COLLOQUIUM MATHEMATICUM

1996

VOL. LXX

FASC. 1

COMPARISONS OF SIDON AND I₀ SETS

BҮ

L. THOMAS RAMSEY (HONOLULU, HAWAII)

Introduction. Let Γ be an arbitrary discrete abelian group. Sidon and I_0 subsets of Γ are interpolation sets in different but quite similar senses. In this paper we establish several similarities and one deeper connection:

(1) $B_d(E)$ and B(E) are isometrically isomorphic for finite $E \subset \Gamma$. $B_d(E) = \ell_{\infty}(E)$ characterizes I_0 sets E, and $B(E) = \ell_{\infty}(E)$ characterizes Sidon sets E. [In general, Sidon sets are distinct from I_0 sets. Within the group of integers \mathbb{Z} , the set $\{2^n\}_n \cup \{2^n + n\}_n$ is helsonian (hence Sidon) but not I_0 .]

(2) Both are F_{σ} in 2^{Γ} (as is also the class of finite unions of I_0 sets).

(3) There is an analog for I_0 sets of the sup-norm partition construction used with Sidon sets.

(4) A set E is Sidon if and only if there is some $r \in \mathbb{R}^+$ and positive integer N such that, for all finite $F \subset E$, there is some $H \subset F$ with $|H| \ge r|F|$ and H is an I_0 set of degree at most N. [Here |S| denotes the cardinality of S; two different but comparable definitions of degree for I_0 sets are given below.]

(5) If all Sidon subsets of \mathbb{Z} are finite unions of I_0 sets, the number of I_0 sets required is bounded by some function of the Sidon constant. This is also true in the category of all discrete abelian groups.

This paper leaves open this question: must Sidon sets be finite unions of I_0 sets?

Let G denote the (compact) dual group of Γ . In general, unspecified variables such as j and N denote positive integers. M(G) denotes the Banach algebra under convolution of bounded Borel measures on G; the norm in M(G) is the total mass norm. $M_d(G)$ denotes the Banach subalgebra of M(G) consisting of discrete measures. $b\Gamma$ denotes the Bohr compactification of Γ : $b\Gamma = \widehat{G}_d$, the dual of discretized G. Naturally, Γ is dense in $b\Gamma$. The almost periodic functions on Γ are exactly the functions which extend

[103]

¹⁹⁹¹ Mathematics Subject Classification: Primary 43A56.

Key words and phrases: Sidon, I_0 set, almost periodic function.

continuously to $b\Gamma$; they are also the uniform limits of the Fourier transforms of $\mu \in M_d(G)$ [18, p. 32]. For subsets $E \subset \Gamma$, this paper focuses on the relations among several function algebras on E: $B_d(E)$, B(E), AP(E), and $\ell_{\infty}(E)$. $B_d(E)$ is the space of restrictions to E of Fourier transforms $\hat{\mu}$ of $\mu \in M_d(G)$, with the following quotient norm:

$$||f||_{B_d(E)} = \inf\{||\mu|| \mid \mu \in M_d(G) \& \widehat{\mu}|_E = f\}.$$

B(E) is the space of restrictions to E of Fourier transforms $\hat{\mu}$ of $\mu \in M(G)$, with this quotient norm:

$$||f||_{B(E)} = \inf\{||\mu|| \mid \mu \in M(G) \& \widehat{\mu}|_E = f\}.$$

 $\ell_{\infty}(E)$ is the space of all bounded functions on E with the supremum norm; AP(E) is the closure in $\ell_{\infty}(E)$ of $B_d(E)$, and retains the supremum norm (cf. Lemma 1 of the Appendix). The following inclusions hold and are norm-decreasing:

(1)
$$B_d(E) \subset AP(E) \subset \ell_{\infty}(E)$$
 and $B_d(E) \subset B(E) \subset \ell_{\infty}(E)$.

In general, these inclusions are all strict. When Γ is infinite, equality is rare among all the subsets of Γ (measure zero in 2^{Γ}) but has been extensively studied. Condition (1) allows six possible equalities among the algebras $B_d(E)$, AP(E), $\ell_{\infty}(E)$, and B(E). Three of these equalities characterize special sets: Sidon ($B(E) = \ell_{\infty}(E)$; see [11]), I_0 sets ($AP(E) = \ell_{\infty}(E)$; see [6]), and helsonian ($B_d(E) = AP(E)$ by Proposition 2 of the Appendix). Kahane resolved one of the remaining possible equalities by proving that I_0 is equivalent to the formally stricter condition $B_d(E) = \ell_{\infty}(E)$ (see [7]); Kalton's proof of this is in the Appendix. It follows from Kahane's theorem that

$$I_0 \Rightarrow$$
 helsonian and $I_0 \Rightarrow$ Sidon.

By Proposition 3 of the Appendix, helsonian implies Sidon; thus

(2)
$$I_0 \Rightarrow \text{helsonian} \Rightarrow \text{Sidon}.$$

Bourgain resolved another possible equality by showing that $B_d(E) = B(E)$ implies that E is I_0 (see [1]). By Proposition 4 of the Appendix, B(E) = AP(E) implies that E is I_0 , thus disposing of the last possible equality. Example 5 of the Appendix proves that helsonian (Sidon) does not imply I_0 . It is unknown whether helsonian (Sidon) sets must be a finite union of I_0 sets [5]. Also unknown is whether Sidon sets must be helsonian. Concerning this last question, there is this theorem by Ramsey: if a Sidon subset of the integers \mathbb{Z} clusters at any member of \mathbb{Z} in $b\mathbb{Z}$, then there is a Sidon set which is dense in $b\mathbb{Z}$ and hence clearly not helsonian [15].

Among the four algebras $B_d(E)$, B(E), AP(E) and $\ell_{\infty}(E)$, two inclusion relations remain to be explored: $B(E) \subset AP(E)$ and $AP(E) \subset B(E)$. If Γ is an abelian group of bounded order, $B(E) \subset AP(E)$ implies that E is I_0 (see [17]). (In [17], a hypothesis which is formally weaker than $B(E) \subset AP(E)$ is shown to be sufficient to make E be I_0 .) No work has been reported on $AP(E) \subset B(E)$.

Sidon and I_0 sets are F_{σ} in 2^{Γ} . David Grow proved that, for finite subsets E of \mathbb{Z} , $B(E) = B_d(E)$ isometrically [5]. As he rightly concludes, "one cannot determine whether a Sidon set E is a finite union of I_0 sets merely by examining the norms of interpolating discrete measures". This theorem generalizes to Γ (indeed to the dual object of any compact topological group).

THEOREM 1. The algebras $B_d(E)$ and B(E) are isometric for finite subsets E of a discrete abelian group Γ .

Proof. Let E be given and $\varepsilon \in \mathbb{R}^+$. Let $f \in B(E)$ and $\mu \in M(G)$ such that $\widehat{\mu}|_E = f$ and $\|\mu\| \leq (1 + \varepsilon) \|f\|_{B(E)}$. There exists a neighborhood U of $0 \in G$ such that

$$g \in U$$
 implies $(\forall x \in E) \left(|x(g) - 1| < \varepsilon' = \frac{\varepsilon}{\|\mu\| + 1} \right).$

Since G is compact and $\{g + U \mid g \in G\}$ is an open covering of G, there is a finite set $G' = \{g_1, \ldots, g_n\}$ such that $\{g + U \mid g \in G'\}$ covers G. Let $E_1 = g_1 + U$; for j > 1 set $E_j = (g_j + U) \setminus (\bigcup_{i < j} E_i)$. Then G is the disjoint union of the E_i 's. Let $\nu = \sum_{j=1}^n \mu(E_j) \delta_{g_j}$. Then

$$\|\nu\| = \sum_{j=1}^{n} |\mu(E_j)| \le \|\mu\| \le (1+\varepsilon) \|f\|_{B(E)}.$$

Also, for $x \in E$, with $|\mu|$ denoting the total variation measure for μ ,

$$\begin{aligned} |\widehat{\nu}(x) - f(x)| &= |\widehat{\nu}(x) - \widehat{\mu}(x)| = \Big| \sum_{j=1}^{n} \Big[\mu(E_j)x(-g_j) - \int_{E_j} x(-g) \, d\mu(g) \Big] \\ &= \Big| \sum_{j=1}^{n} \int_{E_j} \left[x(-g_j) - x(-g) \right] d\mu(g) \Big| \\ &\leq \sum_{j=1}^{n} \int_{E_j} \left| x(-g_j) - x(-g) \right| d|\mu|(g) \\ &\leq \sum_{j=1}^{n} \int_{E_j} \left| x(g - g_j) - 1 \right| d|\mu|(g) \leq \sum_{j=1}^{n} \varepsilon' |\mu|(E_j) = \varepsilon' ||\mu|| < \varepsilon \end{aligned}$$

By the previous paragraph, there is a sequence of discrete measures ν_j such that $\|\nu_j\| \leq (1+1/j) \|f\|_{B(E)}$ and $\|\hat{\nu}_j|_E - f\|_{\infty} \leq (1/j)$. Thus $\hat{\nu}_j|_E$ converges to f in $\ell_{\infty}(E)$. By [16, p. 222] any finite subset of Γ is an I_0 set. By Theorem 7 of the Appendix, the $\ell_{\infty}(E)$ and $B_d(E)$ norms are equivalent: there is a constant K such that, for all $g \in \ell_{\infty}(E)$,

$$\|g\|_{B_d(E)} \le K \|g\|_{\infty}.$$

Thus $\hat{\nu}_j|_E$ converges to f in $B_d(E)$, and hence

 $||f||_{B_d(E)} = \lim_{j \to \infty} ||\widehat{\nu}_j|_E ||_{B_d(E)} \le \limsup_{j \to \infty} ||\nu_j|| \le ||f||_{B(E)}.$

That proves isometry, since $||f||_{B_d(E)} \leq ||f||_{B(E)}$ always holds.

There is a more elementary way to see this, without using [16]. Since E is finite, $B_d(E)$ is a finite-dimensional vector subspace of $\ell_{\infty}(E)$. Due to the finite-dimensionality of $B_d(E)$, $B_d(E)$ is a closed subspace of $\ell_{\infty}(E)$ and norm equivalence holds for $g \in B_d(E)$. Since $\hat{\nu}_j$ is from $B_d(E)$ and converges to $f \in \ell_{\infty}(E)$, the closedness of $B_d(E)$ puts f in $B_d(E)$. By the norm equivalence, $\hat{\nu}_j$ converges to f in $B_d(E)$, and the rest of the proof is valid.

Sidon sets are "finitely describable" by norm comparisons. Following [11], the Sidon constant of a set $E \subset \Gamma$ is the minimum constant $\alpha(E) \geq 0$ such that, for all $f \in \ell_{\infty}(E)$, $\|f\|_{B(E)} \leq \alpha(E)\|f\|_{\infty}$. As in [11], this is the same minimum constant such that $\|\tau\|_{A(G)} \leq \alpha(E)\|\tau\|_{C(G)}$ for all $\tau \in \operatorname{Trig}_{E}(G)$, the trigonometric polynomials on G with spectrum in E. This is true because, viewing $\operatorname{Trig}_{E}(G)$ as a closed subspace of C(G), one has $\operatorname{Trig}_{E}(G)^{*} = B(E)$ (isometrically) while A(G) is isometric to $\ell_{1}(\Gamma)$ and hence $A(G)^{*}$ is isometric to $\ell_{\infty}(\Gamma)$.

It follows that

(3)
$$E_1 \subset E_2 \quad \text{implies} \quad \alpha(E_1) \le \alpha(E_2)$$

and that

(4)
$$\alpha(E) = \sup\{\alpha(F) \mid F \subset E \& F \text{ is finite}\}.$$

These observations lead to the next lemma:

LEMMA 2. Let $S_r = \{E \subset \Gamma \mid \alpha(E) \leq r\}$. Then S_r is closed in 2^{Γ} .

Proof. In this proof, we identify $A \subset \Gamma$ with $\chi_A \in 2^{\Gamma}$. Let E_{β} be a net in S_r which converges to $E \subset \Gamma$. Let F be any finite subset of E. Because the convergence in 2^{Γ} is pointwise, there is some β_0 for which $\beta \geq \beta_0$ implies $F \subset F_{\beta}$. By (3) above, $\alpha(F) \leq \alpha(F_{\beta}) \leq r$. Since this holds for all finite $F \subset E$, $\alpha(E) \leq r$ by (4) above.

