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ESTIMATES FOR THE INTEGRAL MEANS
OF HOLOMORPHIC FUNCTIONS ON BOUNDED DOMAINS IN Cn

BY

ZHANGJIAN HU (HUZHOU)

Let D = {z ∈ Cn : λ(z) < 0} be a bounded domain with C∞ boundary.
For f holomorphic in D, let Mp(f, r) be the pth integral mean of f on
∂Dr = {z ∈ D : λ(z) = −r}. In this paper we prove that

ε∫
0

rs+|α|qMq
p (Dαf, r) dr ≤ C

ε∫
0

rsMq
p (f, r) dr

and
ε∫

0

rsMq
p (f, r) dr

≤ C
{ ∑
|α|<m

|(Dαf)(z0)|q +
∑
|α|=m

ε∫
0

rs+mqMq
p (Dαf, r) dr

}
,

where z0 ∈ D is fixed, 0 < p ≤ ∞, 0 < q < ∞, s > −1, m ∈ N,
α = (α1, . . . , αn) is a multi-index, and ε > 0 is small enough. These in-
equalities generalize the known results in [9, 10] on the unit ball of Cn. Two
applications are given. The methods used in the proof of the inequalities
also enable us to obtain some theorems about pluriharmonic functions on D.

1. Introduction. Let D be a bounded domain in Cn = R2n with C∞

boundary ∂D, and λ(z) be a defining function of D. That means, λ(z) is a
C∞ function, D = {z ∈ Cn : λ(z) < 0}, and |∇λ(z)| 6= 0 on ∂D = {z ∈ Cn :
λ(z) = 0}. A typical model of D is the unit ball B = {z ∈ Cn : |z| < 1}
of Cn. For r > 0 and small enough, let Dr = {z : λ(z) < −r}. Then λ(z)+r
is a defining function of Dr, and ∂Dr is the level surface {z : λ(z) = r}. Of
course two different defining functions define two different systems of {Dr}.
We denote by dσr and dσ the induced surface measures on ∂Dr and ∂D
respectively, and by dm the Lebesgue volume measure on D. All this can
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be found in [6, 11].
Let H(D) be the space of all holomorphic functions in D. For a multi-

index α = (α1, . . . , αn), αj being nonnegative integers, and z = (z1, . . . , zn)
∈ Cn, we write |α| = α1 + . . . + αn, zα = zα1

1 . . . zαn
n . For f ∈ H(D),

(Dαf)(z) =
∂|α|f

∂zα1
1 . . . ∂zαn

n
(z).

A continuous real function u on D is called pluriharmonic if for every
holomorphic mapping φ of the unit disc D = {z ∈ C : |z| < 1} into D, u ◦ φ
is harmonic in D. If f = u + iv ∈ H(D), u = Re f , then both u and v are
pluriharmonic and v is the pluriharmonic conjugate of u.

For f continuous on D, the integral means Mp(f, r), 0 < p ≤ ∞, are
defined by

Mp(f, r) =
{ ∫

∂Dr

|f(z)|p dσr(z)
}1/p

for 0 < p < ∞

and
M∞(f, r) = sup

z∈∂Dr

|f(z)| for p = ∞.

Here are the main results of the paper.

Theorem 1. Let 0 < p ≤ ∞, 0 < q < ∞, s > −1, and α = (α1, . . . , αn).
Then there exists ε > 0 such that for f ∈ H(D),

ε∫
0

rs+|α|qMq
p (Dαf, r) dr ≤ C

ε∫
0

rsMq
p (f, r) dr

and

(1.1) sup
0<r≤ε

rs+|α|Mp(Dαf, r) ≤ C sup
0<r≤ε

rsMp(f, r).

Theorem 2. Let 0 < p ≤ ∞, 0 < q < ∞, and s > −1. Then for z0 ∈ D
fixed and m ∈ N, there exists ε > 0 such that for f ∈ H(D),

ε∫
0

rsMq
p (f, r) dr ≤ C

{ ∑
|α|<m

|(Dαf)(z0)|q

+
∑
|α|=m

ε∫
0

rs+mqMq
p (Dαf, r) dr

}
.

Theorem 3. Let 0 < p ≤ ∞, 0 < q < ∞, and s > −1. Then for z0 ∈ D
fixed , there exists ε > 0 such that for f = u + iv ∈ H(D) with f(z0) real
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and u(z) = Re f(z),
ε∫

0

rsMq
p (v, r) dr ≤ C

ε∫
0

rsMq
p (u, r) dr.

Here, and later, C,C1, C2, . . . always denote positive constants, not nec-
essarily the same at each occurrence; they are independent of the functions
being considered.

The research leading to the results in this article was motivated by the
results in [3, 12, 15] and especially in [9]. On the other hand, we can find that
the results of those papers, together with their proofs, depend strongly on
the homogeneity and the Bergman kernel of B (or D). A bounded domain
D with C∞ boundary need not be homogeneous and little is known about
the Bergman kernel in this case. Therefore our theory will be more subtle.

This paper is organized as follows. In Section 2 some preliminaries are
given. Theorems 1 and 2 will be proved in Section 3. In Section 4, we deal
with pluriharmonic functions on D, from which Theorem 3 follows. In the
last section, Section 5, two applications of Theorems 1 and 2 are given, one
of them to the Bloch functions on strongly pseudoconvex domains.

2. Preliminaries. Recall that D = {z ∈ Cn : λ(z) < 0} is a bounded
domain with C∞ boundary, and Dr = {z ∈ D : λ(z) < −r}. For r ≥ 0
small enough and ξ ∈ ∂Dr, we write nξ for the unit inward normal vector
of ∂Dr at ξ. For z ∈ Dr the Euclidean distance from z to ∂Dr is denoted
by δr(z). δ0(z) is often written as δ(z) for short.

Lemma 1. There is a number ε > 0 so that for each ξ ∈ ∂Dr with
0 ≤ r ≤ ε, there are balls Bξ(ε) = {z ∈ Cn : |z − (ξ + εnξ)| < ε} and
B̃ξ(ε) = {z ∈ Cn : |z − (ξ − εnξ)| < ε} that satisfy

(i) B̃ξ(ε) ∩ Dr = {ξ},
(ii) Bξ(ε) ∩ (Cn \ Dr) = {ξ}.

Lemma 1 is an improved version of the known result on p. 289 of [6].
Because D has C∞ boundary, we have

(2.1) |∇λ(z)| ≥ C > 0

for z in some neighborhood of ∂D. Now Lemma 1 can be deduced from that
geometric fact directly.

