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COMPARISONS OF SIDON AND I0 SETS

BY

L . THOMAS RAMSEY (HONOLULU, HAWAII)

Introduction. Let Γ be an arbitrary discrete abelian group. Sidon and
I0 subsets of Γ are interpolation sets in different but quite similar senses.
In this paper we establish several similarities and one deeper connection:

(1) Bd(E) and B(E) are isometrically isomorphic for finite E ⊂ Γ .
Bd(E) = `∞(E) characterizes I0 sets E, and B(E) = `∞(E) character-
izes Sidon sets E. [In general, Sidon sets are distinct from I0 sets. Within
the group of integers Z, the set {2n}n∪{2n +n}n is helsonian (hence Sidon)
but not I0.]

(2) Both are Fσ in 2Γ (as is also the class of finite unions of I0 sets).
(3) There is an analog for I0 sets of the sup-norm partition construction

used with Sidon sets.
(4) A set E is Sidon if and only if there is some r ∈ R+ and positive

integer N such that, for all finite F ⊂ E, there is some H ⊂ F with |H| ≥
r|F | andH is an I0 set of degree at mostN . [Here |S| denotes the cardinality
of S; two different but comparable definitions of degree for I0 sets are given
below.]

(5) If all Sidon subsets of Z are finite unions of I0 sets, the number of
I0 sets required is bounded by some function of the Sidon constant. This is
also true in the category of all discrete abelian groups.

This paper leaves open this question: must Sidon sets be finite unions
of I0 sets?

Let G denote the (compact) dual group of Γ . In general, unspecified
variables such as j and N denote positive integers. M(G) denotes the Ba-
nach algebra under convolution of bounded Borel measures on G; the norm
in M(G) is the total mass norm. Md(G) denotes the Banach subalgebra of
M(G) consisting of discrete measures. bΓ denotes the Bohr compactifica-
tion of Γ : bΓ = Ĝd, the dual of discretized G. Naturally, Γ is dense in bΓ .
The almost periodic functions on Γ are exactly the functions which extend

1991 Mathematics Subject Classification: Primary 43A56.
Key words and phrases: Sidon, I0 set, almost periodic function.

[103]



104 L. T. RAMSEY

continuously to bΓ ; they are also the uniform limits of the Fourier trans-
forms of µ ∈ Md(G) [18, p. 32]. For subsets E ⊂ Γ , this paper focuses on
the relations among several function algebras on E: Bd(E), B(E), AP (E),
and `∞(E). Bd(E) is the space of restrictions to E of Fourier transforms µ̂
of µ ∈Md(G), with the following quotient norm:

‖f‖Bd(E) = inf{‖µ‖ | µ ∈Md(G) & µ̂|E = f}.
B(E) is the space of restrictions to E of Fourier transforms µ̂ of µ ∈M(G),
with this quotient norm:

‖f‖B(E) = inf{‖µ‖ | µ ∈M(G) & µ̂|E = f}.
`∞(E) is the space of all bounded functions on E with the supremum norm;
AP (E) is the closure in `∞(E) of Bd(E), and retains the supremum norm
(cf. Lemma 1 of the Appendix). The following inclusions hold and are
norm-decreasing:

(1) Bd(E) ⊂ AP (E) ⊂ `∞(E) and Bd(E) ⊂ B(E) ⊂ `∞(E).

In general, these inclusions are all strict. When Γ is infinite, equality is rare
among all the subsets of Γ (measure zero in 2Γ ) but has been extensively
studied. Condition (1) allows six possible equalities among the algebras
Bd(E), AP (E), `∞(E), and B(E). Three of these equalities characterize
special sets: Sidon (B(E) = `∞(E); see [11]), I0 sets (AP (E) = `∞(E); see
[6]), and helsonian (Bd(E) = AP (E) by Proposition 2 of the Appendix).
Kahane resolved one of the remaining possible equalities by proving that
I0 is equivalent to the formally stricter condition Bd(E) = `∞(E) (see [7]);
Kalton’s proof of this is in the Appendix. It follows from Kahane’s theorem
that

I0 ⇒ helsonian and I0 ⇒ Sidon.
By Proposition 3 of the Appendix, helsonian implies Sidon; thus

(2) I0 ⇒ helsonian ⇒ Sidon.