PROPOSITION 3. For discrete abelian groups Γ , the class of Sidon sets is an F_{σ} subset of 2^{Γ} : it is $\bigcup_{n} S_{n}$ with S_{n} as in Lemma 2.

David Grow's theorem makes clear that only making norm comparisons will not extend Proposition 3 to I_0 sets. The following definition provides appropriate tools.

DEFINITION. Let D(N) denote the set of discrete measures μ on G for which

$$\mu = \sum_{j=1}^{N} c_j \delta_{t_j},$$

where $|c_j| \leq 1$ and $t_j \in G$ for each j. For $E \subset \Gamma$ and $\delta \in \mathbb{R}^+$, let $AP(E, N, \delta)$ be the set of $f \in \ell_{\infty}(E)$ for which there exists $\mu \in D(N)$ such that

$$\|f - \widehat{\mu}|_E\|_{\infty} \le \delta.$$

E is said to be $I(N, \delta)$ if the unit ball in $\ell_{\infty}(E)$ is a subset of $AP(E, N, \delta)$. Further, N(E), the I_0 degree of a set *E*, is the minimum *m* for which *E* is I(m, 1/2) if such an *m* exists, and ∞ otherwise. [By Theorem 7 of the Appendix, *E* is I_0 if and only $N(E) < \infty$.]

The analog of condition (3) is immediate from the preceding definitions:

(3I)
$$E_1 \subset E_2 \text{ implies } N(E_1) \le N(E_2).$$

The next lemma is the analog of condition (4).

LEMMA 4. For $E \subset \Gamma$,

(4I)
$$N(E) = \sup\{N(F) \mid F \text{ is a finite subset of } E\}.$$

Proof. Set J equal to the right-hand side of (4I). By condition (3I), $J \leq N(E)$. If $J = \infty$, then $N(E) = \infty$ and hence J = N(E). So suppose that J is finite. Let $f \in \ell_{\infty}(E)$ such that $||f||_{\infty} \leq 1$. For each finite $F \subset E$, interpolate $f|_F$ within 1/2 by a discrete measure $\mu^F \in D(J)$; write μ^F as

$$\mu^F = \sum_{j=1}^J c_j^F \delta_{g_j^F}$$

with $|c_j^F| \leq 1$. The finite subsets of E form a net, ordered by increasing inclusion. By the compactness of G (from which g_j^F comes), and the compactness of the unit disc in \mathbb{C} , one may choose 2J subnets successively so that, for the final net $\{F_\alpha\}_\alpha$, one has

$$\lim_{\alpha} g_j^{F_{\alpha}} = g_j \& \lim_{\alpha} c_j^{F_{\alpha}} = c_j \quad \text{ for all } 1 \le j \le J.$$

Necessarily, $|c_j| \leq 1$. Set $\mu = \sum_{j=1}^{J} c_j \delta_{g_j}$. Let $\gamma \in E$. There is some α_0 in the subnet such that $\gamma \in F_{\alpha}$ for all $\alpha \geq \alpha_0$. Also for $\alpha \geq \alpha_0$,

$$|f(\gamma) - \widehat{\mu^{F_{\alpha}}}(\gamma)| \le 1/2.$$

However, $\lim_{\alpha} \gamma(g_j^{F_{\alpha}}) = \gamma(g_j)$ for $1 \leq j \leq N$ because γ is a continuous character on G. It follows that

$$\lim_{\alpha} \widehat{\mu^{F_{\alpha}}}(\gamma) = \lim_{\alpha} \sum_{j=1}^{J} c_j^{F_{\alpha}} \gamma(-g_j^{F_{\alpha}}) = \sum_{j=1}^{J} c_j \gamma(-g_j) = \widehat{\mu}(\gamma).$$

Thus $|f(\gamma) - \hat{\mu}(\gamma)| \le 1/2$. That establishes $f \in AP(E, J, 1/2)$. So $N(E) \le J$.

The proof of the next proposition is the same as that of Lemma 2 and Proposition 3.

PROPOSITION 5. The I_0 sets are an F_{σ} in 2^{Γ} : they are $\bigcup_n \{E \subset \Gamma \mid N(E) \leq n\}$ where $\{E \subset \Gamma \mid N(E) \leq n\}$ is closed in 2^{Γ} .

The author first realized that I_0 sets and Sidon sets are F_{σ} in 2^{Γ} , when studying $A = \widetilde{A}$ sets: those sets for which $A(E) = B(E) \cap c_0(E)$ [4, p. 364]. Whether $A = \widetilde{A}$ sets are F_{σ} in 2^{Γ} is not known. Equally unknown is the status of sets E such that $A(E) = B_0(E)$, where

$$B_0(E) = \{ f|_E \mid f \in B(\Gamma) \cap c_0(\Gamma) \}.$$

Both of these properties, to a naive view, seem to "live at infinity" and thus fail to be "finitely describable". If it could be proved that they are *not* F_{σ} in 2^{Γ} , then questions (1) and (1') of [4, p. 369] would have negative answers. An open question which is closer to the focus of this paper is this: do helsonian sets constitute an F_{σ} class?

"Finitely described", again. In [6], two other equivalent formulations of being I_0 are established. First, a set E is I_0 if and only if every function on E taking values 0 and 1 can be extended to a continuous almost periodic function over Γ [6, p. 25]. Second, a set E is an I_0 set if and only if, for every subset $F \subset E$, the sets F and $E \setminus F$ have disjoint closures in $b\Gamma$. These formulations permit a weakening of the sufficient conditions listed in Theorem 7 of the Appendix (a very similar and yet weaker condition is in [12]).

DEFINITION. Let C_1 and C_2 be closed subsets of \mathbb{C} . For $E \subset \Gamma$, E is said to be $J(N, C_1, C_2)$ if and only if, for all $F \subset E$, there is some $\mu \in D(N)$ such that $\hat{\mu}(F) \subset C_1$ and $\hat{\mu}(E \setminus F) \subset C_2$. When $C_1 = \{z \mid \Im(z) \geq \delta\}$, and $C_2 = \{z \mid \Im(z) \leq -\delta\}, J(N, C_1, C_2)$ is abbreviated as $J(N, \delta)$. S(E) is the minimum m such that E is J(m, 1/2) if such an m exists, and ∞ otherwise. [By Proposition 6 below, E is I_0 if and only if $S(E) < \infty$.]

PROPOSITION 6. The following are equivalent:

(1) E is an I_0 set.

(2) E is $J(N, C_1, C_2)$ for some N and some disjoint subsets C_1 and C_2 .

(3) For all $0 < \delta < 1$, there is some N such that E is $J(N, \delta)$.

Proof. (3) \Rightarrow (2) is immediate.

 $(2) \Rightarrow (1)$. Assume that E is $J(N, C_1, C_2)$ for some disjoint C_1 and C_2 and some N. For $F \subset E$, let $\mu_F \in D(N)$ satisfy condition (2) for F. By [18, p. 32], the group $b\Gamma$ is the maximal ideal space of $M_d(G)$ and the Gelfand

transform is just the Fourier–Stieltjes transform. Because $D(N) \subset M_d(G)$, $\widehat{\mu_F}$ is a continuous function on $b\Gamma$. Because C_1 is a closed subset of \mathbb{C} , $H_1 = \widehat{\mu_F}^{-1}(C_1)$ is a closed subset of $b\Gamma$ with $F \subset H_1$. Likewise, $H_2 = \widehat{\mu_F}^{-1}(C_2)$ is a closed subset of $b\Gamma$ with $(E \setminus F) \subset H_2$. Because C_1 and C_2 are disjoint, H_1 and H_2 are disjoint; thus F and $E \setminus F$ have disjoint closures in $b\Gamma$. Because this holds for all $F \subset E$, E is an I_0 set by [6].

 $(1)\Rightarrow(3)$. Now suppose that E is an I_0 set and consider any δ such that $0 < \delta < 1$. By Theorem 7 of the Appendix, there is some N such that E is $I(N, 1 - \delta)$. Let $F \subset E$; the function h which is i on F and -i on $E \setminus F$ is in the unit ball of $\ell_{\infty}(E)$. By the definition of $I(N, 1 - \delta)$, there is some $\mu \in D(N)$ such that

$$\|\widehat{\mu}\|_E - h\|_{\infty} \le 1 - \delta$$

For $\gamma \in F$, $h(\gamma) = i$ and hence $\Im(\widehat{\mu}(\gamma)) \ge 1 - (1 - \delta) = \delta$. For $\gamma \in (E \setminus F)$, $h(\gamma) = -i$ and hence $\Im(\widehat{\mu}(\gamma)) \le -1 + (1 - \delta) \le -\delta$.

The proof of Proposition 6 provides the following corollary.

COROLLARY 7. For $E \subset \Gamma$, $S(E) \leq N(E)$.

Bounding N(E) by some function of S(E) is the purpose of the next theorem.

THEOREM 8. There is a non-decreasing function ϕ with $\phi(\mathbb{Z}^+) \subset \mathbb{Z}^+$ such that, for all discrete abelian groups Γ and all $E \subset \Gamma$, $N(E) \leq \phi(S(E))$.

Some lemmas will help in proving Theorem 8. Lemma 9 follows immediately from the definitions of N(E) and S(E).

LEMMA 9. For $E \subset \Gamma$ and $\gamma \in \Gamma$, $N(E) = N(E + \gamma)$ and $S(E) = S(E + \gamma)$.

LEMMA 10. For any N, let S be a finite set which is 1/(8N) dense in \mathbb{T} and let $E \subset \Gamma$ with $S(E) \leq N$. Then, for all subsets $F \subset E$, there are N points $t_j \in G$, integers $r_j \in [0, 8N]$, and $s_j \in S$ such that

 $(\forall \gamma \in F)[\Im(\widehat{\mu}(\gamma)) \geq 1/4] \quad and \quad (\forall \gamma \in E \backslash F)[\Im(\widehat{\mu}(\gamma)) \leq -1/4],$

where

$$\mu = (8N)^{-1} \sum_{j=1}^{N} s_j r_j \delta_{t_j}.$$

Proof. By the definition of S(E), E is J(S(E), 1/2) and hence J(N, 1/2). Thus, for any $F \subset E$, there is a discrete measure $\nu \in D(N)$ such that

 $(\forall \gamma \in F)[\Im(\widehat{\nu}(\gamma)) \ge 1/2]$ and $(\forall \gamma \in E \setminus F)[\Im(\widehat{\nu}(\gamma)) \le -1/2],$

where $\nu = \sum_{j=1}^{N} c_j \delta_{t_j}$ for some t_j 's in G and c_j 's in the unit disc of \mathbb{C} . Write c_j as $d_j |c_j|$ with $|d_j| = 1$. Since S is 1/(8N) dense in \mathbb{T} , one may choose

$$s_j \in S$$
 such that $|d_j - s_j| < 1/(8N)$. Let $r_j = \lfloor 8N |c_j| \rfloor$. Then, if

$$\mu = (8N)^{-1} \sum_{j=1}^N s_j r_j \delta_{t_j},$$

it follows that

$$\begin{split} \|\nu - \mu\|_{M(G)} &\leq \sum_{j=1}^{N} |c_j - s_j r_j / (8N)| \\ &\leq \sum_{j=1}^{N} |c_j - |c_j| s_j| + \sum_{j=1}^{N} |s_j| c_j| - s_j r_j / (8N)| \\ &= \sum_{j=1}^{N} |c_j| |d_j - s_j| + \sum_{j=1}^{N} |s_j| \cdot ||c_j| - r_j / (8N)| \\ &\leq \sum_{j=1}^{N} |d_j - s_j| + \sum_{j=1}^{N} ||c_j| - r_j / (8N)| \\ &\leq N / (8N) + N / (8N) = 1/4. \end{split}$$

It next follows that, for $\gamma \in F$,

 $\Im(\widehat{\mu}(\gamma)) = \Im[(\widehat{\nu}(\gamma)) - \{\widehat{\nu}(\gamma) - \widehat{\mu}(\gamma)\}] \ge \Im[\widehat{\nu}(\gamma)] - \|\nu - \mu\|_{M(G)} \ge 1/4.$ Likewise, for $\gamma \in (E \setminus F)$, $\Im(\widehat{\mu}(\gamma)) \le -1/4$.