Lemma 2. Let ε be as in Lemma 1, and 0 ≤ r ≤ ε. Then for ξ ∈ ∂Dr

and ζ ∈ Dr,

(2.2) Pr(ζ, ξ) ≤ C
δr(ζ)

|ζ − ξ|2n
,



216 Z. J. HU

where Pr(·, ·) is the Poisson kernel of Dr and C is independent of r, ξ, and ζ.

P r o o f. It is well known that

(2.3) P0(ζ, ξ) ≤ C
δ0(ζ)

|ζ − ξ|2n
(ξ ∈ ∂D, ζ ∈ D).

This inequality is most conveniently obtained by comparing the explicitly
known Poisson kernel for the exterior of a ball tangent to ∂D at ξ (see [11,
p. 2; 6, pp. 290–291] for the details). Meanwhile, a careful check shows that
the constant C on the right side of (2.3) depends only on the radius of the
ball which lies in the exterior of D and is tangent to ∂D. Hence we have
(2.2) from Lemma 1.

Lemma 3. Let ε be as in Lemma 1. Then for 0 < r < % ≤ ε,∫
∂D%

Pr(ζ, ξ) dσ%(ζ) ≤ C (ξ ∈ ∂Dr).

P r o o f. By (2.1) we get

1
C

(−λ(ζ)− r) ≤ δr(ζ) ≤ C(−λ(ζ)− r) (ζ ∈ Dr).

Hence
1
C

(%− r) ≤ δr(ζ) ≤ C(%− r) (ζ ∈ ∂D%).

Since D has smooth boundary, it is an elementary fact that∫
∂D%∩{ζ:|ζ−ξ|<t}

dσ%(ζ) ≤ Ct2n−1,

where C is independent of ξ and %. Then for ξ ∈ ∂Dr, Lemma 2 gives∫
∂D%

Pr(ζ, ξ) dσ%(ζ)

≤ C
{ ∫

∂D%∩{ζ:|ζ−ξ|<2(%−r)}

+
∞∑

k=2

∫
∂D%∩{ζ:2k−1(%−r)≤|ζ−ξ|<2k(%−r)}

} δr(ζ)
|ζ − ξ|2n

dσ%(ζ)

≤ C

{ ∫
∂D%∩{ζ:|ζ−ξ|<2(%−r)}

δr(ζ)1−2n dσ%(ζ)

+
∞∑

k=2

∫
∂D%∩{ζ:2k−1(%−r)≤|ζ−ξ|<2k(%−r)}

δr(ζ) dσ%(ζ)
[2k−1(%− r)]2n

}
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≤ C
{

(%− r)1−2n(%− r)2n−1

+
∞∑

k=2

(%− r)[2k−1(%− r)]−2n[2k(%− r)]2n−1
}

≤ C

{
1 +

∞∑
k=2

1
2k

}
.

This is the desired result.

Lemma 4. Let ε be as in Lemma 1. Then for 0 < r < % ≤ ε, 0 < p ≤ ∞,
and f continuous with |f |min(1,p) subharmonic in D,

(2.4) Mp(f, %) ≤ CMp(f, r).

P r o o f. That (2.4) is valid for p = ∞ is obvious. We assume 0 < p < ∞.
Since |f |p is subharmonic in Dr and continuous on Dr, by the reproducing
property of the Poisson kernel, we get

|f(ζ)|p ≤
∫

∂Dr

|f(ξ)|pPr(ζ, ξ) dσr(ξ) (ζ ∈ Dr).

Now Lemma 3 gives

Mp
p (f, %) =

∫
∂D%

|f(ζ)|p dσ%(ζ)

≤
∫

∂Dr

|f(ξ)|p dσr(ξ)
∫

∂D%

Pr(ζ, ξ) dσ%(ζ)

≤ C
∫

∂Dr

|f(ξ)|p dσr(ξ) = CMp
p (f, r).

For r > 0 sufficiently small, α > 1, and z ∈ ∂Dr, as in [6, p. 297] we set

Γr,α(z) = {w ∈ Dr : |w − z| < αδr(w)}.

For f ∈ H(D) and z ∈ ∂Dr, define

f∗,α
1,r (z) := sup

w∈Γr,α(z)

|f(z)|.

Lemma 5. If α > 1 and r > 0 is sufficiently small , then for 0 < p < ∞
and f ∈ H(D),

(2.5) ‖f∗,α
1,r ‖

p
Lp(∂Dr) ≤ CMp

p (f, r),

where C depends on α but not on r.
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P r o o f. We know from [6, p. 304, (8.5.6)] that

‖f∗,α
1,r ‖

p
Lp(∂Dr) ≤ Cα,rM

p
p (f, r).

The only thing we should prove is that Cα,r can be chosen so as not to
depend on r. Analysing the corresponding results (8.4.4), (8.5.5), (8.5.6)
in [6] carefully, one can find that Cα,r depends only on the curvature of ∂Dr

and on the properties of the Poisson kernel Pr(·, ·) (see [6, pp. 290–291]).
Because D is a bounded domain with smooth boundary, we see that (2.5)
is exactly valid if r > 0 is sufficiently small.

There are infinitely many defining functions of D. For two defining
functions λ1(z) and λ2(z), we use Dj

r and dσj
r to denote {z : λj(z) < −r}

and the surface measure on ∂Dj
r, j = 1, 2.

Lemma 6. Let λ1(z) and λ2(z) be two defining functions of D. There
are positive constants ε, c1 and c2 such that for 0 < r ≤ ε, 0 < p ≤ ∞, and
f ∈ H(D),

1
C

∫
∂D2

c1r

|f(ξ)|p dσ2
c1r(ξ) ≤

∫
∂D1

r

|f(ξ)|p dσ1
r(ξ) ≤ C

∫
∂D2

c2r

|f(ξ)|p dσ2
c2r(ξ).

P r o o f. As in the estimates of [6, p. 297], we have two positive constants
ε and λ so that if 0 < r < ε, then

(2.6)
∫

∂D2
r

|f(ξ)|p dσ2
r(ξ) ≤ Cr−1

∫
S(r)

|f(ξ)|p dm(ξ),

where S(r) = {z : −3r/λ2 ≤ λ1(z) ≤ −λ2r/3}. By Lemma 4,

r−1
∫

S(r)

|f(ξ)|p dm(ξ) ≤ Cr−1

3r/λ2∫
λ2r/3

d%
∫

∂D1
%

|f(ξ)|p dσ1
%(ξ)(2.7)

≤ C
∫

∂D1
λ2r/3

|f(ξ)|p dσ1
λ2r/3(ξ).