Bourgain resolved another possible equality by showing that Bd(E) = B(E)
implies that E is I0 (see [1]). By Proposition 4 of the Appendix, B(E) =
AP (E) implies that E is I0, thus disposing of the last possible equality.
Example 5 of the Appendix proves that helsonian (Sidon) does not imply
I0. It is unknown whether helsonian (Sidon) sets must be a finite union of I0
sets [5]. Also unknown is whether Sidon sets must be helsonian. Concerning
this last question, there is this theorem by Ramsey: if a Sidon subset of the
integers Z clusters at any member of Z in bZ, then there is a Sidon set which
is dense in bZ and hence clearly not helsonian [15].

Among the four algebras Bd(E), B(E), AP (E) and `∞(E), two inclusion
relations remain to be explored: B(E) ⊂ AP (E) andAP (E) ⊂ B(E). If Γ is
an abelian group of bounded order, B(E) ⊂ AP (E) implies that E is I0 (see
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[17]). (In [17], a hypothesis which is formally weaker than B(E) ⊂ AP (E)
is shown to be sufficient to make E be I0.) No work has been reported on
AP (E) ⊂ B(E).

Sidon and I0 sets are Fσ in 2Γ . David Grow proved that, for finite
subsets E of Z, B(E) = Bd(E) isometrically [5]. As he rightly concludes,
“one cannot determine whether a Sidon set E is a finite union of I0 sets
merely by examining the norms of interpolating discrete measures”. This
theorem generalizes to Γ (indeed to the dual object of any compact topo-
logical group).

Theorem 1. The algebras Bd(E) and B(E) are isometric for finite
subsets E of a discrete abelian group Γ .

P r o o f. Let E be given and ε ∈ R+. Let f ∈ B(E) and µ ∈M(G) such
that µ̂|E = f and ‖µ‖ ≤ (1 + ε)‖f‖B(E). There exists a neighborhood U of
0 ∈ G such that

g ∈ U implies (∀x ∈ E)
(
|x(g)− 1| < ε′ =

ε

‖µ‖+ 1

)
.

Since G is compact and {g + U | g ∈ G} is an open covering of G, there
is a finite set G′ = {g1, . . . , gn} such that {g + U | g ∈ G′} covers G. Let
E1 = g1 + U ; for j > 1 set Ej = (gj + U)\(

⋃
i<j Ei). Then G is the disjoint

union of the Ei’s. Let ν =
∑n

j=1 µ(Ej)δgj
. Then

‖ν‖ =
n∑

j=1

|µ(Ej)| ≤ ‖µ‖ ≤ (1 + ε)‖f‖B(E).

Also, for x ∈ E, with |µ| denoting the total variation measure for µ,

|ν̂(x)− f(x)| = |ν̂(x)− µ̂(x)| =
∣∣∣ n∑

j=1

[
µ(Ej)x(−gj)−

∫
Ej

x(−g) dµ(g)
]∣∣∣

=
∣∣∣ n∑

j=1

∫
Ej

[x(−gj)− x(−g)] dµ(g)
∣∣∣

≤
n∑

j=1

∫
Ej

|x(−gj)− x(−g)| d|µ|(g)

≤
n∑

j=1

∫
Ej

|x(g − gj)− 1| d|µ|(g) ≤
n∑

j=1

ε′|µ|(Ej) = ε′‖µ‖ < ε.