LEMMA 11. For any N, let S be a finite set which is 1/(8N) dense in \mathbb{T} . Assume that $S(E) \leq N$ and $E \subset \{1\} \times \Gamma \subset \mathbb{Z}_2 \times \Gamma$. For $F \subset E$ and $s \in S$ there are $8N^2$ points of G, here labeled as $t_{s,j}$, such that

$$(\forall \gamma \in F)[\Im(\widehat{\tau}(\gamma)) \ge 1/8]$$
 and $(\forall \gamma \in (E \setminus F))[\Im(\widehat{\tau}(\gamma)) \le -1/8]$,
ere

where

$$\tau = (8N)^{-1} \sum_{s \in S} s \sum_{j=1}^{8N^2} \delta_{t_{s,j}}$$

Proof. Let $p = (1,0) \in \mathbb{Z}_2 \times G$. Then, for all $\gamma \in E$, $\widehat{\delta_0}(\gamma) = 1$ while $\widehat{\delta_p}(\gamma) = -1$. Thus for $\gamma \in E$, $\widehat{\delta_0}(\gamma) + \widehat{\delta_p}(\gamma) = 0$.

Let $F \subset E$ and μ be a measure provided for F by Lemma 10. Rearrange μ as follows:

$$\mu = (8N)^{-1} \sum_{j=1}^{N} s_j \sum_{q=1}^{r_j} \delta_{t_{j,q}},$$

where $t_{j,q} = t_j$ for all $q \in [1, r_j]$. Set

$$W_j = \begin{cases} 2^{-1}(8N - r_j)(\delta_0 + \delta_p) & \text{for } r_j \text{ even,} \\ \delta_0 + 2^{-1}(8N - r_j - 1)(\delta_0 + \delta_p) & \text{for } r_j \text{ odd.} \end{cases}$$

Let $\phi = \mu + (8N)^{-1} \sum_{j=1}^{N} s_j W_j$. Then one may write ϕ as

$$\phi = (8N)^{-1} \sum_{j=1}^{N} s_j \sum_{q=1}^{8N} \delta_{t_{j,q}}.$$

Note that $\widehat{W}_j(\gamma) \in \{0,1\}$ for $\gamma \in E$ and therefore

$$|\widehat{\phi}(\gamma) - \widehat{\mu}(\gamma)| \le (8N)^{-1} \sum_{j=1}^{N} |\widehat{W}_j(x)| \le 1/8$$

Thus, for $\gamma \in F$,

$$\Im(\widehat{\phi}(\gamma)) = \Im\{\widehat{\mu}(\gamma) - (\widehat{\mu}(\gamma) - \widehat{\phi}(\gamma))\} \ge 1/4 - |\widehat{\mu}(\gamma) - \widehat{\phi}(\gamma)| \ge 1/8.$$

Likewise, for $\gamma \in (E \setminus F)$,

$$\Im(\widehat{\phi}(\gamma)) = \Im\{\widehat{\mu}(\gamma) - (\widehat{\mu}(\gamma) - \widehat{\phi}(\gamma))\} \le -1/4 + |\widehat{\mu}(\gamma) - \widehat{\phi}(\gamma)| \le -1/8.$$

Next, rewrite ϕ as follows:

$$\phi = (8N)^{-1} \sum_{s \in S} s \sum_{\substack{j \in [1,N] \\ \& s_j = s}} \sum_{q=1}^{8N} \delta_{t_{j,q}} = (8N)^{-1} \sum_{s \in S} sV_s.$$

The number of point masses in V_s is $8Nf_s$ for some integer $f_s \in [0, N]$ $(f_s$ is the number of j's such that $s_j = s$). Let

$$Z_s = (N - f_s)(4N)(\delta_0 + \delta_p)$$

and set

$$\tau = \phi + (8N)^{-1} \sum_{s \in S} sZ_s.$$

Note that $\widehat{Z}_s(x) = 0$ for all $x \in E$, $\widehat{\tau}|_E = \widehat{\phi}|_E$, and τ may be written as

$$(8N)^{-1} \sum_{s \in S} s \sum_{q=1}^{8N^2} \delta_{t_{s,q}}. \blacksquare$$

Proof of Theorem 8. Set $\phi(\infty) = \infty$ and let $\phi(N) = \sup\{N(E) \mid S(E) \leq N\}$. If $\phi(N) < \infty$ for all N, the theorem is proved. Suppose that $\phi(N) = \infty$ for a particular N. That is, there is a sequence of discrete abelian groups Ω_i (with dual group H_i) and subsets $W_i \subset \Omega_i$ such that $S(W_i) \leq N$ and $N(W_i) > i$. Let $E_i = \{1\} \times W_i \subset \Gamma_i$, where $\Gamma_i = \mathbb{Z}_2 \times \Omega_i$ and $G_i = \mathbb{Z}_2 \times H_i$ is the group dual to Γ_i . By Lemma 9, $S(E_i) = S(W_i) \leq N$ and $N(E_i) = N(W_i)$. Let Γ be the direct sum of the Γ_i , which is the set of all sequences $\{\gamma_i\}_i$ with $\gamma_i \in \Gamma_i$ and at most finitely many $\gamma_i \neq 0$ [assume that the Γ_i 's are presented additively]. The dual group of Γ is the following

direct product:

$$G = \prod_{i} G_i.$$

If $\gamma = \{\gamma_i\}_i \in \Gamma$ and $g = \{g_i\}_i \in G$, then $\langle \gamma, g \rangle = \prod_i \langle \gamma_i, g_i \rangle$, where the latter infinite product has at most finitely many factors that differ from 1. Γ_i may be viewed as a subset of Γ in the natural way, as the set of $\gamma \in \Gamma$ such that $\gamma_j = 0$ for $j \neq i$. Denote this canonical copy of Γ_i by Γ_i^* . For $\gamma \in \Gamma_i^* \subset \Gamma$ and $g \in G$,

$$\widehat{\delta_g}(\gamma) = \langle \gamma_i, -g_i \rangle = \widehat{\delta_{g_i}}(\gamma_i)$$

where g_i and γ_i are the respective *i*th components of g and γ . Thus, $N(E_i) = N(E_i^*)$ and $S(E_i) = S(E_i^*)$ for each $E_i \subset \Gamma_i$ and its canonical image E_i^* in Γ_i^* .

It will be proved that $E^* = \bigcup_i E_i^*$ is an I_0 set and thus $N(E^*) < \infty$ by Theorem 7 of the Appendix. That will contradict equation (3I), which says that $N(E^*) \ge N(E_i^*)$, and thus

$$N(E^*) \ge N(E_i^*) = N(E_i) = N(W_i) > i \quad \text{for all } i.$$

This contradiction will prove that $\phi(N) < \infty$ for all N.

To see that E^* is I_0 , let S be a finite set which is 1/(8N) dense in T of cardinality M. It will be shown that E^* is $J(8MN^2, 1/8)$ and hence an I_0 set by Proposition 6.

Let $F^* \subset E^*$, and set $F_i^* = F^* \cap E_i^*$. Let F_i be the pre-image of F_i^* under the canonical embedding of Γ_i into Γ . Because $S(E_i) \leq N$ and $F_i \subset E_i$, Lemma 11 provides a discrete measure μ_i on G_i of the form

$$\mu_i = (8N)^{-1} \sum_{s \in S} s \sum_{j=1}^{8N^2} \delta_{t_{s,j}^i}$$

such that

$$(\forall \gamma \in F_i)[\Im(\widehat{\mu}_i(\gamma)) \ge 1/8]$$
 and $(\forall \gamma \in E_i \setminus F_i)[\Im(\widehat{\mu}_i(\gamma)) \le -1/8].$

Let $t_{s,j} \in G$ be defined to be $t_{s,j}^i$ in the *i*th coordinate, and set

$$\mu = (8N)^{-1} \sum_{s \in S} s \sum_{j=1}^{8N^2} \delta_{t_{s,j}}.$$

Because any $\gamma \in E_i^*$ has coordinates equal to 0 apart from the *i*th coordinate, and $\gamma_i \in E_i$, one has

$$\widehat{\delta_{t_{s,j}}}(\gamma) = \langle -t_{s,j}, \gamma \rangle = \langle -t_{s,j}^i, \gamma_i \rangle = \widehat{\delta_{t_{s,j}^i}}(\gamma_i).$$

For $\gamma \in E_i^*$, it follows that $\widehat{\mu}(\gamma) = \widehat{\mu}_i(\gamma_i)$ with $\gamma_i \in E_i$. Note that $\gamma_i \in F_i$ if

and only if $\gamma \in F_i^*$. Thus, for all i,

 $\begin{array}{ll} (\forall \gamma \in F_i^*)[\Im(\widehat{\mu}(\gamma)) \geq 1/8] \quad \text{while} \quad (\forall \gamma \in (E_i^* \backslash F_i^*))[\Im(\widehat{\mu}(\gamma)) \leq -1/8].\\ \text{Since } F^* = \bigcup_i F_i^*, \text{ the imaginary part of } \widehat{\mu} \text{ is at least } 1/8 \text{ on } F^* \text{ and at most } -1/8 \text{ on } E^* \backslash F^*. \text{ This holds for an arbitrary } F^* \subset E^*, \text{ with a measure in } D(8MN^2). \text{ Thus } E^* \text{ is } J(8MN^2, 1/8). \blacksquare \end{array}$

A more direct proof of Theorem 8 can be adapted from [9], in which the following theorem is proved. Consider a Banach algebra B of continuous functions on a compact Hausdorff space \mathfrak{M} . Assume that for every closed subset F of \mathfrak{M} , there exists a positive number $\varepsilon = \varepsilon(F)$ such that whenever N is both open and closed in F, B contains an element h of norm one satisfying $\Re(h(M)) < 0$ for $M \in N$, $\Re(h(M)) > \varepsilon$ for $M \in F \setminus N$. Then $B = C(\mathfrak{M})$. In [9] a polynomial P is fixed, depending only on ε and some $\varepsilon' > 0$, such that for F, N and the corresponding h of the hypotheses, P(h)satisfies $|P(h)(M)| < \varepsilon'$ for $M \in F \setminus N$ while $|P(h)(M) - 1| < \varepsilon'$ for $M \in N$. Thus χ_N is approximated by P(h) within ε' in $\ell^{\infty}(F)$. With appropriate scalings ($\varepsilon = 1/(2S(E))$), this could be applied to $h = \hat{\nu}$ where $\nu = -i\mu$, $\mu \in D(S(E))$ with $\Im(\widehat{\mu}) \ge 1/2$ on some $F \subset E$ while $\Im(\widehat{\mu}) \le -1/2$ on $E \setminus F$. It is clear that $P(\nu)$ is in D(n) for some n which is determined by S(E) and ε' (and P, which is in turn specified to depend only on $\varepsilon = 1/(2S(E))$ and ε'). If ε' is set equal to 1/144, one can proceed as in the next paragraphs to get $N(E) \leq 36n$.

Following [12], one could define another degree for I_0 sets. For $\xi = (g_1, \ldots, g_n) \in G^n$ and $\gamma \in \Gamma$, let $\xi(\gamma) = (\gamma(g_1), \ldots, \gamma(g_n))$. For $\xi \in G^n$ and real $\varepsilon > 0$, let $U(\xi, \varepsilon) = \{\lambda \in \Gamma \mid \sup_i |\lambda(g_i) - 1| < \varepsilon\}$. A basis for the topology of $b\Gamma$ consists of $\gamma + U(\xi, \varepsilon)$, where γ ranges over Γ , ξ ranges over $\bigcup_n G^n$ and ε ranges over \mathbb{R}^+ . By [6] and [12, Theorem 1, p. 172], $E \subset \Gamma$ is I_0 if and only if there are some k and real $\varepsilon > 0$ such that, for all $F \subset E$, there is some $\xi \in G^k$ for which $F + U(\xi, \varepsilon)$ and $(E \setminus F) + U(\xi, \varepsilon)$ are disjoint. Such sets are said to have order k (regardless of ε) [12]. Define M(E) as the least k for which this result holds for k and $\varepsilon = 1/k$. By following the proof in [12, pp. 175–176], one can prove that $N(E) \leq \psi(M(E))$ for some non-decreasing function ψ such that $\psi(\mathbb{Z}^+) \subset \mathbb{Z}^+$. Also, $M(E) \leq 4N(E)$.