Now (2.6) and (2.7) imply∫
∂D2

r

|f(ξ)|p dσ2
r(ξ) ≤ C

∫
∂D1

λ2r/3

|f(ξ)|p dσ1
λ2r/3(ξ).

This immediately gives the conclusion of the lemma.

Lemma 7. For z0 ∈ D fixed , there exists L > 0 such that every z ∈ D
can be connected with z0 by a broken line which lies in D and has length less
than L.



ESTIMATES FOR INTEGRAL MEANS 219

P r o o f. By Lemma 1, we have r > 0 so that for ξ ∈ ∂D and 0 ≤ t ≤ 1,

(2.7∗) ξ + trnξ ∈ D and δ(ξ + trnξ) = tr.

Since D is a connected open subset of R2n, every z ∈ D can be connected
with z0 by some broken line Γ which lies in D. Set

L(z) = inf{length of Γ : Γ lies in D and connects z with z0}.

Obviously, L(z) is upper-semicontinuous (for the definition, we refer to [6]).
Hence L(z) is bounded above on the compact subset {z ∈ D : δ(z) ≥ r},
say

(2.8) L(z) < L− r whenever δ(z) ≥ r.

For z ∈ D, δ(z) < r, let ξ be a point on ∂D such that |ξ − z| = δ(z). Then
by (2.7∗), z and ξ + rnξ can be connected by a segment of length not more
than r. This and (2.8) give the conclusion of the lemma.

Lemma 8. If f is holomorphic in B(z, r) = {w ∈ Cn : |w− z| < r}, then
for 0 < p < ∞,

|∇f(z)|p ≤ Cr−(2n+p)
∫

B(z,r)

|f(w)|p dm(w),

where C is independent of r, f and ∇f(z) = (∂f/∂z1, . . . , ∂f/∂zn).

P r o o f. For f ∈ H(B(z, r)), define g(w) = f(z + rw), w ∈ B(0, 1).
From Lemma 2 of [9],

|∇g(0)|p ≤ C
∫

B(0,1)

|g(w)|p dm(w).

By a change of variables in the integral, we obtain

rp|∇f(z)|p ≤ Cr−2n
∫

B(z,r)

|f(w)|p dm(w).

This is the desired inequality.

Lemma 9. Let 1 ≤ k < ∞, s > −1, l > 0, and let h : (0, ε) → [0,∞) be
measurable. Then there exists a constant C independent of ε so that

(2.9)
ε∫

0

rs dr
{ ε∫

r

(%− r)l−1h(%) d%
}k

≤ C
ε∫

0

rs+klh(r)k dr.

P r o o f. The substitutions r = (1− u)ε and % = (1− t)ε give

(2.10)
ε∫

0

rs dr
{ ε∫

r

(%− r)l−1h(%) d%
}k



220 Z. J. HU

=
1∫

0

εs(1− u)sε du
{ ε∫

(1−u)ε

(%− (1− u)ε)l−1h(%) d%
}k

= εs+kl+1
1∫

0

(1− u)s du
{ u∫

0

(u− t)l−1h((1− t)ε) dt
}k

.

Similarly,

(2.11)
ε∫

0

rs+klh(r)k dr = εs+kl+1
1∫

0

(1− u)s+klh((1− u)ε)k du.

By inequality (9.2) of [2, p. 758],
1∫

0

(1− u)s du
{ u∫

0

(u− t)l−1h((1− t)ε) dt
}k

≤ C
1∫

0

(1− u)s+klh((1− u)ε)k du,

which combined with (2.10) and (2.11) proves (2.9).

Lemma 10. If β > 0, 0 < p < q < ∞, and h(t) is a positive continuous
function of t ∈ (0, 1) satisfying h(t1) ≤ Ch(t2) whenever 0 < t1 < t2 < 1,
then

(2.12)
{ 1∫

0

(1− t)βq−1h(t)q dt
}1/q

≤ C
{ 1∫

0

(1− t)βp−1h(t)p dt
}1/p

.

P r o o f. This lemma is an improved version of Lemma 8 of [9], with the
hypothesis “h(t) is nondecreasing” replaced by “h(t1) ≤ Ch(t2) whenever
0 < t1 < t2 < 1”. Imitating the proof of Lemma 5 of [8], we get

1∫
0

(1− t)βp−1h(t)p dt ≥
1∫

t

(1− t)βp−1h(t)p dt

≥ Ch(t)p(1− t)βp (t ∈ (0, 1)).
Then{ 1∫

0

(1− t)βq−1h(t)q dt
}1/q

≤ sup
0<t<1

{(1− t)βh(t)}(q−p)/q
{ 1∫

0

(1− t)βp−1h(t)p dt
}1/q

≤ C
{ 1∫

0

(1− t)βp−1h(t)p dt
}1/p

,

and (2.12) is proved.
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3. Proof of Theorems 1 and 2. To prove Theorems 1 and 2 for
any defining function, by Lemma 6 we need only prove they hold for some
defining function. Therefore we can take the defining function to be

(3.1) λ(z) =
{
−δ(z), z ∈ D,
δ(z), z 6∈ D.

P r o o f o f T h e o r e m 1. Let ε be as in Lemma 1. Suppose |α| = 1.
We have to prove

(3.2)
ε∫

0

rs+qMq
p (Dαf, r) dr ≤ C

ε∫
0

rsMq
p (f, r) dr

and

(3.3) sup
0<r≤ε

rs+1Mp(Dαf, r) ≤ C sup
0<r≤ε

rsMp(f, r).

If 0 < p < ∞, then by Lemma 8,

|∇f(z)|p ≤ Cδ(z)−(2n+p)
∫

B(z,δ(z)/2)

|f(w)|p dm(w).

Let χB(z,r) denote the characteristic function of B(z, r). Then

Mp
p (∇f, r) ≤ Cr−(2n+p)

∫
∂Dr

dσr(z)
∫

B(z,δ(z)/2)

|f(w)|p dm(w)

= Cr−(2n+p)
∫

∂Dr

dσr(z)
∫
D

χB(z,δ(z)/2)(w)|f(w)|p dm(w)

= Cr−(2n+p)
∫
D

|f(w)|p dm(w)
∫

∂Dr

χB(z,r/2)(w) dσr(z)

≤ Cr−(2n+p)
∫

−3r/2<λ(w)<−r/2

|f(w)|p dm(w)

×
∫

∂Dr

χB(w,r/2)(z) dσr(z).

But for −3r/2 < λ(w) < −r/2,∫
∂Dr

χB(w,r/2)(z) dσr(z) ≤ Cr2n−1.