By the previous paragraph, there is a sequence of discrete measures νj

such that ‖νj‖ ≤ (1 + 1/j)‖f‖B(E) and ‖ν̂j |E − f‖∞ ≤ (1/j). Thus ν̂j |E
converges to f in `∞(E). By [16, p. 222] any finite subset of Γ is an I0 set.
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By Theorem 7 of the Appendix, the `∞(E) and Bd(E) norms are equivalent:
there is a constant K such that, for all g ∈ `∞(E),

‖g‖Bd(E) ≤ K‖g‖∞.
Thus ν̂j |E converges to f in Bd(E), and hence

‖f‖Bd(E) = lim
j→∞

‖ν̂j |E‖Bd(E) ≤ lim sup
j→∞

‖νj‖ ≤ ‖f‖B(E).

That proves isometry, since ‖f‖Bd(E) ≤ ‖f‖B(E) always holds.
There is a more elementary way to see this, without using [16]. Since

E is finite, Bd(E) is a finite-dimensional vector subspace of `∞(E). Due
to the finite-dimensionality of Bd(E), Bd(E) is a closed subspace of `∞(E)
and norm equivalence holds for g ∈ Bd(E). Since ν̂j is from Bd(E) and
converges to f ∈ `∞(E), the closedness of Bd(E) puts f in Bd(E). By the
norm equivalence, ν̂j converges to f in Bd(E), and the rest of the proof is
valid.

Sidon sets are “finitely describable” by norm comparisons. Following
[11], the Sidon constant of a set E ⊂ Γ is the minimum constant α(E) ≥ 0
such that, for all f ∈ `∞(E), ‖f‖B(E) ≤ α(E)‖f‖∞. As in [11], this is
the same minimum constant such that ‖τ‖A(G) ≤ α(E)‖τ‖C(G) for all τ ∈
TrigE(G), the trigonometric polynomials on G with spectrum in E. This
is true because, viewing TrigE(G) as a closed subspace of C(G), one has
TrigE(G)∗ = B(E) (isometrically) while A(G) is isometric to `1(Γ ) and
hence A(G)∗ is isometric to `∞(Γ ).

It follows that

(3) E1 ⊂ E2 implies α(E1) ≤ α(E2)

and that

(4) α(E) = sup{α(F ) | F ⊂ E & F is finite}.
These observations lead to the next lemma:

Lemma 2. Let Sr = {E ⊂ Γ | α(E) ≤ r}. Then Sr is closed in 2Γ .

P r o o f. In this proof, we identify A ⊂ Γ with χA ∈ 2Γ . Let Eβ be a net
in Sr which converges to E ⊂ Γ . Let F be any finite subset of E. Because
the convergence in 2Γ is pointwise, there is some β0 for which β ≥ β0 implies
F ⊂ Fβ . By (3) above, α(F ) ≤ α(Fβ) ≤ r. Since this holds for all finite
F ⊂ E, α(E) ≤ r by (4) above.

Proposition 3. For discrete abelian groups Γ , the class of Sidon sets
is an Fσ subset of 2Γ : it is

⋃
n Sn with Sn as in Lemma 2.

David Grow’s theorem makes clear that only making norm comparisons
will not extend Proposition 3 to I0 sets. The following definition provides
appropriate tools.
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Definition. Let D(N) denote the set of discrete measures µ on G for
which

µ =
N∑

j=1

cjδtj ,

where |cj | ≤ 1 and tj ∈ G for each j. For E ⊂ Γ and δ ∈ R+, let AP (E,N, δ)
be the set of f ∈ `∞(E) for which there exists µ ∈ D(N) such that

‖f − µ̂|E‖∞ ≤ δ.

E is said to be I(N, δ) if the unit ball in `∞(E) is a subset of AP (E,N, δ).
Further, N(E), the I0 degree of a set E, is the minimum m for which E
is I(m, 1/2) if such an m exists, and ∞ otherwise. [By Theorem 7 of the
Appendix, E is I0 if and only N(E) <∞.]

The analog of condition (3) is immediate from the preceding definitions:

(3I) E1 ⊂ E2 implies N(E1) ≤ N(E2).

The next lemma is the analog of condition (4).