Here's how one could specify ψ . Given f in the unit ball of $\ell_{\infty}(E)$ and $M(E) \leq k$, one can approximate f within 1/4 with a linear sum of characteristic functions:

$$\sum_{j=1}^{36} c_j \chi_{F_j} \quad \text{with } |c_j| \le 1.$$

Each χ_{F_j} can be approximated within 1/144 by the transform of a measure in D(n) where n is chosen as follows. In [12, p. 175] there is a function $\chi \in A(T^k)$ chosen in a manner which depends only on k. Based upon it, choose N so that

(1

$$\sum_{\substack{(n_1,\ldots,n_k)\in\mathbb{Z}^k\\\&|n_1|+\ldots+|n_k|>N}} |\widehat{\chi}(n_1,\ldots,n_k)| \le 1/144$$

Set

$$n = \sum_{\substack{(n_1,\dots,n_k) \in \mathbb{Z}^k \\ \& |n_1|+\dots+|n_k| \le N}} \lceil |\widehat{\chi}(n_1,\dots,n_k)| \rceil.$$

In [12, p. 175], given an idempotent $e \in \ell_{\infty}(E)$ and a particular $\xi =$ (g_1,\ldots,g_k) which separates the support of e from its complement with $U(\xi, 1/k)$, there is some Φ_e such that $e = \Phi_e \circ \xi|_E$ and $|\Phi_e(n_1, \ldots, n_k)| \leq 1$ $|\widehat{\chi}(n_1,\ldots,n_k)|$. Then, if

$$\mu = \sum_{\substack{(n_1,\dots,n_k)\in\mathbb{Z}^k\\\&|n_1|+\dots+|n_k|\leq N}}\widehat{\Phi_e}(n_1,\dots,n_k)\delta_{-n_1g_1-\dots-n_kg_k},$$

 $\mu \in D(n)$ and $\hat{\mu}$ interpolates e within 1/144. By doing this to each F_j for f, one interpolates f within 1/2 by the transform of a measure in D(36n) and hence $N(E) \leq 36n$. If $\psi(k) = \sup\{N(E) \mid M(E) \leq k\}$, then $\psi(k) < \infty$, ψ is non-decreasing and $N(E) \leq \psi(M(E))$.

To see that $M(E) \leq 4N(E)$, let $n = N(E) < \infty$ and $F \subset E$. Let f = 1 on F and -1 on $E \setminus F$. Let $\mu \in D(n)$ interpolate f within 1/2. If $\mu = \sum_{j=1}^{n} c_j \delta_{g_j}$, let $\xi = (g_1, \ldots, g_n)$. If $\lambda \in U(\xi, 1/(4n))$, then for all γ ,

$$|\widehat{\mu}(\gamma + \lambda) - \widehat{\mu}(\gamma)| \le 1/4$$

Thus for $\gamma \in F$,

$$\Re(\widehat{\mu}(\gamma + \lambda)) \ge 1/2 - 1/4 = 1/4,$$

while for $\gamma \in E \setminus F$,

$$\Re(\widehat{\mu}(\gamma + \lambda)) \le -1/2 + 1/4 = -1/4$$

It is evident that $F + U(\xi, 1/(4n))$ and $(E \setminus F) + U(\xi, 1/(4n))$ are disjoint. Thus $M(E) \leq 4n$.

The proof of Theorem 8 provides an analog for I_0 sets of "sup-norm partitions" used among Sidon sets [4, p. 370]. What is different about this construction is the "DC-offset" (an electrical engineering term): shifting the W_i 's into "odd" cosets before unioning them. This is not required in the usual sup-norm partition constructions.

PROPOSITION 12. Let W_i be a sequence of I_0 sets, with W_i a subset of an abelian group Ω_i and $S(W_i) \leq N$ for some N. If $\Gamma_i = \mathbb{Z}_2 \times \Omega_i$ and $E_i = \{1\} \times W_i$, then $E = \bigcup_i E_i$ is an I_0 set in the direct sum of the Γ_i 's

with $S(E) \leq 32MN^2$ (where M is the cardinality of a finite set which is 1/(8N) dense in \mathbb{T}).

Proof. In the proof of Theorem 8, E is $J(8MN^2, 1/8)$. By repeating the interpolating measures 4 times, one sees that E is $J(32MN^2, 1/2)$ and hence $S(E) \leq 32MN^2$.

Proposition 12 is proved in the category of discrete abelian groups, where there is plenty of room to fit diverse groups together. The analog of Proposition 12 is proved within \mathbb{Z} in the next proposition. Some care must be taken with this new construction of I_0 sets, but its basic ideas are simple: rapidly dilate successive sets of the given sequence of I_0 sets and provide a "DC-offset".

PROPOSITION 13. Let $\{W_n\}_n$ be a sequence of finite I_0 subsets of \mathbb{Z} with $S(W_n) \leq N$ for all n. There is a sequence of integers $\{k_n\}$ with $k_n \neq 0$ for all n such that

$$E = \bigcup_{n} (2k_n W_n + k_n)$$

is an I_0 set with $(2k_nW_n + k_n) \cap (2k_jW_j + k_j) = \emptyset$ for $n \neq j$.

LEMMA 14. Let $E \subset \mathbb{Z}$. For any N, let S be a finite set which is 1/(8N) dense in \mathbb{T} . Assume that $S(E) \leq N$ and that $E \subset k + 2k\mathbb{Z}$ for some non-zero integer k. Let $F \subset E$. Then for each $s \in S$ there are $8N^2$ points of \mathbb{T} , here labeled as $t_{s,j}$, such that

 $(\forall \gamma \in F)[\Im(\widehat{\tau}(\gamma)) \ge 1/8] \quad and \quad (\forall \gamma \in (E' \setminus F))[\Im(\widehat{\tau}(\gamma)) \le -1/8],$

where

$$\tau = (8N)^{-1} \sum_{s \in S} s \sum_{j=1}^{8N^2} \delta_{t_{s,j}}.$$

Proof. Let \mathbb{T} , the dual group of \mathbb{Z} , be presented as the interval $(-\pi, \pi]$ with operations modulo 2π . An integer n acts on $t \in \mathbb{T}$ as follows:

$$n(t) = \langle n, t \rangle = e^{int}.$$

For all $x \in E$, $\widehat{\delta_0}(x) = 1$ while

$$\widehat{\delta_{\pi/k}}(x) = e^{ix\pi/k} = e^{i(k+2kj)\pi/k} = e^{i\pi} = -1.$$

Thus, for $x \in E$, $\widehat{\delta_0}(x) + \widehat{\delta_{\pi/k}}(x) = 0$. From this point, the proof is identical to that of Lemma 11, with $\delta_{\pi/k}$ replacing δ_p in that proof.

Proof of Proposition 13. Without loss of generality, we may assume that $W_n \neq \emptyset$ for all n. The integers k_n shall be chosen inductively. Let $k_1 = 1$; given k_j for $j \leq n$, let D_n be the maximum absolute value of any element of $\bigcup_{j\leq n}(2k_jW_j+k_j)$. Fix some finite subset S which is 1/(8N)dense in \mathbb{T} and of cardinality Q. For n > 1 choose $k_n \geq 32NQD_{n-1}$ and L. T. RAMSEY

let $E_n = k_n + 2k_n W_n$. Since every element of E_n is an odd multiple of k_n , $|x| \ge k_n$ for all $x \in E_n$; since $E_n \ne \emptyset$, $D_n \ge k_n$. Since $F_1 \ne \emptyset$, $D_n \ge k_1 > 0$. Thus, for n > 1, $k_n \ge 32NQD_{n-1} > D_{n-1}$, which guarantees that E_n is disjoint from E_j for j < n. Finally, for j < n and $x \in E_j$,

$$k_n \ge (32NQ)^{n-j} D_j \ge (32NQ)^{n-j} |x|$$

In particular, $k_n \ge (32NQ)^{n-1}D_1 \ge (32NQ)^{n-1}$ for n > 1. [Of course, $k_1 = 1 \ge (32NQ)^0$ as well.]

Let $F \subset E$ and $F_i = F \cap E_i$. Lemma 14 provides a discrete measure μ_1 on \mathbb{T} of the form

$$u_1 = (8N)^{-1} \sum_{s \in S} s \sum_{j=1}^{8N^2} \delta_{t_{s,j}^1}$$

such that

 $(\forall \gamma \in F_1)[\Im(\widehat{\mu_1}(\gamma)) \ge 1/8]$ and $(\forall \gamma \in E_1 \setminus F_1)[\Im(\widehat{\mu_1}(\gamma)) \le -1/8].$ Proceed inductively. Suppose that for j < n one has μ_j such that

 $(\forall \gamma \in F_j)[\Im(\widehat{\mu_j}(\gamma)) \ge 1/8]$ and $(\forall \gamma \in E_j \setminus F_j)[\Im(\widehat{\mu_j}(\gamma)) \le -1/8]$, where

$$\mu_j = (8N)^{-1} \sum_{s \in S} s \sum_{q=1}^{8N^2} \delta_{t^j_{s,q}}$$

and $|t_{s,q}^j - t_{s,q}^{j-1}| \leq \pi/k_j$ for $j \in (1, n)$, $s \in S$, and $q \in [1, 8N^2]$. Because $E_n = k_n + 2k_nW_n$ with $k_n \neq 0$, one has $S(E_n) = S(W_n) \leq N$. By Lemma 14, there is some μ such that

$$(\forall \gamma \in F_n)[\Im(\widehat{\mu}(\gamma)) \ge 1/8]$$
 and $(\forall \gamma \in E_n \setminus F_n)[\Im(\widehat{\mu}(\gamma)) \le -1/8],$

where

$$\mu = (8N)^{-1} \sum_{s \in S} s \sum_{q=1}^{8N^2} \delta_{z_{s,q}^n}.$$

However, since every $x \in E_n$ is a multiple of k_n , for any integers $p_{q,s}$,

$$\widetilde{\delta_{w+z_{s,q}^n}}(x) = \widetilde{\delta_{z_{s,q}^n}}(x) \quad \text{for } w = 2\pi p_{q,s}/k_n$$

Thus $\widehat{\mu}|_{E_n} = \widehat{\lambda}|_{E_n}$ when

$$\lambda = (8N)^{-1} \sum_{s \in S} s \sum_{q=1}^{8N^2} \delta_{z_{s,q}^n + p_{q,s} 2\pi/k_n}.$$

Choose $p_{q,s}$ so that

$$|z_{s,q}^n + p_{q,s}2\pi/k_n - t_{s,q}^{n-1}| \le \pi/k_n$$

Let $\mu_n = \lambda$ with this choice of the $p_{q,s}$. That is, $t_{s,q}^n = z_{s,q}^n + p_{q,s} 2\pi/k_n$.