Therefore

Mp
p (∇f, r) ≤ Cr−(p+1)

∫
−3r/2<λ(w)<−r/2

|f(w)|p dm(w)(3.4)

≤ Cr−(p+1)

3r/2∫
r/2

d%
∫

∂D%

|f(w)|p dσ%(w).
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To get the above inequality, we have used the “polar coordinates” (see
also [6]). Now Lemma 4 gives

(3.4∗) Mp
p (∇f, r) ≤ Cr−p

∫
∂Dr/2

|f(w)|p dσr/2(w).

If p = ∞, then by Lemma 7 and the maximum modulus principle,

|∇f(z)| ≤ Cδ(z)−1 sup
w∈B(z,δ(z)/2)

|f(w)|(3.5)

≤ Cr−1M∞(f, r/2) for z ∈ ∂Dr.

Combine (3.4∗) and (3.5) to obtain

(3.6) rMp(∇f, r) ≤ CMp(f, r/2) for 0 < p ≤ ∞.

Then we get

(3.7) rs+qMq
p (∇f, r) ≤ CrsMq

p (f, r/2)

for 0 < p ≤ ∞, 0 < q < ∞, and s > −1. Therefore
ε∫

0

rs+qMq
p (∇f, r) dr ≤ C

ε∫
0

rsMq
p (f, r/2) dr

≤ C
ε∫

0

rsMq
p (f, r) dr

and

sup
0<r≤ε

rs+1Mp(∇f, r) ≤ C sup
0<r≤ε

rsMp(f, r/2)(3.8)

≤ C sup
0<r≤ε

rsMp(f, r).

This proves (3.2) and (3.3).
The general case can be proved by induction. Theorem 1 is proved.

Recall that we have chosen the defining function (3.1). By Lemma 1, we
have ε > 0 so that ξ + rnξ ∈ ∂Dr for ξ ∈ ∂D and 0 < r ≤ ε. Now we define
the mapping

(3.9) τr,t : ∂Dr → ∂Dt, z 7→ π(z) + tnπ(z),

for 0 < t ≤ ε, where π(z) is the unique point on ∂D closest to z. Then τr,t

is one-to-one and the corresponding Jacobian Jr,t(z) satisfies

(3.10) C1 ≤ Jr,t(z) ≤ C2 (r, t ∈ (0, ε], z ∈ ∂Dr).

The following lemma will be needed in the proof of Theorem 2.
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Lemma 11. There exists ε > 0 so that for 0 < r ≤ ε and f ∈ H(D):
(a) If 1 ≤ p ≤ ∞, then

(3.11) Mp(f − f ◦ τr,ε, r) ≤ C(ε− r)
1∫

0

Mp(∇f, tr + (1− t)ε) dt.

(b) If 0 < p < 1, then

(3.12) Mp
p (f −f ◦ τr,ε, r) ≤ C(ε− r)p

1∫
0

(1− t)p−1Mp
p (∇f, tr +(1− t)ε) dt.

P r o o f. Let ε be as in Lemma 1. For z ∈ ∂Dr,

|f(z)− f ◦ τr,ε(z)| ≤
1∫

0

|∇f(tz + (1− t)τr,ε(z))| · |z − τr,ε(z)| dt

≤ (ε− r)
1∫

0

sup
z∈∂Dr

|∇f(tz + (1− t)τr,ε(z))| dt.

(a) If p = ∞, then

(3.13) M∞(f − f ◦ τr,ε, r) = sup
z∈∂Dr

|f(z)− f ◦ τr,ε(z)|

≤ (ε− r)
1∫

0

sup
z∈∂Dr

|∇f(tz + (1− t)τr,ε(z))| dt

= (ε− r)
1∫

0

M∞(∇f, tr + (1− t)ε) dt.

If 1 ≤ p < ∞, apply Minkowski’s inequality to get

Mp(f − f ◦ τr,ε, r)

≤ (ε− r)
{ ∫

∂Dr

dσr(z)
[ 1∫

0

|∇f(tz + (1− t)τr,ε(z))| dt
]p}1/p

≤ (ε− r)
1∫

0

dt
[ ∫

∂Dr

|∇f(tz + (1− t)τr,ε(z))|p dσr(z)
]1/p

.

Setting w = tz + (1− t)τr,ε(z) in the inner integral, by (3.10) we obtain

(3.14) Mp(f − f ◦ τr,ε, r)

≤ C(ε− r)
1∫

0

[ ∫
∂Dtr+(1−t)ε

|∇f(w)|p dσtr+(1−t)ε(w)
]1/p

dt.

Now (3.11) follows from (3.13) and (3.14).
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(b) If 0 < p < 1, set tk = 1 − 2−k. Applying the lemma on p. 57 of [1],
we get∫
∂Dr

|f(z)− f ◦ τr,ε(z)|p dσr(z)

≤ (ε− r)p
∫

∂Dr

[ ∞∑
j=1

tj∫
tj−1

|∇f(tz + (1− t)τr,ε(z))| dt
]p

dσr(z)

≤ (ε− r)p
∫

∂Dr

[ ∞∑
j=1

sup
tj−1≤t≤tj

|∇f(tz + (1− t)τr,ε(z))|(tj − tj−1)
]p

dσr(z)

≤ (ε− r)p
∫

∂Dr

∞∑
j=1

sup
tj−1≤t≤tj

|∇f(tz + (1− t)τr,ε(z))|p2−pj dσr(z)

≤ C(ε− r)p
∫

∂Dr

∞∑
j=1

|(∇f)∗,10
1,tjr+(1−tj)ε

(tjz + (1− tj)τr,ε(z))|p2−pj dσr(z)

≤ C(ε− r)p
∞∑

j=1

2−pj
∫

∂Dtjr+(1−tj)ε

|(∇f)∗,10
1,tjr+(1−tj)ε

(w)|p dσtjr+(1−tj)ε(w).

Applying Lemma 5 to ∂f/∂zj (j = 1, . . . , n), we find that

Mp
p (f − f ◦ τr,ε, r) ≤ C(ε− r)p

∞∑
j=1

2−pjMp
p (∇f, tjr + (1− tj)ε).

Using the same method as that on p. 628 of [9], and Lemma 4, we get (3.12).
The lemma is proved.

P r o o f o f T h e o r e m 2. Let us first deal with m = 1. For ε > 0
small enough, it is sufficient to prove

(3.15)
ε∫

0

rsMq
p (f, r) dr ≤ C

{
|f(z0)|q +

ε∫
0

rs+qMq
p (∇f, r) dr

}
.