Lemma 4. For E ⊂ Γ ,

(4I) N(E) = sup{N(F ) | F is a finite subset of E}.
P r o o f. Set J equal to the right-hand side of (4I). By condition (3I),

J ≤ N(E). If J = ∞, then N(E) = ∞ and hence J = N(E). So suppose
that J is finite. Let f ∈ `∞(E) such that ‖f‖∞ ≤ 1. For each finite F ⊂ E,
interpolate f |F within 1/2 by a discrete measure µF ∈ D(J); write µF as

µF =
J∑

j=1

cFj δgF
j

with |cFj | ≤ 1. The finite subsets of E form a net, ordered by increasing
inclusion. By the compactness of G (from which gF

j comes), and the com-
pactness of the unit disc in C, one may choose 2J subnets successively so
that, for the final net {Fα}α, one has

lim
α
gFα

j = gj & lim
α
cFα
j = cj for all 1 ≤ j ≤ J.

Necessarily, |cj | ≤ 1. Set µ =
∑J

j=1 cjδgj
. Let γ ∈ E. There is some α0 in

the subnet such that γ ∈ Fα for all α ≥ α0. Also for α ≥ α0,

|f(γ)− µ̂Fα(γ)| ≤ 1/2.

However, limα γ(gFα
j ) = γ(gj) for 1 ≤ j ≤ N because γ is a continuous

character on G. It follows that

lim
α
µ̂Fα(γ) = lim

α

J∑
j=1

cFα
j γ(−gFα

j ) =
J∑

j=1

cjγ(−gj) = µ̂(γ).
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Thus |f(γ) − µ̂(γ)| ≤ 1/2. That establishes f ∈ AP (E, J, 1/2). So N(E)
≤ J .

The proof of the next proposition is the same as that of Lemma 2 and
Proposition 3.

Proposition 5. The I0 sets are an Fσ in 2Γ : they are
⋃

n{E ⊂ Γ |
N(E) ≤ n} where {E ⊂ Γ | N(E) ≤ n} is closed in 2Γ .

The author first realized that I0 sets and Sidon sets are Fσ in 2Γ , when
studying A = Ã sets: those sets for which A(E) = B(E)∩ c0(E) [4, p. 364].
Whether A = Ã sets are Fσ in 2Γ is not known. Equally unknown is the
status of sets E such that A(E) = B0(E), where

B0(E) = {f |E | f ∈ B(Γ ) ∩ c0(Γ )}.
Both of these properties, to a naive view, seem to “live at infinity” and
thus fail to be “finitely describable”. If it could be proved that they are
not Fσ in 2Γ , then questions (1) and (1′) of [4, p. 369] would have negative
answers. An open question which is closer to the focus of this paper is this:
do helsonian sets constitute an Fσ class?

“Finitely described”, again. In [6], two other equivalent formulations
of being I0 are established. First, a set E is I0 if and only if every function
on E taking values 0 and 1 can be extended to a continuous almost periodic
function over Γ [6, p. 25]. Second, a set E is an I0 set if and only if, for
every subset F ⊂ E, the sets F and E\F have disjoint closures in bΓ .
These formulations permit a weakening of the sufficient conditions listed in
Theorem 7 of the Appendix (a very similar and yet weaker condition is in
[12]).

Definition. Let C1 and C2 be closed subsets of C. For E ⊂ Γ , E is
said to be J(N,C1, C2) if and only if, for all F ⊂ E, there is some µ ∈ D(N)
such that µ̂(F ) ⊂ C1 and µ̂(E\F ) ⊂ C2. When C1 = {z | =(z) ≥ δ}, and
C2 = {z | =(z) ≤ −δ}, J(N,C1, C2) is abbreviated as J(N, δ). S(E) is the
minimum m such that E is J(m, 1/2) if such an m exists, and ∞ otherwise.
[By Proposition 6 below, E is I0 if and only if S(E) <∞.]

Proposition 6. The following are equivalent :

(1) E is an I0 set.
(2) E is J(N,C1, C2) for some N and some disjoint subsets C1 and C2.
(3) For all 0 < δ < 1, there is some N such that E is J(N, δ).