It follows that, for each $s\in S$ and $1\leq q\leq 8N^2,$ $t_{s,q}=\lim_{j\to\infty}t_{s,q}^j$ exists because

$$\sum_{j=2}^{\infty} |t_{s,q}^j - t_{s,q}^{j-1}| \le \sum_{j=2}^{\infty} \pi/k_j \le \pi \sum_{j=2}^{\infty} (32NQ)^{-j+1} < \infty.$$

Moreover, for $x \in E_j$ and n > j,

$$\begin{split} |\widehat{\delta_{t_{s,q}^{n}}}(x) - \widehat{\delta_{t_{s,q}^{j}}}(x)| &= |e^{-ixt_{s,q}^{n}} - e^{-ixt_{s,q}^{j}}| \\ &= \Big| \sum_{w=j+1}^{n} e^{-ixt_{s,q}^{w}} - e^{-ixt_{s,q}^{w-1}} \Big| \\ &\leq \sum_{w=j+1}^{n} |e^{-ixt_{s,q}^{w}} - e^{-ixt_{s,q}^{w-1}}| \\ &\leq \sum_{w=j+1}^{n} |x(t_{s,q}^{w} - t_{s,q}^{w-1})| \leq |x| \sum_{w=j+1}^{n} (\pi/k_{w}) \\ &\leq \pi |x| \sum_{w=j+1}^{n} |x|^{-1} (32NQ)^{-(w-j)} \\ &< (\pi/(32NQ))(1 - 1/(32NQ))^{-1} \\ &= \pi/(32NQ - 1) < \pi/(31NQ). \end{split}$$

If one fixes j and lets $n \to \infty$, then for $x \in E_j$,

$$|\widehat{\delta_{t_{s,q}}}(x) - \widehat{\delta_{t_{s,q}^j}}(x)| \le \pi/(31NQ).$$

 Set

$$\varrho = (8N)^{-1} \sum_{s \in S} s \sum_{q=1}^{8N^2} \delta_{t_{s,q}}.$$

Then, for all $x \in E_j$,

$$|\widehat{\mu_{j}}(x) - \widehat{\varrho}(x)| = \left| (8N)^{-1} \sum_{s \in S} s \sum_{q=1}^{8N^{2}} (\widehat{\delta_{t_{s,q}^{j}}}(x) - \widehat{\delta_{t_{s,q}}}(x)) \right|$$
$$\leq (8N)^{-1} \sum_{s \in S} |s| \sum_{q=1}^{8N^{2}} (\pi/(31NQ)) = \pi/31$$

Thus for all i,

$$\begin{aligned} (\forall \gamma \in F_i)[\Im(\widehat{\varrho}(\gamma)) \geq 1/8 - \pi/31] \quad \text{and} \\ (\forall \gamma \in (E_i \setminus F_i))[\Im(\widehat{\varrho}(\gamma)) \leq -1/8 + \pi/31]. \end{aligned}$$

Since $F = \bigcup_i F_i$, the imaginary part of $\hat{\varrho}$ is at least .02 on F and at most -.02 on $E \setminus F$. Because this holds for any $F \subset E$ with a measure in $D(8QN^2)$, E is $J(8QN^2, .02)$ and hence I_0 .

Proportions of Sidon sets are I_0 sets. The following theorem originated in conversations with Gilles Pisier.

THEOREM 15. Let Γ be a discrete abelian group. Then $E \subset \Gamma$ is Sidon if and only if there are N and some real r > 0 such that, for all finite $F \subset E$, there is some $H \subset F$ for which $|H| \ge r|F|$ and $S(E) \le N$.

A key ingredient of the proof of Theorem 15 is a theorem of Pisier's [14, p. 941]. Other critical ingredients are recycled from [3, 13].

Proof of Theorem 15. To prove sufficiency, suppose that $E \subset \Gamma$ has some N and real r > 0 such that, for every finite subset $F \subset E$,

$$(\exists H \subset F)(|H| \ge r|F| \text{ and } S(H) \le N).$$

Then H is $I(\phi(N), 1/2)$ by Theorem 8. By the proof of Theorem 7 of the Appendix, condition (3) of that theorem holds with M = 2 and $\delta = (1/2)^{1/\phi(N)}$. It follows that, for every f in the unit ball of $\ell_{\infty}(H)$, there is some $\mu \in M_d(G)$ such that $\hat{\mu}|_H = f$ and $\|\mu\|_{M_d(G)} \leq L = 2\sum_{j=1}^{\infty} 2^{-j/\phi(N)} < \infty$. Thus, there is a constant L which depends only on N and satisfies $\|f\|_{B_d(H)} \leq L \|f\|_{\ell_{\infty}(H)}$ for all $f \in \ell_{\infty}(H)$. Since $\|f\|_{B(H)} \leq \|f\|_{B_d(H)}$, one has $\|f\|_{B(H)} \leq L \|f\|_{\ell_{\infty}(H)}$. Thus H is a Sidon set with Sidon constant at most L. That suffices to make E be Sidon by Corollary 2.3 of [14, p. 924].

Now suppose that E is Sidon. By [14, p. 941] there is some $\delta > 0$ such that, for all finite $F \subset E$, there are at least $2^{\delta|F|}$ points g_j of G such that, for $i \neq j$,

(5)
$$\sup_{\gamma \in F} |\gamma(g_j) - \gamma(g_i)| \ge \delta_i$$

Necessarily, $\delta \leq 2$.

Let $F \subset E$ with |F| = n. Enumerate F as $\gamma_1, \ldots, \gamma_n$. Choose p so that $\tau = 2\pi/p < \delta/2$ (e.g., let $p = 1 + \lceil 4\pi/\delta \rceil$). Partition \mathbb{T} into disjoint arcs, T_k , $0 \leq k < p$, of the form

$$T_k = \{ e^{i\theta} \mid k\tau \le \theta < (k+1)\tau \}.$$

Let $Q = \lceil (1 - 2^{-\delta/2})^{-1} \rceil$ and set $\tau' = \tau/Q$. Partition each T_k into Q arcs $U_{k,m}$ of the form

$$U_{k,m} = \{ e^{i\theta} \mid k\tau + m\tau' \le \theta < k\tau + (m+1)\tau' \}$$

for $0 \leq m < Q$. Finally, let S_0 denote a set of at least $2^{\delta|F|}$ points of G which satisfy inequality (5).

Define S_i inductively. Let

 $\mathcal{S}_{k}^{i} = \{g \in \mathcal{S}_{i-1} \mid \gamma_{i}(g) \in T_{k}\} \text{ and } \mathcal{S}_{k,m}^{i} = \{g \in \mathcal{S}_{i-1} \mid \gamma_{i}(g) \in U_{k,m}\}.$ Then $\mathcal{S}_{i-1} = \bigcup_{k=0}^{p-1} \mathcal{S}_{k}^{i}$ and $\mathcal{S}_{k}^{i} = \bigcup_{m=0}^{Q-1} \mathcal{S}_{k,m}^{i}.$ There is some m(i,k) such that $|\mathcal{S}_{k,m(i,k)}^{i}| \leq Q^{-1} |\mathcal{S}_{k}^{i}|.$

So,

$$\left|\bigcup_{k=0}^{p-1} \mathcal{S}_{k,m(i,k)}^{i}\right| \le Q^{-1} |\mathcal{S}_{i-1}|.$$

Let

$$\mathcal{S}_i = \mathcal{S}_{i-1} \setminus \bigcup_{k=0}^{p-1} \mathcal{S}_{k,m(i,k)}^i.$$

Then $|\mathcal{S}_i| \ge (1-Q^{-1})|\mathcal{S}_{i-1}|$. By induction one has $|\mathcal{S}_n| \ge (1-Q^{-1})^n|\mathcal{S}_0|$. Note that $Q \ge (1-2^{-\delta/2})^{-1}$; consequently, $(1-Q^{-1}) \ge 2^{-\delta/2}$. Therefore,

$$|\mathcal{S}_n| \ge (1 - Q^{-1})^n |\mathcal{S}_0| \ge (2^{-\delta/2})^n 2^{\delta n} = 2^{n\delta/2}$$

For $1 \leq i \leq n$ and $1 \leq k < p$, let $I_{i,k}$ be the arc between $U_{k-1,m(i,k-1)}$ and $U_{k,m(i,k)}$. For k = 0, let $I_{i,0}$ be the arc between $U_{p-1,m(i,p-1)}$ and $U_{0,m(i,0)}$. Necessarily,

(6)
$$I_{i,k} \subset \{ e^{i\theta} \mid (k-1)\tau + \tau' \le \theta < (k+1)\tau - \tau' \}.$$

The length (and hence the diameter) of each of these arcs is at most $(2 - 2/Q)\tau < 2 \cdot (\delta/2) = \delta$. For $j \neq k$ there are arcs of length τ' separating $I_{i,k}$ from $e^{ij\tau}$ within \mathbb{T} , namely $U_{k-1,m(i,k-1)}$ and $U_{k,m(i,k)}$ when $1 \leq k < p$, and $U_{p-1,m(i,p-1)}$ and $U_{0,m(i,0)}$ for k = 0.

Each sequence $\{k_i\}_{i=1}^n$, with $0 \le k_i < p$, defines a cylinder in $\ell_{\infty}(F)$ of the following form:

$$W[\{k_i\}_{i=1}^n] = \{f \in \ell_{\infty}(F) \mid f(\gamma_i) \in I_{i,k_i}\}.$$

For $g \in G$, let $f_g(\gamma) = \gamma(g)$ for $\gamma \in F$. Because these cylinders are disjoint, each f_g is in at most one of them. $g \in S_n$ was specified to guarantee that f_g would be in at least one of these cylinders. For $g \in S_n$, define $h(g) \in \ell_{\infty}(F)$ by $h(g)(\gamma_i) = k_i$ where $f_g(\gamma_i) \in I_{i,k_i}$ and thus $f_g \in W[\{k_i\}_{i=1}^n]$. Because each cylinder has diameter less than δ , each cylinder contains at most one f_g for $g \in S_n$. Hence $|h(S_n)| = |S_n| \ge 2^{n\delta/2}$. For any subset $H \subset F$, let Π^H be this projection: for $f \in \ell_{\infty}(F)$, $\Pi^H(f) = f|_H$. By Corollary 2 of [13, p. 742], there is a constant c'' > 0 which depends only on $\delta/2$ and p (which themselves depend only on δ) such that there are some $H \subset F$ and integers a < b from [1, p] such that

$$|H| \ge c''|F|$$
 and $\{a, b\}^H \subset \Pi^H(h(\mathcal{S}_n)).$

L. T. RAMSEY

If $b-a \leq p/2$, let a' = a and b' = b. If b-a > p/2, let a' = b and b' = a + p. In either case, let $a'' = a' \mod p$ and $b'' = b' \mod p$. Then $\{a'', b''\} = \{a, b\}$ with a' < b' and $b' - a' \leq p/2$.

Case 1: $b'-a' \ge 2$. Let c = (a'+b')/2. Then $b'-c \ge 1$, $c-a' \ge 1$, $b'-c \le p/4$ and $c-a' \le p/4$. If $z_2 \in I_{i,b''}$, then $z_2 = e^{i\theta}$ with

$$c\tau + \tau' \le (b'-1)\tau + \tau' \le \theta < (b'+1)\tau - \tau' < c\tau + p\tau/4 + 1,$$

because $\tau = 2\pi/p < \delta/2$ and $\delta \leq 2$ (see condition (6)). Hence

$$e^{-ic\tau}z_2 = e^{i(\theta - c\tau)}$$
 with $\tau' \le \theta - c\tau < \pi/2 + 1$.

Thus $e^{-ic\tau}z_2$ is in the upper half-plane, with

$$\Im(e^{-ic\tau}z_2) \ge \tau'' = \min\{\sin(\tau'), \sin(\pi/2+1)\} > 0.$$

Likewise, if $z_1 \in I_{i,a''}$, then then $z_1 = e^{i\theta}$ with

$$c\tau - p\tau/4 - 1 < (a'-1)\tau + \tau' \le \theta < (a'+1)\tau - \tau' < c\tau - \tau'.$$

Hence

$$e^{-ic\tau}z_1 = e^{i(\theta - c\tau)}$$
 with $-\pi/2 - 1 < \theta - c\tau < -\tau'$.

Thus $e^{-ic\tau}z_1$ is in the lower half-plane, with

$$\Im(e^{-ic\tau}z_1) < -\tau'' < 0.$$

Because $\{a, b\}^H \subset \Pi^H(h(\mathcal{S}_n))$ and $\{a, b\} = \{a'', b''\}$, for any $A \subset H$ there is some $g \in \mathcal{S}_n$ such that $h(g)(\gamma) = b''$ for $\gamma \in A$ and $h(g)(\gamma) = a''$ for $\gamma \in H \setminus A$. Let $\mu = e^{-ic\tau} \delta_{-q}$; $\mu \in D(1)$. For $\gamma \in A$ we have

$$\Im(e^{-ic\tau}\delta_{-g}(\gamma)) = \Im(e^{-ic\tau}\gamma(g)) \ge \tau''.$$

Likewise, for $\gamma_i \in H \backslash A$,

$$\Im(e^{-ic\tau}\delta_{-g}(\gamma)) = \Im(e^{-ic\tau}\gamma(g)) < -\tau''.$$

This proves that H is $J(1, \tau'')$.