This will be a trivial consequence of the following two inequalities:

(3.16)
ε∫

0

rsMq
p (f − f ◦ τr,ε, r) dr ≤ C

ε∫
0

rs+qMq
p (∇f, r) dr

and

(3.17) sup
z∈Dε

|f(z)− f(z0)|q ≤ C
ε∫

0

rs+qMq
p (∇f, r) dr.
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In fact,
ε∫

0

rsMq
p (f, r) dr ≤ C

{ ε∫
0

rsMq
p (f − f ◦ τr,ε, r) dr

+ sup
z∈D\Dε

|f ◦ τr,ε(z)− f(z0)|q + |f(z0)|q
}

≤ C
{
|f(z0)|q +

ε∫
0

rs+qMq
p (∇f, r) dr

}
.

The proof of (3.16) will be divided into four steps.

C a s e 1: 1 ≤ p ≤ ∞ and q ≥ 1. By Lemma 11, we have ε > 0 such that
ε∫

0

rsMq
p (f − f ◦ τr,ε, r) dr ≤ C

ε∫
0

rs
[ 1∫

0

(ε− r)Mp(∇f, tr +(1− t)ε) dt
]q

dr.

Setting % = tr + (1− t)ε in the inner integral gives
ε∫

0

rsMq
p (f − f ◦ τr,ε, r) dr ≤ C

ε∫
0

rs
[ ε∫

r

Mp(∇f, %) d%
]q

dr.

Taking l = 1, k = q, and h(r) = Mp(∇f, r) in Lemma 9 gives (3.16).

C a s e 2: 1 ≤ p ≤ ∞ and 0 < q < 1. Taking β = 1 and h(t) =
Mp(∇f, tr + (1− t)ε) in Lemma 10 gives{ 1∫

0

(1− t)p−1Mp
p (∇f, tr + (1− t)ε) dt

}1/p

≤ C
{ 1∫

0

(1− t)q−1Mq
p (∇f, tr + (1− t)ε) dt

}1/q

.

Hence Lemma 11 yields

Mq
p (f − f ◦ τr,ε, r) ≤ C(ε− r)q

{ 1∫
0

(1− t)q−1Mq
p (∇f, tr + (1− t)ε) dt

}
.

Setting % = tr + (1− t)ε in the integral shows that
1∫

0

(1− t)q−1Mq
p (∇f, tr +(1− t)ε) dt = (ε− r)−q

ε∫
r

(%− r)q−1Mq
p (∇f, %) d%.

Thus

Mq
p (f − f ◦ τr,ε, r) ≤ C

ε∫
r

(%− r)q−1Mq
p (∇f, %) d%.
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Now by Lemma 9 again we get
ε∫

0

rsMq
p (f − f ◦ τr,ε, r) dr ≤ C

ε∫
0

rs
[ ε∫

r

(%− r)q−1Mq
p (∇f, %) d%

]
dr

≤ C
ε∫

0

rs+qMq
p (∇f, r) dr.

C a s e 3: 0 < p < 1 and p ≥ q. Lemma 11 gives

Mq
p (f − f ◦ τr,ε, r) ≤ C(ε− r)q

[ 1∫
0

(1− t)p−1Mp
p (∇f, tr + (1− t)ε) dt

]q/p

.

As in Case 2, by Lemma 10 we get

Mq
p (f − f ◦ τr,ε, r) ≤ C(ε− r)q

1∫
0

(1− t)pq/p−1Mpq/p
p (∇f, tr + (1− t)ε) dt

= C
ε∫

r

(%− r)q−1Mq
p (∇f, %) d%.

Now (3.16) follows as in Case 2.
C a s e 4: 0 < p < 1 and p < q. By Lemma 11 and Lemma 9,

ε∫
0

rsMq
p (f − f ◦ τr,ε, r) dr

≤ C
ε∫

0

rs(ε− r)q
[ 1∫

0

(1− t)p−1Mp
p (∇f, tr + (1− t)ε) dt

]q/p

dr

= C
ε∫

0

rs
[ ε∫

r

(%− r)p−1Mp
p (∇f, %) d%

]q/p

dr

≤ C
ε∫

0

rs+pq/pMpq/p
p (∇f, r) dr.

Thus (3.16) is proved.

Now for fixed z0 we prove (3.17). Without loss of generality we may
assume z0 ∈ Dε. Applying Lemma 7 to the domain Dε (if ε > 0 is small
enough, Dε has C∞ boundary), we have L > 0 so that any z and z0 in
Dε can be connected by some broken line Γ (t) (0 ≤ t ≤ 1, Γ (0) = z0 and
Γ (1) = z) in Dε, with length ≤ L. Then

(3.18) |f(z)− f(z0)| =
∣∣∣ 1∫
0

(∇f)(Γ (t)) · Γ ′(t) dt
∣∣∣ ≤ L sup

z∈Dε

|∇f(z)|.
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Since |∇f |p is “plurisubharmonic”, we have some z′ ∈ ∂Dε/2 so that

(3.19) sup
z∈Dε

|∇f(z)| ≤ C|∇f(z′)|

≤ C
{
|B(z′, ε/4)|−1

∫
B(z′,ε/4)

|∇f(w)| dm(w)
}1/p

≤ CMp(∇f, ε/4) ≤ C
{ ε/4∫

ε/8

rs+qMp
p (f, r) dr

}1/q

.

To derive the last two inequalities above we have applied Lemma 4 to func-
tions ∂f/∂zj for j = 1, . . . , n. Inequality (3.17) now follows from (3.18)
and (3.19).

For m = 2, applying (3.15) twice, we have
ε∫

0

rsMq
p (f, r) dr ≤ C

{
|f(z0)|q +

ε∫
0

rs+qMq
p (∇f, r) dr

}

≤ C

{
|f(z0)|q +

n∑
j=1

ε∫
0

rs+qMq
p

(
∂f

∂zj
, r

)
dr

}

≤ C

{
|f(z0)|q +

n∑
j=1

∣∣∣∣ ∂f

∂zj
(z0)

∣∣∣∣q

+
n∑

j=1

ε∫
0

rs+2qMq
p

(
∇

(
∂f

∂zj

)
, r

)
dr

}

≤ C
{ ∑
|α|<2

|Dαf(z0)|q +
∑
|α|=2

ε∫
0

rs+2qMq
p (Dαf, r) dr

}
.

As in Theorem 1, the general case can be proved by induction. The proof
of Theorem 2 is complete.

Relating to (1.1) in Theorem 1 we have the following:

Theorem 4. Let 0 < p ≤ ∞ and s > 0. Then for z0 ∈ D fixed and
m ∈ N, there exists ε > 0 such that for f ∈ H(D),

sup
0<r≤ε

rsMp(f, r) ≤ C
{ ∑
|α|<m

|Dαf(z0)|+
∑
|α|=m

sup
0<r≤ε

rs+mMp(Dαf, r)
}

.