P r o o f. (3)⇒(2) is immediate.
(2)⇒(1). Assume that E is J(N,C1, C2) for some disjoint C1 and C2

and some N . For F ⊂ E, let µF ∈ D(N) satisfy condition (2) for F . By [18,
p. 32], the group bΓ is the maximal ideal space of Md(G) and the Gelfand
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transform is just the Fourier–Stieltjes transform. Because D(N) ⊂ Md(G),
µ̂F is a continuous function on bΓ . Because C1 is a closed subset of C,
H1 = µ̂F

−1(C1) is a closed subset of bΓ with F ⊂ H1. Likewise, H2 =
µ̂F

−1(C2) is a closed subset of bΓ with (E\F ) ⊂ H2. Because C1 and C2

are disjoint, H1 and H2 are disjoint; thus F and E\F have disjoint closures
in bΓ . Because this holds for all F ⊂ E, E is an I0 set by [6].

(1)⇒(3). Now suppose that E is an I0 set and consider any δ such that
0 < δ < 1. By Theorem 7 of the Appendix, there is some N such that E
is I(N, 1 − δ). Let F ⊂ E; the function h which is i on F and −i on E\F
is in the unit ball of `∞(E). By the definition of I(N, 1− δ), there is some
µ ∈ D(N) such that

‖µ̂|E − h‖∞ ≤ 1− δ.

For γ ∈ F , h(γ) = i and hence =(µ̂(γ)) ≥ 1 − (1 − δ) = δ. For γ ∈ (E\F ),
h(γ) = −i and hence =(µ̂(γ)) ≤ −1 + (1− δ) ≤ −δ.

The proof of Proposition 6 provides the following corollary.

Corollary 7. For E ⊂ Γ , S(E) ≤ N(E).

Bounding N(E) by some function of S(E) is the purpose of the next
theorem.

Theorem 8. There is a non-decreasing function φ with φ(Z+) ⊂ Z+

such that , for all discrete abelian groups Γ and all E ⊂ Γ , N(E) ≤ φ(S(E)).

Some lemmas will help in proving Theorem 8. Lemma 9 follows imme-
diately from the definitions of N(E) and S(E).

Lemma 9. For E ⊂ Γ and γ ∈ Γ , N(E) = N(E + γ) and S(E) =
S(E + γ).

Lemma 10. For any N , let S be a finite set which is 1/(8N) dense in
T and let E ⊂ Γ with S(E) ≤ N . Then, for all subsets F ⊂ E, there are
N points tj ∈ G, integers rj ∈ [0, 8N ], and sj ∈ S such that

(∀γ ∈ F )[=(µ̂(γ)) ≥ 1/4] and (∀γ ∈ E\F )[=(µ̂(γ)) ≤ −1/4],

where

µ = (8N)−1
N∑

j=1

sjrjδtj .

P r o o f. By the definition of S(E),E is J(S(E),1/2)and hence J(N, 1/2).
Thus, for any F ⊂ E, there is a discrete measure ν ∈ D(N) such that

(∀γ ∈ F )[=(ν̂(γ)) ≥ 1/2] and (∀γ ∈ E\F )[=(ν̂(γ)) ≤ −1/2],

where ν =
∑N

j=1 cjδtj for some tj ’s in G and cj ’s in the unit disc of C. Write
cj as dj |cj | with |dj | = 1. Since S is 1/(8N) dense in T, one may choose
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sj ∈ S such that |dj − sj | < 1/(8N). Let rj = b8N |cj |c. Then, if

µ = (8N)−1
N∑

j=1

sjrjδtj ,

it follows that

‖ν − µ‖M(G) ≤
N∑

j=1

|cj − sjrj/(8N)|

≤
N∑

j=1

|cj − |cj |sj |+
N∑

j=1

|sj |cj | − sjrj/(8N)|

=
N∑

j=1

|cj ||dj − sj |+
N∑

j=1

|sj | · ||cj | − rj/(8N)|

≤
N∑

j=1

|dj − sj |+
N∑

j=1

||cj | − rj/(8N)|

≤ N/(8N) +N/(8N) = 1/4.