Case 2: b' = a' + 1. Because $\{a, b\}^H \subset \Pi^H(h(\mathcal{S}_n))$ and $\{a, b\} = \{a'', b''\}$, for every $A \subset H$ there are g_1 and g_2 such that

$$(\forall \gamma \in A)(h(g_1)(\gamma) = b'' \text{ and } h(g_2)(\gamma) = a''),$$

while

$$(\forall \gamma \in H \setminus A)(h(g_2)(\gamma) = a'' \text{ and } h(g_2)(\gamma) = b'').$$

The arc $U_{i,m(i,a'')}$ equals $\{e^{i\theta} \mid x \leq \theta < x + \tau'\}$ with $a'\tau \leq x < x + \tau' \leq b'\tau$. If $z_2 \in I_{i,b''}$, then $z_2 = e^{i\theta}$ with $x + \tau' \leq \theta < (b'+1)\tau - \tau'$. If $z_1 \in I_{i,a''}$, then $z_1 = e^{i\theta}$ with $(a'-1)\tau + \tau' \leq \theta < x$. Thus, for $\gamma_i \in A$, $\gamma_i(g_1 - g_2) = \gamma_i(g_1)/\gamma_i(g_2) = e^{i\theta}$ with

$$\tau' < \theta < (b-a)\tau + 2\tau - 2\tau' = (3 - 2/Q)\tau < 3.$$

Thus, when $\gamma \in A$, $\gamma(g_1 - g_2)$ is in the upper half-plane and

 $\Im(\gamma(g_1 - g_2)) \ge \tau''' = \min\{\sin(\tau'), \sin(3)\}.$

For $\gamma_i \in H \setminus A$,

$$\gamma_i(g_1 - g_2) = \gamma_i(g_1) / \gamma_i(g_2) = e^{i\theta}$$

with $-3 < (-3 + 2/Q)\tau < \theta < a' - b' = -\tau'$.

Thus, when $\gamma \in H \setminus A$, $\gamma_i(g_1 - g_2)$ in the lower half-plane with

 $\Im(\gamma(g_1 - g_2)) \le -\tau'''.$

This makes H a $J(1,\tau^{\prime\prime\prime})$ set. \blacksquare

The proof of Theorem 15 produces "proportional" subsets of Sidon sets (and therefore I_0 sets) which are of order 1 according to [12, pp. 182–186]. In [12] this unresolved question was posed: must I_0 sets be finite unions of order 1 sets?

Are Sidon sets finite unions of I_0 sets? David Grow asked in [5] whether Sidon sets had to be finite unions of I_0 sets. Theorem 15 provides some evidence that they could be, but that question is not resolved here. The next two theorems provide a necessary condition: one for \mathbb{Z} and one for the category of abelian groups.

DEFINITION. For discrete abelian groups Γ and $E \subset \Gamma$, let $\nu(E, m)$ be the minimum number of I_0 sets of degree at most m of which E is the union and let $\nu(E, m) = \infty$ when no such finite union exists.

THEOREM 16. If every Sidon subset of \mathbb{Z} is a finite union of I_0 sets, then there is some $m \in \mathbb{Z}^+$ and a non-decreasing function $\phi : [1, \infty) \to \mathbb{Z}^+$ such that

$$\nu(E, \phi(r)) \le \phi(r) \quad \text{if } \alpha(E) \le r.$$

THEOREM 17. Suppose that, for all abelian groups Γ and Sidon subsets E of Γ , E is the finite union of I_0 sets. Then there is a non-decreasing function $\phi : [0, \infty) \to \mathbb{Z}^+$ such that

$$\alpha(E) \leq r \quad implies \quad \nu(E, \phi(r)) \leq \phi(r)$$

These lemmas will be helpful. Their proofs are close to the definitions.

LEMMA 18. For discrete abelian groups Γ and subsets E and F of Γ , if $E \subset F$ then $\nu(E,m) \leq \nu(F,m)$. If $m \leq n$, then $\nu(E,m) \geq \nu(E,n)$.

LEMMA 19. For $E \subset \mathbb{Z}$ and integers $k \neq 0$ and q, $\alpha(kE+q) = \alpha(E)$, N(kE+q) = N(E), and $\nu(kE+q,m) = \nu(E,m)$.

LEMMA 20. For discrete abelian groups Γ and $E \subset \Gamma$,

(4F) $\nu(E,m) = \sup\{\nu(F,m) \mid F \subset E \& F \text{ is finite}\}.$

The proof of Lemma 20 is postponed until after the proof of Theorem 16.

Proof of Theorem 16. Suppose that, for all real $r \ge 1$, there is some m such that

(7)
$$\alpha(E) \le r \text{ implies } \nu(E,m) \le m.$$

If $\phi(r)$ is defined to be the minimum *m* such that condition (7) holds, then ϕ is non-decreasing with *r* and meets the requirements of the theorem.

So, for some real $r \geq 1$, suppose that for all m there is some $E_m \subset \mathbb{Z}$ for which $\alpha(E_m) \leq r$ and $\nu(E_m, m) > m$. By Lemma 20, there is a finite subset F_m of E_m with $\alpha(F_m) \leq r$ and $\nu(F_m, m) > m$. Let

$$F = \bigcup_m k_m F_m.$$

By Lemmas 18 and 19, $\nu(F,m) \geq \nu(k_m F_m,m) = \nu(F_m,m) > m$ for all m. Thus F is not a finite union of I_0 sets. If we choose k_m to increase rapidly, F will be a Sidon set; this will contradict the hypotheses.

To make F be Sidon let $k_1 = 1$ and, for m > 1, let $k_m > \pi^2 2^m M_{m-1}$, where M_t is the maximum absolute value of an element of $\bigcup_{s < t} k_s F_s$. Then, just as in the proof of Proposition 12.2.4, pages 371–372 of [4], $\{k_m F_m\}_m$ is a sup-norm partition for F: if p_m is a $k_m F_m$ -polynomial (on \mathbb{T}) and is non-zero for at most finitely many m, then

$$\sum_{m=1}^{\infty} \|p_m\|_{\infty} \le 2\pi \left\| \sum_{m=1}^{\infty} p_m \right\|_{\infty}.$$

Recall that B(F) (the restrictions to F of Fourier transforms of bounded Borel measures on \mathbb{T}) is the Banach space dual of $\operatorname{Trig}_F(\mathbb{T})$ (the trigonometric polynomials with spectrum in F). For $p \in \operatorname{Trig}_F(\mathbb{T})$, let p_m denote its summand in $\operatorname{Trig}_{k_m F_m}(\mathbb{T})$ under the natural decomposition. Then $f \in B(F)$, and

$$\begin{split} |\langle f, p \rangle| &= \Big| \sum_{m=1}^{\infty} \langle f, p_m \rangle \Big| \leq \sum_{m=1}^{\infty} |\langle f, p_m \rangle| \\ &\leq \sum_{m=1}^{\infty} \|f|_{k_m F_m} \|_{B(k_m F_m)} \|p_m\|_{\infty} \\ &\leq (\sup_{m \in \mathbb{Z}^+} \|f|_{k_m F_m} \|_{B(k_m F_m)}) \sum_{m=1}^{\infty} \|p_m\|_{\infty} \\ &\leq (r \sup_{m \in \mathbb{Z}^+} \|f|_{k_m F_m} \|_{\infty}) (2\pi \|p\|_{\infty}) \leq (2\pi r \|f\|_{\infty}) \|p\|_{\infty}. \end{split}$$

Thus, $||f||_{B(F)} \leq 2\pi r ||f||_{\infty}$. By the definition of Sidon constant, $\alpha(F) \leq 2\pi r$ and thus F is Sidon.

Proof of Theorem 17. As in the proof of Theorem 8, suppose that there is some $r \in [1, \infty)$ such that, for all m, there is an abelian group Γ_m and $F_m \subset \Gamma_m$ for which $\alpha(F_m) \leq r$ and $\mu(F_m, m) > m$. Let Γ be the direct sum of the Γ_m 's. Embed Γ_m into Γ canonically: $x \mapsto \gamma_x$, where $\gamma_x(m) = x$ and $\gamma_x(j) = 0$ for $j \neq m$. Under this embedding, neither $\alpha(F_m)$ nor $\nu(F_m, m)$ changes. Let

$$F = \bigcup_{m=1}^{\infty} F_m$$

Then for all $m, \nu(F,m) \geq \nu(F_m,m) > m$. Evidently, F is not the finite union of I_0 sets.

To see that F is a Sidon set, set $E = F \setminus \{0\}$ and $E_m = F_m \setminus \{0\}$. Then $\{E_m\}_{m=1}^{\infty}$ is a sup-norm partition of E. Specifically, let G be the compact group dual to Γ (Γ is given the discrete topology). For $p \in \operatorname{Trig}_E(G)$, if p_j denotes its natural summand in $\operatorname{Trig}_{E_j}(\Gamma)$, then

$$\sum_{j=1}^{\infty} \|p_j\|_{\infty} \le \pi \|p\|_{\infty}$$

by Lemma 12.2.2 of page 370 of [4]. To apply that lemma two things are required. First, no E_j may contain 0, which is true here. Second, in the language of [4], the ranges of $\{p_j\}_{j=1}^{\infty}$ are 0-additive: given $\{g_j\}_{j=1}^{\infty}$ from G, there is some $g \in G$ for which

(8)
$$\left| p(g) - \sum_{j=1}^{\infty} p_j(g_j) \right| = 0.$$

Here's a proof of equation (8). G is the infinite direct product of $G_m = \widehat{\Gamma_m}$. That is, $g \in G$ if and only if

$$g: \mathbb{Z}^+ \to \bigcup_m G_m, \quad \text{with } g(m) \in G_m$$

Let $g \in G$ satisfy $g(j) = g_j(j)$. Note that for any character γ used in p_j , $\langle \gamma, g \rangle$ is determined by g(j) (because γ is 0 in every other coordinate):

$$\langle \gamma, g \rangle = \prod_{s} \langle \gamma(s), g(s) \rangle = \langle \gamma(j), g(j) \rangle = \langle \gamma(j), g_j(j) \rangle = \langle \gamma, g_j \rangle.$$

Thus $p(g) = \sum_{j=1}^{\infty} p_j(g) = \sum_{j=1}^{\infty} p_j(g_j)$. Once it is known that E is supnorm partitioned by the E_t 's, then just as in the proof of Theorem 16 one has

$$\alpha(E) \le \pi \sup \alpha(E_t) \le \pi r.$$

That proves that E is Sidon. Since $\{0\}$ is a Sidon set, and the union of two Sidon sets is Sidon [11], $E \cup \{0\}$ is Sidon. Because $F \subset E \cup \{0\}$, that makes F be Sidon as well.

L. T. RAMSEY

Proof of Lemma 20. Let t equal the right-hand side of (4F). By Lemma 18, $t \leq \nu(E, m)$. Consider next the reversed inequality. For finite $F \subset E$ there are I_0 sets $I_{q,F}$ (possibly equal to \emptyset) with I_0 -degree no more than m such that

$$F = \bigcup_{q=1}^{l} I_{q,F}.$$

Without loss of generality, it may be assumed that the $I_{q,F}$'s are disjoint for distinct q's. Hence

(9)
$$\chi_F = \sum_{q=1}^t \chi_{I_{q,F}}.$$

By using Alaoglu's theorem in $\ell_{\infty}(\Gamma) = \ell_1(\Gamma)^*$ with successive subnets t times, there is a subnet F_{β} of the net of all finite subsets of E (ordered by increasing inclusion) such that

$$\lim_{\beta \to \infty} \chi_{I_{q,F_{\beta}}} = f_q \quad \text{weak-* in } \ell_{\infty}(\Gamma), \quad \text{ for } 1 \le q \le t.$$

This convergence implies pointwise convergence on Γ .

Necessarily, $f_q = \chi_{I_q}$ for some set $I_q \subset \Gamma$. By equation (9),

$$\sum_{q=1}^t \chi_{I_q} = \lim_{\beta \to \infty} \sum_{q=1}^t \chi_{I_{q,F_\beta}} = \lim_{\beta \to \infty} \chi_{F_\beta} = \chi_E.$$

Thus, E is the disjoint union of the I_q 's. Because each I_q is the limit of I_{q,F_β} with $N(I_{q,F_\beta}) \leq m$, we have $N(I_q) \leq m$ by Proposition 5.

We conclude this section by observing that the class of finite unions of I_0 sets is F_{σ} in 2^{Γ} .