P r o o f. For m = 1 it suffices to prove

(3.20) sup
0<r≤ε

rsMp(f − f ◦ τr,ε, r) ≤ C sup
0<r≤ε

rs+1Mp(∇f, r),
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and

(3.21) sup
z∈Dε

|f(z)− f(z0)| ≤ C sup
0<r≤ε

rs+1Mp(∇f, r)

for ε > 0 small enough. (3.21) is almost trivial (see also (3.18)). To prove
(3.20), we consider two cases.

C a s e 1: 1 ≤ p ≤ ∞. By Lemma 11, we have ε > 0 such that for
f ∈ H(D),

Mp(f − f ◦ τr,ε, r) ≤ C
ε∫

r

Mp(∇f, t) dt

≤ C( sup
0<r≤ε

rs+1Mp(∇f, r))
ε∫

r

t−(s+1) dt

≤ C( sup
0<r≤ε

rs+1Mp(∇f, r))r−s.

This gives (3.20).

C a s e 2: 0 < p < 1. By Lemma 11 again,

(3.22) Mp
p (f − f ◦ τr,ε, r)

≤ C
ε∫

r

(%− r)p−1Mp
p (∇f, %) d%

≤ C( sup
0<r≤ε

rs+1Mp(∇f, r))p
ε∫

r

(%− r)p−1%−(s+1)p d%.

Integration by parts gives

(3.23)
ε∫

r

(%− r)p−1%−(s+1)p d% ≤ Cr−sp.

From (3.22) and (3.23), (3.20) follows.
For m > 1, the conclusion can be proved by induction. The proof is

complete.

4. Pluriharmonic conjugates. It is well known that if f ∈ H(D) then
both u = Re f and v = Im f are pluriharmonic in D and v is the plurihar-
monic conjugate of u. Conversely, if D is simply connected [4, p. 311], then
every pluriharmonic function on D is the real part of a holomorphic function
[14, p. 44]. In [12], Stoll proved the following:

Theorem A. Let f = u + iv be holomorphic in B, the unit ball of Cn,
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with f(0) real. Then for 1 ≤ p ≤ ∞, 0 < q < ∞, and s > −1,

1∫
0

(1− r)sMq
p (v, r) dr ≤ C

1∫
0

(1− r)sMq
p (u, r) dr.

In [8], Shi generalized this theorem to bounded symmetric domains of Cn.
Restricting himself to the unit ball of Cn, Shi proved in [9] that Theorem A
is still valid for 0 < p < 1. In both [9, 10] Shi mentioned the problem
whether Theorem A holds on arbitrary bounded symmetric domains for
all possible p ∈ (0,∞]. We have solved this problem affirmatively in [5].
Theorem 3 shows that Theorem A can be generalized in another direction;
that is, B can be replaced by any bounded domain D with C∞ boundary
for all p ∈ (0,∞].

P r o o f o f T h e o r e m 3. First, we prove that for some ε > 0,

(4.1)
ε∫

0

rs+qMq
p (∇f, r) dr ≤ C

ε∫
0

rsMq
p (u, r) dr.

The proof of this inequality uses the same approach as in the proof of The-
orem 1. Four cases will be considered.

C a s e 1: 0 < p = q < ∞. Similarly to Lemma 8, we know from formula
(35) of [9] that

(4.2) |∇f(z)|p ≤ Cδ(z)−(2n+p)
∫

B(z,δ(z)/2)

|u(w)|p dm(w).

Since r/C ≤ δ(z) ≤ Cr for r small enough and z ∈ ∂Dr, we have positive
constants c1, c2 (we may assume c1 < 1 < c2) independent of r so that⋃

z∈∂Dr

B(z, δ(z)/2) ⊂ {w : −c2r ≤ λ(w) ≤ −c1r}.

Therefore

(4.3)
∫

∂Dr

|∇f(z)|p dσr(z)

≤ Cr−(2n+p)
∫

∂Dr

dσr(z)
∫

B(z,δ(z)/2)

|u(w)|p dm(w)

≤ Cr−(2n+p)
∫

∂Dr

dσr(z)
∫

−c2r≤λ(z)≤−c1r

|u(w)|pχB(z,δ(z)/2)(w) dm(w)

= Cr−(2n+p)
∫

−c2r≤λ(z)≤−c1r

|u(w)|p dm(w)
∫

∂Dr

χB(z,δ(z)/2)(w) dσr(z)
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≤ Cr−(2n+p)+(2n−1)
c2r∫

c1r

d%
∫

∂D%

|u(w)|p dσ%(w).

Then for some ε > 0,

ε/c2∫
0

rs+pMp
p (∇f, r) dr ≤ C

ε/c2∫
0

rs−1dr
c2r∫

c1r

d%
∫

∂D%

|u(w)|p dσ%(w)(4.4)

≤ C
ε∫

0

d%
∫

∂D%

|u(w)|p dσ%(w)
%/c1∫

%/c2

rs−1 dr

= C
ε∫

0

%sMp
p (u, %) d%.

By the plurisubharmonicity of |∇f |p, Mp(∇f, r) ≤ CMp(∇f, %) whenever
0 < % < r ≤ ε. Then

(4.5)
ε∫

ε/c2

rs+qMp
p (∇f, r) dr ≤ C

ε/c2∫
0

rs+qMp
p (∇f, r) dr.

Combine (4.4) and (4.5) to get (4.1).

C a s e 2: 0 < q < p < ∞. As in Case 1,

|∇f(z)| ≤ Cδ(z)−(2n+q)/q
{ ∫

B(z,δ(z)/2)

|u(w)|q dm(w)
}1/q

.

Then{ ∫
∂Dr

|∇f(z)|pdσr(z)
}q/p

≤ Cr−(2n+q)
{ ∫

∂Dr

dσr(z)
[ ∫

B(z,δ(z)/2)

|u(w)|qdm(w)
]p/q}q/p

≤Cr−(2n+q)
{ ∫

∂Dr

dσr(z)
[ c2r∫

c1r

d%
∫

∂D%

|u(w)|qχB(z,δ(z)/2)(w)dσ%(w)
]p/q}q/p

.

