a subadditive function on an Abelian semigroup H and q is any function on H such that $p(h_1+\ldots+h_n) \ge q(h_1) + \ldots + q(h_n)$ whenever $h_1, \ldots, h_n \in H$, then there exists an additive function ξ such that $q(h) \le \xi(h) \le p(h)$ for $h \in H$ (see [3], cf. [10] and [5]).

We take H to be a semigroup of non-negative functions on X that are uniform limits of \mathcal{A} -measurable simple functions, put p(h) = ||h||, and put q(h) = r if $h \in G$, q(h) = 0 otherwise. Now (b) is what we need to verify the assumption of the theorem mentioned above. Thus there is an additive and non-negative function ξ on H with $\xi(h) \leq ||h||$ for all $h \in H$ and $\xi(g) \geq r$ for $g \in G$.

Consider now a quasi-measure m given by $m(A) = \xi(\chi_A)$. According to a result due to Lembcke [6], Korollar 2.12 (see also Pachl [7], Proposition 3.4), there is an \mathcal{L} -regular probability quasi-measure μ on \mathcal{A} such that $\mu(L) \geq m(L)$ for $L \in \mathcal{L}$. We shall check that $\int g d\mu \geq r$ whenever $g \in G$.

For a given $g \in G$ and a natural number $n \ge 1$, we consider the function

$$g_n = \frac{1}{n} \sum_{i=1}^n \chi_{L_i}, \quad \text{where } L_i = \left\{ x \in X : g(x) \ge \|g\| \frac{i}{n} \right\}.$$

We have $g \ge g_n \ge g - ||g||/n$ and $L_i \in \mathcal{L}$, so

$$\int g \, d\mu \ge \int g_n \, d\mu = \frac{1}{n} \sum_{i=1}^n \mu(L_i) \ge \frac{1}{n} \sum_{i=1}^n m(L_i)$$
$$= \frac{1}{n} \xi \Big(\sum_{i=1}^n L_i \Big) = \xi(g_n) = \xi(g) - \xi(g - g_n) \ge r - \frac{\|g\|}{n}$$

and this shows that μ is as required.

Note that if G is a family of characteristic functions then Theorem 5 gives Kelley's result (Theorem 2), since its condition (b) means that $\kappa(\{P : \chi_P \in G\}) \geq r$. In case \mathcal{L} is a lattice of compact subsets of a topological space X, every \mathcal{L} -regular quasi-measure is σ -additive and extends to a Radon measure. Thus, in such a setting, we may demand in condition (a) of Theorem 5 that μ is a Radon measure. In particular, Theorem 3 is a consequence of Theorem 5.

REFERENCES

- J. A. van Casteren, Strictly positive Radon measures, J. London Math. Soc. 49 (1994), 109-123.
- [2] W. W. Comfort and S. Negrepontis, *Chain Conditions in Topology*, Cambridge Univ. Press, 1982.
- [3] R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269-272.
- [4] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165–1177.
- [5] J. Kindler, A Mazur-Orlicz type theorem for submodular set functions, J. Math. Anal. Appl. 120 (1986), 533-546.
- [6] J. Lembcke, Konservative Abbildungen und Fortsetzung regulärer Masse, Z. Wahrsch. Verw. Gebiete 15 (1970), 57–96.
- [7] J. Pachl, Disintegration and compact measures, Math. Scand. 43 (1978), 157–168.
 [8] G. Plebanek, On strictly positive measures on topological spaces, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 181–191.

G. PLEBANEK

- [9] G. Plebanek, Families of sets of positive measure, Trans. Amer. Math. Soc. 332 (1992), 181-191.
- [10] M. Wilhelm, Existence of additive functionals on semigroups and the von Neumann minimax theorem, Colloq. Math. 35 (1975), 267–274.

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND E-mail: GRZES@MATH.UNI.WROC.PL

Reçu par la Rédaction le 4.11.1994

192