PROPOSITION 21. The class of subsets of Γ which are finite unions of I_0 sets is F_{σ} in 2^{Γ} : they are $\bigcup_i \{E \subset \Gamma \mid \nu(E,i) \leq i\}$, where $\{E \subset \Gamma \mid \nu(E,i) \leq i\}$ is closed in 2^{Γ} .

Proof. *E* is in the class if and only if there are *m* and *n* such that $\nu(E,m) \leq n$. Since $\nu(E,m) \leq n$ implies $\nu(E,i) \leq i$ for $i = \max\{m,n\}$, this class is equal to $\bigcup_i \mathcal{U}_i$, where

$$\mathcal{U}_i = \{ E \subset \Gamma \mid \nu(E, i) \le i \}.$$

As in the proof of Lemma 2, equation (4F) and Lemma 18 imply that \mathcal{U}_i is closed in 2^{Γ} .

Appendix

LEMMA 1. For $E \subset \Gamma$,

$$AP(E) = C(b\Gamma)|_E = C(\overline{E})|_E = AP(\Gamma)|_E$$

Proof. Let us adopt as the definition of AP(E) that it is the closure in $\ell_{\infty}(E)$ of $B_d(E)$. First consider $AP(E) = C(b\Gamma)|_E$. Let $g \in C(b\Gamma)$. By [18, p. 32], there is a sequence $\mu_j \in M_d(G)$ such that $\widehat{\mu_j}$ converges uniformly on Γ to g. Necessarily, since $E \subset \Gamma$,

$$\widehat{\mu_j}|_E \in B_d(E)$$
 and $\lim_{i \to \infty} \widehat{\mu_j}|_E = g|_E$ in $\ell_{\infty}(E)$.

That puts $g|_E$ in AP(E). Conversely, suppose that $w \in AP(E)$. There is a sequence of $\mu_j \in M_d(G)$ such that $\widehat{\mu_j}|_E$ converges uniformly on E to w. Because E is dense in \overline{E} and this convergence is uniform on E, it follows that

$$\lim_{x \to 0} \widehat{\mu_j}|_{\bar{E}} = f$$

for some f which is a continuous function on \overline{E} and $f|_E = w$. Because $b\Gamma$ is compact and Hausdorff, it is normal; thus Tietze's extension theorem applies to f and there is some $g \in C(b\Gamma)$ such that $g|_{\overline{E}} = f$ (see [2]). Since $E \subset \overline{E}$,

$$w = f|_E = g|_E.$$

Thus, $w \in C(b\Gamma)|_E$.

Next, consider $C(b\Gamma)|_E = C(\overline{E})|_E$. Let $f \in C(\overline{E})$. As happened in the previous paragraph, Tietze's extension theorem provides some $g \in C(b\Gamma)$ such that $g|_{\overline{E}} = f$. Since $E \subset \overline{E}$, one has $f|_E = g|_E$. Conversely, suppose that $g \in C(b\Gamma)$. Then $g|_{\overline{E}} \in C(\overline{E})$. Necessarily, since $E \subset \overline{E}$,

$$g|_E = (g|_{\bar{E}})|_E.$$

Finally, consider $C(b\Gamma)|_E = AP(\Gamma)|_E$. Let $f \in AP(\Gamma)$. By [18, p. 32], f extends to a continuous function $g \in C(b\Gamma)$. Since $E \subset \Gamma$, $f|_E = g|_E$. Conversely, let $g \in C(b\Gamma)$; by [18, p. 32], $g|_{\Gamma} \in AP(\Gamma)$. Since $E \subset \Gamma$,

$$g|_E = (g|_{\varGamma})|_E.$$

DEFINITION. $E \subset \Gamma$ is called *helsonian* if and only if $\overline{E} \subset b\Gamma$ is a Helson set in $b\Gamma$.

PROPOSITION 2. $E \subset \Gamma$ is helsonian if and only if $B_d(E) = AP(E)$.

Proof. Suppose that $E \subset \Gamma$ is helsonian. Let $f \in AP(E)$. By Lemma 1, there is some $g \in C(\overline{E})$ such that $g|_E = f$. By hypothesis, $\overline{E} \subset b\Gamma$ is Helson; the definition of Helson is that, for every continuous function g on \overline{E} , there is some $\mu \in L_1(G_d) = M_d(G)$ such that $\widehat{\mu}|_{\overline{E}} = g$. Because $E \subset \overline{E}$,

$$\widehat{\mu}|_E = g|_E = f.$$

Thus, $AP(E) \subset B_d(E)$; by condition (1) of the first section, $AP(E) = B_d(E)$.

Next, suppose that $AP(E) = B_d(E)$ and let $f \in C(\overline{E})$. By Lemma 1, $f|_E \in AP(E)$; since $AP(E) = B_d(E)$,

$$f|_E = \widehat{\mu}|_E$$
 for some $\mu \in M_d(G)$.

Since $\hat{\mu}$ is continuous on $b\Gamma$ and $\overline{E} \subset b\Gamma$, $\hat{\mu}|_{\overline{E}}$ is continuous on \overline{E} . Because both $\widehat{\mu}|_{\overline{E}}$ and f are continuous on \overline{E} , E is dense in \overline{E} , and $f|_E = \widehat{\mu}|_E$, one has

$$f = \widehat{\mu}|_{\bar{E}}$$

This makes \overline{E} be a Helson subset of $b\Gamma$ and hence E helsonian.

PROPOSITION 3. Helsonian implies Sidon.

Proof. By [18, p. 115, Thm. 5.6.3], $\overline{E} \subset b\Gamma$ is Helson if and only if there is some $K \in \mathbb{R}^+$ such that, for all bounded Borel measures μ supported on \overline{E} ,

$$\|\mu\| \le K \|\widehat{\mu}\|_{\ell_{\infty}(G_d)}.$$

This applies to the discrete measures supported on $E, \mu \in M_d(E)$. Because $E \subset \Gamma$, for $\mu \in M_d(E)$ one has $\hat{\mu}$ continuous on G with respect to the original compact topology on G. Thus, for $\mu \in \ell_1(E) = M_d(E)$,

(A-1)
$$\|\mu\| \le K \|\widehat{\mu}\|_{C(G)}.$$

Let W(G) be the space $\ell_1(E)$, with the supremum norm. By (A-1) it is a closed subspace of C(G) and equivalent under $\phi = \hat{t}$ to $\ell_1(E)$. Therefore, using Banach space dualities, ϕ^* is an equivalence between $W(G)^*$ and $\ell_{\infty}(E)$. Since W(G) is a closed subspace of C(G), $W(G)^*$ is a quotient Banach space of $C(G)^* = M(G)$: $w \in W(G)^*$ if and only if there is some $\nu \in M(G)$ such that $w = \nu + W(G)^{\perp}$, where

$$W(G)^{\perp} = \{ \mu \in M(G) \mid \mu(W(G)) = \{0\} \}.$$

Thus, for $w \in W(G)^*$ and $f \in \ell_1(E)$, if $w = \nu + W(G)^{\perp}$, then $\langle \phi^*(w), f \rangle = \langle w, \phi(f) \rangle = \langle u, \widehat{f} \rangle$

$$\langle \phi^*(w), f \rangle = \langle w, \phi(f) \rangle = \langle \nu, \widehat{f} \rangle$$

However, because $f = \sum_{y \in E} c_y \delta_y$ with $\sum_{y \in E} |c_y| < \infty$, we may use Fubini's theorem in the following calculation:

$$\begin{split} \langle \nu, \widehat{f} \rangle &= \int_{G} \widehat{f}(x) \, d\nu(x) = \int_{G} \Big(\sum_{y \in E} \langle -x, y \rangle c_{y} \Big) d\nu(x) \\ &= \sum_{y \in E} c_{y} \int_{G} \langle -x, y \rangle \, d\nu(x) = \sum_{y \in E} c_{y} \widehat{\nu}(y) = \langle \widehat{\nu}, f \rangle \end{split}$$

Since this holds for all $f \in \ell_1(E)$, $\phi^*(w) = \hat{\nu}|_E$ in $\ell_{\infty}(E)$. Thus, since ϕ^* is onto $\ell_{\infty}(E)$, $B(E) = \ell_{\infty}(E)$ and hence E is Sidon.

PROPOSITION 4. B(E) = AP(E) implies that E is I_0 .

Proof. Since

$$\|f\|_{B(E)} \ge \|f\|_{\infty},$$

the two Banach spaces have equivalent norms: there is some $K \in \mathbb{R}^+$ such that

 $\|f\|_{B(E)} \le K \|f\|_{\infty}.$

As in [11], this is equivalent to the Sidonicity of $E: \ell_{\infty}(E) = B(E)$. Since AP(E) = B(E), one therefore has $AP(E) = \ell_{\infty}(E)$ and thus E is an I_0 set. \blacksquare

EXAMPLE 5. Helsonian does not imply I_0 .

Proof. In general, the union of two helsonian sets E and F is helsonian, because the union of two Helson sets is Helson [4, pp. 48–67] and

$$\overline{E \cup F} = \overline{E} \cup \overline{F}.$$

Apply this to the sets $\{2^n\}_n$ and $\{2^n + n\}_n$, which are sufficiently lacunary to be I_0 sets and hence helsonian [19]. However, the two sets have some cluster points in common in $b\mathbb{Z}$ and hence the function which is 1 on one of them and 0 on the other cannot be extended almost periodically to all of \mathbb{Z} . To see that they have a cluster point in common, note that there is a net $\{n_\beta\} \subset \mathbb{Z}^+$ such that $n_\beta \to 0$ in $b\mathbb{Z}$. By the compactness of $b\mathbb{Z}$, there is a subnet β_t for which $2^{n_{\beta_t}}$ is convergent in $b\mathbb{Z}$. By the continuity of the group operations in $b\mathbb{Z}$,

$$\lim_{t} 2^{n_{\beta_t}} = \lim_{t} (2^{n_{\beta_t}} + n_{\beta_t}).$$

Kalton's Theorem revisited. This result of Kalton's is close to previous work by Kahane, J.-F. Méla, Ramsey and Wells [7, 12, 17].

DEFINITION. Let D(N) denote the set of discrete measures μ on G for which

$$\mu = \sum_{j=1}^{N} c_j \delta_{t_j},$$

where $|c_j| \leq 1$ and $t_j \in G$ for each j. For $E \subset \Gamma$ and $\delta \in \mathbb{R}^+$, let $AP(E, N, \delta)$ be the set of $f \in \ell_{\infty}(E)$ for which there exists $\mu \in D(N)$ such that

$$\|f - \widehat{\mu}\|_E \|_{\infty} \le \delta.$$

E is said to be $I(N, \delta)$ if the unit ball in $\ell_{\infty}(E)$ is a subset of $AP(E, N, \delta)$.

LEMMA 6. For $E \subset \Gamma$ and $\delta \in \mathbb{R}^+$, the set $AP(E, N, \delta)$ is closed in \mathbb{C}^E (the space of all complex functions on E with the topology of pointwise convergence).

Proof. Let f_{α} be a net of functions from $AP(E, N, \delta)$ which converge to some $f \in \mathbb{C}^{E}$. Let $\mu_{\alpha} \in D(N)$ satisfy

$$\|f_{\alpha} - \widehat{\mu_{\alpha}}|_E\|_{\infty} \le \delta.$$

Write μ_{α} as

$$\mu_{\alpha} = \sum_{i=1}^{N} c_{i,\alpha} \delta_{t_{i,\alpha}},$$

with $|c_{i,\alpha}| \leq 1$ and $t_i \in G$ for all *i*. Because *G* and the unit disc of \mathbb{C} are compact, one may choose successive subnets of the α 's so that, if one labels the final net with β , then

$$\lim_{\beta} c_{i,\beta} = c_i \in \mathbb{C} \quad \text{and} \quad \lim_{\beta} t_{i,\beta} = t_i \in G, \quad \text{ for all } i.$$

Of course, $|c_i| \leq 1$. Let $\mu = \sum_{i=1}^N c_i \delta_{t_i}$. Since the topology on G is that given by uniform convergence on compact subsets of Γ , we have, for all $x \in \Gamma$ and each i,

$$\lim_{\beta} \widehat{\delta_{t_{i,\beta}}}(x) = \lim_{\beta} \langle -x, t_{i,\beta} \rangle = \langle -x, t_i \rangle = \widehat{\delta_{t_i}}(x).$$

It follows that, for all $x \in E \subset \Gamma$,

$$\lim_{\beta} \widehat{\mu_{\beta}}(x) = \lim_{\beta} \sum_{i=1}^{N} c_{i,\beta} \widehat{\delta_{t_{i,\beta}}}(x) = \sum_{i=1}^{N} c_i \widehat{\delta_{t_i}}(x) = \widehat{\mu}(x).$$

Therefore, for all $x \in E$,

$$|f(x) - \widehat{\mu}(x)| = \lim_{\beta} |f_{\beta}(x) - \widehat{\mu_{\beta}}(x)| \le \delta.$$

Thus $f \in AP(E, N, \delta)$.