Minkowski’s inequality implies the above is not more than

Cr−(2n+q)
c2r∫

c1r

d%
{ ∫

∂Dr

dσr(z)
[ ∫

∂D%

|u(w)|qχB(z,δ(z)/2)(w) dσ%(w)
]p/q}q/p

.
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Using the Hölder inequality in the inner integral with exponents p/q and
p/(p− q), we get

Mq
p (∇f, r) ≤ Cr−(2n+q)

c2r∫
c1r

d%
{ ∫

∂Dr

dσr(z)
[ ∫

∂D%

(|u(w)|qχB(z,δ(z)/2)(w))

× (χB(z,δ(z)/2)(w)) dσ%(w)
]p/q}q/p

≤ Cr−(2n+q)
c2r∫

c1r

d%
{ ∫

∂Dr

dσr(z)

×
[ ∫

∂D%

|u(w)|pχB(z,δ(z)/2)(w) dσ%(w)
]

×
[ ∫

∂D%

χB(z,δ(z)/2)(w) dσ%(w)
](p−q)/q}q/p

≤ Cr−(2n+q)+(2n−1)(p−q)/p
c2r∫

c1r

d%
{ ∫

∂Dr

dσr(z)

×
∫

∂D%

|u(w)|pχB(z,δ(z)/2)(w) dσ%(w)
}q/p

= Cr−(2n+q)+(2n−1)(p−q)/p
c2r∫

c1r

d%
{ ∫

∂D%

|u(w)|p dσ%(w)

×
∫

∂Dr

χB(z,δ(z)/2)(w) dσr(z)
}q/p

≤ Cr−(q+1)
c2r∫

c1r

Mq
p (u, %) d%.

From this we obtain, as in Case 1,

ε/c2∫
0

rs+qMq
p (∇f, r) dr ≤ C

ε∫
0

%sMq
p (u, %) d%,

and then (4.1) follows.

C a s e 3: 0 < p < q < ∞. By (4.3) and the Hölder inequality with
exponents q/p and q/(q − p),

Mq
p (∇f, r) ≤ C

{
r−(p+1)

c2r∫
c1r

d%
∫

∂D%

|u(w)|p dσ%(w)
}q/p
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= Cr−(q+q/p)
{ c2r∫

c1r

d%
∫

∂D%

|u(w)|p dσ%(w)
}q/p

≤ Cr−(q+q/p)
{ c2r∫

c1r

d%
[ ∫

∂D%

|u(w)|p dσ%(w)
]q/p}

×
{ c2r∫

c1r

d%
} q−p

q · q
p

≤ Cr−(q+1)
c2r∫

c1r

Mq
p (u, %) d%.

C a s e 4: p = ∞, 0 < q < ∞. By (4.2) and the plurisubharmonicity of
|u(z)|,

|∇f(z)| ≤ Cδ(z)−(2n+1)
∫

B(z,δ(z)/2)

|u(w)| dm(w)

≤ Cδ(z)−1 max
w∈B(z,δ(z)/2)

|u(w)|

≤ Cr−1 max
−c2r≤λ(w)≤−c1r

|u(w)| (whenever z ∈ ∂Dr)

≤ Cr−1M∞(u, c1r).

This implies
ε∫

0

rs+qMq
∞(∇f, r) dr ≤ C

ε∫
0

rsMq
∞(u, c1r) dr

≤ C
c1ε∫
0

%sMq
∞(u, %) d%

≤ C
ε∫

0

%sMq
∞(u, %) d%.

The proof of (4.1) is complete.

Furthermore, by Theorem 2,

(4.6)
ε∫

0

rsMq
p (f, r) dr ≤ C

{
|f(z0)|q +

ε∫
0

rs+qMq
p (∇f, r) dr

}
.

We can also fix ε so small that z0 ∈ Dε. Then

(4.7) |f(z0)|q = |u(z0)|q ≤ Mq
∞(u, ε) ≤ C

ε∫
0

rsMq
p (u, r) dr.
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Therefore from (4.1), (4.6), and (4.7) we get
ε∫

0

rsMq
p (v, r) dr ≤ C

ε∫
0

rsMq
p (f, r) dr ≤ C

ε∫
0

rsMq
p (u, r) dr.

The theorem is proved.

R e m a r k. In the proof of Theorems 1 and 2, we have actually proved
that for 0 < p ≤ ∞, s > 0, m ∈ N, and f ∈ H(D),

Mp(f, r) = O(rs) iff
∑
|α|=m

Mp(Dαf, r) = O(rs+m).

Then, the proof of Theorem 3 tells us that for f = u + iv,

Mp(u, r) = O(rs) iff Mp(v, r) = O(rs).

5. Applications. The first application is to get a generalization of the
following theorem.

Theorem B. Let m be a positive integer and f ∈ H(B). Then f ∈
Lp(dm) for 0 < p < ∞ iff the functions (1 − |z|2)m(Dαf)(z) with |α| = m
are in Lp(dm).

For 1 ≤ p < ∞, Theorem B was first proved by Zhu (see [15]). In [9],
Shi gave a proof for all p ∈ (0,∞). To state our result precisely, we need
some notation. Recall that D is a bounded domain with C∞ boundary, and
λ(z) is its defining function. Let z0 ∈ D be fixed, and 0 < p < ∞. Set

(Tαf)(z) = (−λ(z))|α|(Dαf)(z),

‖f‖m,p =
∑
|α|<m

|(Dαf)(z0)|+
∑
|α|=m

‖Tαf‖p,

where ‖Tαf‖p = {
∫
D |Tαf |p(z) dm(z)}1/p.

Theorem 5. Let z0 ∈ D be fixed , 0 < p < ∞, and m ∈ N. Then for
f ∈ H(D), we have f ∈ Lp(dm) iff all functions Tαf with |α| = m are in
Lp(dm). Furthermore, ‖f‖p and ‖f‖p,m are equivalent.

The expression “A and B are equivalent” (denoted by A ∼ B) means
A/C ≤ B ≤ CB for some positive constant C.

Before proving the theorem, we first prove the following lemma:

Lemma 12. Let 0 < p < ∞ and s > −1. Then for f ∈ H(D), f ∈
Lp(|λ(z)|sdm) iff for some ε > 0,

ε∫
0

rsMp
p (f, r) dr < ∞.
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Moreover , {
∫
D |f(z)|p|λ(z)|sdm(z)}1/p and {

∫ ε

0
rsMp

p (f, r) dr}1/p are equiv-
alent.