It next follows that, for γ ∈ F ,

=(µ̂(γ)) = =[(ν̂(γ))− {ν̂(γ)− µ̂(γ)}] ≥ =[ν̂(γ)]− ‖ν − µ‖M(G) ≥ 1/4.

Likewise, for γ ∈ (E\F ), =(µ̂(γ)) ≤ −1/4.

Lemma 11. For any N , let S be a finite set which is 1/(8N) dense in T.
Assume that S(E) ≤ N and E ⊂ {1}×Γ ⊂ Z2 ×Γ . For F ⊂ E and s ∈ S
there are 8N2 points of G, here labeled as ts,j , such that

(∀γ ∈ F )[=(τ̂(γ)) ≥ 1/8] and (∀γ ∈ (E\F ))[=(τ̂(γ)) ≤ −1/8],

where

τ = (8N)−1
∑
s∈S

s

8N2∑
j=1

δts,j .

P r o o f. Let p = (1, 0) ∈ Z2 × G. Then, for all γ ∈ E, δ̂0(γ) = 1 while
δ̂p(γ) = −1. Thus for γ ∈ E, δ̂0(γ) + δ̂p(γ) = 0.

Let F ⊂ E and µ be a measure provided for F by Lemma 10. Rearrange
µ as follows:

µ = (8N)−1
N∑

j=1

sj

rj∑
q=1

δtj,q
,

where tj,q = tj for all q ∈ [1, rj ]. Set

Wj =
{

2−1(8N − rj)(δ0 + δp) for rj even,
δ0 + 2−1(8N − rj − 1)(δ0 + δp) for rj odd.
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Let φ = µ+ (8N)−1
∑N

j=1 sjWj . Then one may write φ as

φ = (8N)−1
N∑

j=1

sj

8N∑
q=1

δtj,q .

Note that Ŵj(γ) ∈ {0, 1} for γ ∈ E and therefore

|φ̂(γ)− µ̂(γ)| ≤ (8N)−1
N∑

j=1

|Ŵj(x)| ≤ 1/8.

Thus, for γ ∈ F ,

=(φ̂(γ)) = ={µ̂(γ)− (µ̂(γ)− φ̂(γ))} ≥ 1/4− |µ̂(γ)− φ̂(γ)| ≥ 1/8.

Likewise, for γ ∈ (E\F ),

=(φ̂(γ)) = ={µ̂(γ)− (µ̂(γ)− φ̂(γ))} ≤ −1/4 + |µ̂(γ)− φ̂(γ)| ≤ −1/8.

Next, rewrite φ as follows:

φ = (8N)−1
∑
s∈S

s
∑

j∈[1,N ]
& sj=s

8N∑
q=1

δtj,q = (8N)−1
∑
s∈S

sVs.

The number of point masses in Vs is 8Nfs for some integer fs ∈ [0, N ] (fs

is the number of j’s such that sj = s). Let

Zs = (N − fs)(4N)(δ0 + δp)

and set

τ = φ+ (8N)−1
∑
s∈S

sZs.

Note that Ẑs(x) = 0 for all x ∈ E, τ̂ |E = φ̂|E , and τ may be written as

(8N)−1
∑
s∈S

s

8N2∑
q=1

δts,q .

P r o o f o f T h e o r e m 8. Set φ(∞) = ∞ and let φ(N) = sup{N(E) |
S(E) ≤ N}. If φ(N) < ∞ for all N , the theorem is proved. Suppose
that φ(N) = ∞ for a particular N . That is, there is a sequence of discrete
abelian groups Ωi (with dual group Hi) and subsets Wi ⊂ Ωi such that
S(Wi) ≤ N and N(Wi) > i. Let Ei = {1} ×Wi ⊂ Γi, where Γi = Z2 × Ωi

and Gi = Z2×Hi is the group dual to Γi. By Lemma 9, S(Ei) = S(Wi) ≤ N
and N(Ei) = N(Wi). Let Γ be the direct sum of the Γi, which is the set of
all sequences {γi}i with γi ∈ Γi and at most finitely many γi 6= 0 [assume
that the Γi’s are presented additively]. The dual group of Γ is the following
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direct product:

G =
∏

i

Gi.