THEOREM 7. For any discrete abelian group Γ and $E \subset \Gamma$, the following are equivalent:

- (1) E is an I_0 set.
- (2) There is some $\delta \in (0,1)$ and some N for which E is $I(N,\delta)$.

(3) There is some $\delta \in (0,1)$ and some $M \in \mathbb{R}^+$ such that, for all f in the unit ball of $\ell_{\infty}(E)$, there are points $g_j \in G$ and complex numbers c_j with $|c_j| \leq M\delta^j$ for which

$$f = \widehat{\mu}|_E, \quad where \ \mu = \sum_{j=1}^{\infty} c_j \delta_{g_j}$$

- (4) For all $\delta \in (0,1)$ there is some N for which E is $I(N,\delta)$.
- (5) $B_d(E) = \ell_\infty(E)$.

Proof. (1) \Rightarrow (2). Assume (1) above, and consider (2) with $\delta = 1/2$. Let \mathbb{T} denote the complex numbers of modulus 1 and \mathbb{T}^E the set of all functions

on E with values in \mathbb{T} . Condition (1) implies that

(A-2)
$$\mathbb{T}^E \subset \bigcup_n AP(E, n, 1/5).$$

Since AP(E, n, 1/5) is closed in \mathbb{C}^E as is \mathbb{T}^E (under the topology of pointwise convergence), $AP(E, n, 1/5) \cap \mathbb{T}^E$ is a closed subset of \mathbb{T}^E and hence measurable. Because condition (A-2) involves the union of sets which increase with n, there is some N for which the measure of $AP(E, N, 1/5) \cap \mathbb{T}^E$ is at least 1/2 for the Haar measure on \mathbb{T}^E . Since \mathbb{T}^E is a connected topological group, a theorem of Kemperman's implies that $AP(E, N, 1/5) \cdot AP(E, N, 1/5) = \mathbb{T}^E$ (see [10]). So, for any $f \in \mathbb{T}^E$, there are functions f_1 and f_2 in $AP(E, N, 1/5) \cap \mathbb{T}^E$ such that $f = f_1 f_2$. There are discrete measures μ_1 and μ_2 in D(N) such that $\widehat{\mu_1}$ approximates f_1 within 1/5 on E and $\widehat{\mu_2}$ approximates f_2 within 1/5 on E. It follows that, for $x \in E$,

$$\begin{aligned} |f(x) - \mu_1 \ast \mu_2(x)| &= |(f_1 \cdot f_2)(x) - \widehat{\mu_1}(x)\widehat{\mu_2}(x)| \\ &\leq |f_1(x)[f_2(x) - \widehat{\mu_2}(x)]| + |\widehat{\mu_2}(x)[f_1(x) - \widehat{\mu_1}(x)]| \\ &\leq 1/5 + (1/5) \cdot (|f_2(x)| + 1/5) = (1/5) \cdot (11/5) < 1/2. \end{aligned}$$

Note that $\mu_1 * \mu_2$ can be represented as a sum of N^2 point masses with complex coefficients bounded by 1 in absolute value:

$$\mu_1 * \mu_2 = \left(\sum_{i=1}^N c_i \delta_{x_i}\right) * \left(\sum_{j=1}^N d_j \delta_{y_j}\right) = \sum_{i,j} (c_i d_j) \delta_{x_i + y_j}.$$

Finally, note that g on E with $||g||_{\infty} \leq 1$ is an average of two functions in \mathbb{T}^E : there exist g_1 and g_2 in \mathbb{T}^E such that $g = (g_1 + g_2)/2$. [In \mathbb{C} , project g(x) to two points of modulus one for which the line segment joining them is perpendicular to the radial segment from 0 to g(x). If g(x) = 0, let $g_1(x) = 1$ while $g_2(x) = -1$.] If $\mu_i \in D(N^2)$ approximates g_i within 1/2, then

$$\begin{aligned} \|g - (1/2)(\mu_1 + \mu_2|_E)\|_{\infty} &\leq (1/2)(\|g_1 - \widehat{\mu_1}|_E\|_{\infty} + \|g_2 - \widehat{\mu_2}|_E\|_{\infty}) \\ &\leq (1/2)(1/2 + 1/2) = 1/2. \end{aligned}$$

This puts g in $AP(E, 2N^2, 1/2)$.

 $(2) \Rightarrow (3)$. Condition (2) will be applied inductively. Let $f \in \ell_{\infty}(E)$ with $||f||_{\infty} \leq 1$. There is some $\mu_1 \in D(N)$ such that

$$\|f - \widehat{\mu_1}\|_E \|_\infty \le \delta.$$

Next, suppose $\mu_i \in D(N)$ have been selected for $i \leq J$, such that

$$\left\|f - \sum_{i=1}^{J} \delta^{i-1} \widehat{\mu}_i|_E\right\| \le \delta^J.$$

Apply condition (2) to

$$g = \delta^{-J} \left(f - \sum_{i=1}^{J} \delta^{i-1} \widehat{\mu}_i |_E \right)$$

to obtain $\mu_{J+1} \in D(N)$ such that

$$\|g - \widehat{\mu_{J+1}}|_E\|_{\infty} \le \delta.$$

Then

$$\left\|f - \sum_{i=1}^{J+1} \delta^{i-1} \widehat{\mu}_i\right\|_{\infty} = \delta^J \|g - \widehat{\mu}_{J+1}\|_E \|_{\infty} \le \delta^{J+1}.$$

By the induction principle, there is a sequence $\mu_i \in D(N)$ such that

$$f = \sum_{i=1}^{\infty} \delta^{i-1} \widehat{\mu}_i|_E$$

One may enumerate the point masses used in μ_i consecutively for each *i*, say as δ_{x_j} , so that the coefficient of δ_{x_j} is bounded by δ^{i-1} for $(i-1)N < j \leq iN$. Let c_j be this coefficient. Then, since $\delta \in (0, 1)$,

$$|c_j| \le \delta^{i-1} = \delta^{\lceil j/N \rceil - 1} \le \delta^{(j/N) - 1} = (1/\delta)(\delta^{1/N})^j.$$

This proves condition (3) with $M = 1/\delta$ and $\delta^{1/N}$ in the role of δ .

 $(3) \Rightarrow (4)$. Let condition (3) hold with M and some $\delta' \in (0, 1)$ and consider any $\delta \in (0, 1)$ for condition (4). Since $\delta' \in (0, 1)$ there is some N' such that

$$M\sum_{j=N'+1}^{\infty} (\delta')^{j} = M(\delta')^{N'+1}/(1-\delta') \le \delta.$$

Specifically, one needs

$$(N'+1)\log(\delta') \le \log([\delta(1-\delta')/M])$$

and hence

$$N' \ge \{\log([\delta(1-\delta')/M])/\log(\delta')\} - 1.$$

$$m_{\lambda} = \lceil M(\delta')^j \rceil$$

For $j \leq N'$, set $m_j = \lceil M(\delta')^j \rceil$. Let f be in the unit ball of $\ell_{\infty}(E)$. By condition (3), there are coefficients c_j and elements t_j of G such that $|c_j| \leq M(\delta')^j$ and

$$f = \widehat{\mu}|_E$$
, where $\mu = \sum_{j=1}^{\infty} c_j \delta_{t_j}$

Let $p_j = \lceil |c_j| \rceil$; necessarily, $p_j \leq m_j$. Set $c_j = |c_j|e^{i\theta_j}$ for some real θ_j . Then

$$c_j \delta_{t_j} = \sum_{i=1}^{m_j} c_{j,i} \delta_{t_{j,i}},$$

where $t_{j,i} = t_j$ for all *i* and

$$c_{j,i} = \begin{cases} e^{i\theta_j} & \text{for } 1 \le i < p_j, \\ e^{i\theta_j}(|c_j| - p_j + 1) & \text{for } i = p_j, \\ 0 & \text{for } i > p_j. \end{cases}$$

It follows that

$$||f - \widehat{\nu}|_E||_{\ell_{\infty}(E)} \le \delta,$$

$$\nu = \sum_{j=1}^{N'} c_j \delta_{tj} = \sum_{j=1}^{N'} \sum_{i=1}^{m_j} c_{i,j} \delta_{t_{i,j}}$$

is a sum of $N'' = \sum_{j=1}^{N'} m_j$ point masses with coefficients bounded by 1 in absolute value. Thus $f \in AP(E, N'', \delta)$ and E is an $I(N'', \delta)$ set.

 $(4) \Rightarrow (5).$ (4) implies (2), which has been shown to imply (3). Let $f \in \ell^{\infty}(E)$. If $f = 0, f \in B_d(E)$ trivially. If $f \neq 0$, apply (3) to $g = f/||f||_{\infty}$ to obtain a discrete measure μ such that $\hat{\mu}|_E = g$. Clearly,

$$\|f\|_{\infty}\mu|_E = f$$

(5)⇒(1). By equation (1) of the introduction, $B_d(E) \subset AP(E) \subset \ell_{\infty}(E)$. If $B_d(E) = \ell_{\infty}(E)$, then $AP(E) = \ell_{\infty}(E)$ and hence E is an I_0 set. ■

REFERENCES

- J. Bourgain, Sur les ensembles d'interpolation pour les mesures discrètes, C. R. Acad. Sci. Paris 296 (1983), 149-151.
- [2] J. Dugundji, *Topology*, Allyn and Bacon, Boston, 1967, pp. 144–149.
- [3] J. Elton, Sign-embeddings of ℓ_1^n , Trans. Amer. Math. Soc. 279 (1983), 113–124.
- C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979, pp. 48-67 and 364-370.
- [5] D. Grow, Sidon sets and I₀ sets, Colloq. Math. 53 (1987), 269–270.
- S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, ibid. 12 (1964), 23-39.
- J.-P. Kahane, Ensembles de Ryll-Nardzewski et ensembles de Helson, ibid. 15 (1966), 87-92.
- [8] N. J. Kalton, On vector-valued inequalities for Sidon sets and sets of interpolation, ibid. 64 (1993), 233-244.
- [9] Y. Katznelson, Characterization of $C(\mathfrak{M})$, personal communication, 1960.
- [10] J. H. B. Kemperman, On products of sets in a locally compact group, Fund. Math. 56 (1964), 51–68.
- [11] J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, New York, 1975, p. 4.
- [12] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman, Studia Math. 29 (1967/1968), 167–193.
- [13] A. Pajor, Plongement de l₁ⁿ dans les espaces de Banach complexes, C. R. Acad. Sci. Paris 296 (1983), 741-743.

[14] G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, in: Topics in Modern Harmonic Analysis (Torino/Milano 1982), Istituto Nazionale de Alta Matematica, Roma, 1983, 911–944.

L. T. RAMSEY

- [15] L. T. Ramsey, Bohr cluster points of Sidon sets, Colloq. Math. 68 (1995), 285–290.
- [16] —, A theorem of C. Ryll-Nardzewski and metrizable L.C.A. groups, Proc. Amer. Math. Soc. 78 (1980), 221–224.
- [17] L. T. Ramsey and B. B. Wells, Interpolation sets in bounded groups, Houston J. Math. 10 (1984), 117–125.
- [18] W. Rudin, Fourier Analysis on Groups, Wiley, New York, 1962, pp. 32-36.
- [19] E. Strzelecki, On a problem of interpolation by periodic and almost periodic functions, Colloq. Math. 11 (1963), 91–99.

MATHEMATICS, KELLER HALL 2565 THE MALL HONOLULU, HAWAII 96822 U.S.A. E-mail: RAMSEY@MATH.HAWAII.EDU

RAMSEY@UHUNIX.UHCC.HAWAII.EDU

Reçu par la Rédaction le 21.6.1995

132