P r o o f. Let ε > 0 be fixed and small enough. Using polar coordinates
(as in [7, p. 160]) we obtain

(5.1)
∫

D\Dε

|f(z)|p|λ(z)|s dm(z) =
ε∫

0

∫
∂Dr

|f(z)|p|λ(z)|sw(r, z) dσr(z) dr

∼
ε∫

0

∫
∂Dr

|f(z)|p|λ(z)|s dσr(z) dr

=
ε∫

0

rsMp
p (f, r) dr,

where w(r, z) is a C1 function and 1/C ≤ w(r, z) ≤ C. This implies

(5.2)
∫
D

|f(z)|p|λ(z)|s dm(z) ≥ C
ε∫

0

rsMp
p (f, r) dr.

On the other hand,

sup
z∈Dε

|f(z)|p ≤ CMp
p (f, ε/2) ≤ C

ε/2∫
ε/4

rsMp
p (f, r) dr ≤ C

ε∫
0

rsMp
p (f, r) dr.

Then

(5.3)
∫
D

|f(z)|p|δ(z)|s dm(z)

=
{ ∫
D\Dε

+
∫
Dε

}
|f(z)|p|δ(z)|s dm(z)

≤ C
{ ∫
D\Dε

|f(z)|p|δ(z)|s dm(z) + sup
z∈Dε

|f(z)|p
}

≤ C
ε∫

0

rsMp
p (f, r) dr.

From (5.2) and (5.3) the lemma follows.

P r o o f o f T h e o r e m 5. We first assume f ∈ Lp(dm). Take p = q in
Theorem 1, and use Lemma 12, to obtain ε > 0 so that∫

D
|δ(z)|p|α||(Dαf)(z)|p dm(z) ≤ C

ε∫
0

rp|α|Mp
p (Dαf, r) dr
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≤ C
ε∫

0

Mp
p (f, r) dr ≤ C

∫
D

|f(z)|p dm(z).

This proves that Tαf ∈ Lp(dm) for any multi-index α and ‖Tαf‖p ≤ C‖f‖p.
Therefore ∑

|α|=m

‖Tαf‖p ≤ C‖f‖p,

and by the plurisubharmonicity of |Dαf |,∑
|α|<m

|(Dαf)(z0)| ≤ C
∑
|α|<m

‖Tαf‖p ≤ C‖f‖p.

That is,
‖f‖p,m ≤ C‖f‖p.

Next, suppose Tαf ∈ Lp(dm) for all α with |α| = m. Take p = q in
Theorem 2 and use Lemma 12 again to obtain

‖f‖p
p ≤ C

ε∫
0

Mp
p (f, r) dr

≤ C
{ ∑
|α|<m

|(Dαf)(z0)|p +
∑
|α|=m

ε∫
0

rp|α|Mp
p (Dαf, r) dr

}
≤ C

{ ∑
|α|<m

|(Dαf)(z0)|p +
∑
|α|=m

∫
D

|δ(z)|pm|(Dαf)(z)|p dm(z)
}

= C‖f‖p
p,m.

Theorem 5 is proved.

R e m a r k. Theorem 5 can of course be further generalized to the case
of weighted Bergman spaces. More precisely, one can prove the following
theorem.

Theorem 6. Let z0 ∈ D be fixed , 0 < p < ∞, s > −1, and m ∈ N.
Then for f ∈ H(D), we have f ∈ Lp(|λ(z)|sdm) iff all functions Tαf with
|α| = m are in Lp(|λ(z)|sdm). Furthermore,{ ∫
D

|f(z)|p|λ(z)|s dm(z)
}1/p

∼
∑
|α|<m

|(Dαf)(z0)|+
∑
|α|=m

{ ∫
D

|(Dαf)(z)|p|λ(z)|s+mp dm(z)
}1/p

.

The proof of Theorem 6 will be omitted here because it runs along the
same lines as that of Theorem 5.
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Our second application is to Bloch functions. For this purpose we restrict
D to be a bounded strongly pseudoconvex domain with C∞ boundary (for
the definition of strong pseudoconvexity we refer to [6]). A function f ∈
H(D) is called a Bloch function (denoted by f ∈ B(D)) if

‖f‖B(D) := sup
z∈D

|∇f(z)| · |λ(z)| < ∞.

An equivalent definition of Bloch functions can be found in [7].

Theorem 7. Let D be a bounded strongly pseudoconvex domain with
C∞ boundary , and m ∈ N. Then for f ∈ H(D), we have f ∈ B(D) iff all
functions Tαf with |α| = m are in L∞(dm). Moreover , for fixed z0 ∈ D,

(5.4) ‖f‖B(D) ∼
∑

1≤|α|<m

|(Dαf)(z0)|+
∑
|α|=m

‖Tαf‖∞.

P r o o f. To prove (5.4), it suffices to prove

‖ |(∇f)(z)|λ(z)‖∞ ∼
∑

1≤|α|<m

|(Dαf)(z0)|+
∑
|α|=m

‖Tαf‖∞,

or equivalently,

(5.5)
∑
|α|=1

‖Tαf‖∞ ∼
∑

1≤|α|<m

|(Dαf)(z0)|+
∑
|α|=m

‖Tαf‖∞.

Let ε > 0 be small enough. Then

sup
0<r≤ε

r|α|M∞(Dαf, r)

= sup
z∈D\Dε

|λ(z)||α||(Dαf)(z)| ≤ sup
z∈D

|λ(z)||α||(Dαf)(z)| = ‖Tαf‖∞

= sup
z∈D\Dε

|λ(z)||α||(Dαf)(z)|+ sup
z∈Dε

|λ(z)||α||(Dαf)(z)|

≤ sup
0<r≤ε

r|α|M∞(Dαf, r) + CM∞(Dαf, ε)

≤ C sup
0<r≤ε

r|α|M∞(Dαf, r).

Hence

(5.6) ‖Tαf‖∞ ∼ sup
0<r≤ε

r|α|M∞(Dαf, r).

For p = ∞ and s = 1, applying Theorems 1 and 4 to ∂f/∂zj (j = 1, . . . , n),
we get
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sup
0<r≤ε

rM∞

(
∂f

∂zj
, r

)
∼

∑
|α|<m−1

∣∣∣∣(Dα

(
∂f

∂zj

))
(z0)

∣∣∣∣ +
∑

|α|=m−1

sup
0<r≤ε

r1+|α|M∞

(
Dα

(
∂f

∂zj

)
, r

)
.

Summing over j from 1 to n gives

(5.7)
∑
|α|=1

sup
0<r≤ε

rM∞(Dαf, r)

∼
∑

1≤|α|<m

|(Dαf)(z0)|+
∑
|α|=m

sup
1<r≤ε

rmM∞(Dαf, r).

Now (5.6) and (5.7) imply (5.5). The proof is complete.
Theorem 7 is a generalization of Stroethoff’s results in [13].
Acknowledgements. The author expresses his deep gratitude to the
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