If γ = {γi}i ∈ Γ and g = {gi}i ∈ G, then 〈γ, g〉 =
∏

i〈γi, gi〉, where the
latter infinite product has at most finitely many factors that differ from 1.
Γi may be viewed as a subset of Γ in the natural way, as the set of γ ∈ Γ
such that γj = 0 for j 6= i. Denote this canonical copy of Γi by Γ ∗i . For
γ ∈ Γ ∗i ⊂ Γ and g ∈ G,

δ̂g(γ) = 〈γi,−gi〉 = δ̂gi(γi),

where gi and γi are the respective ith components of g and γ. Thus, N(Ei) =
N(E∗i ) and S(Ei) = S(E∗i ) for each Ei ⊂ Γi and its canonical image E∗i
in Γ ∗i .

It will be proved that E∗ =
⋃

iE
∗
i is an I0 set and thus N(E∗) <∞ by

Theorem 7 of the Appendix. That will contradict equation (3I), which says
that N(E∗) ≥ N(E∗i ), and thus

N(E∗) ≥ N(E∗i ) = N(Ei) = N(Wi) > i for all i.

This contradiction will prove that φ(N) <∞ for all N .
To see that E∗ is I0, let S be a finite set which is 1/(8N) dense in T of

cardinality M . It will be shown that E∗ is J(8MN2, 1/8) and hence an I0
set by Proposition 6.

Let F ∗ ⊂ E∗, and set F ∗i = F ∗∩E∗i . Let Fi be the pre-image of F ∗i under
the canonical embedding of Γi into Γ . Because S(Ei) ≤ N and Fi ⊂ Ei,
Lemma 11 provides a discrete measure µi on Gi of the form

µi = (8N)−1
∑
s∈S

s

8N2∑
j=1

δti
s,j

such that

(∀γ ∈ Fi)[=(µ̂i(γ)) ≥ 1/8] and (∀γ ∈ Ei\Fi)[=(µ̂i(γ)) ≤ −1/8].

Let ts,j ∈ G be defined to be tis,j in the ith coordinate, and set

µ = (8N)−1
∑
s∈S

s

8N2∑
j=1

δts,j .

Because any γ ∈ E∗i has coordinates equal to 0 apart from the ith coordinate,
and γi ∈ Ei, one has

δ̂ts,j (γ) = 〈−ts,j , γ〉 = 〈−tis,j , γi〉 = δ̂ti
s,j

(γi).

For γ ∈ E∗i , it follows that µ̂(γ) = µ̂i(γi) with γi ∈ Ei. Note that γi ∈ Fi if
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and only if γ ∈ F ∗i . Thus, for all i,

(∀γ ∈ F ∗i )[=(µ̂(γ)) ≥ 1/8] while (∀γ ∈ (E∗i \F ∗i ))[=(µ̂(γ)) ≤ −1/8].

Since F ∗ =
⋃

i F
∗
i , the imaginary part of µ̂ is at least 1/8 on F ∗ and at most

−1/8 on E∗\F ∗. This holds for an arbitrary F ∗ ⊂ E∗, with a measure in
D(8MN2). Thus E∗ is J(8MN2, 1/8).

A more direct proof of Theorem 8 can be adapted from [9], in which the
following theorem is proved. Consider a Banach algebra B of continuous
functions on a compact Hausdorff space M. Assume that for every closed
subset F of M, there exists a positive number ε = ε(F ) such that whenever
N is both open and closed in F , B contains an element h of norm one
satisfying <(h(M)) < 0 for M ∈ N , <(h(M)) > ε for M ∈ F\N . Then
B = C(M). In [9] a polynomial P is fixed, depending only on ε and some
ε′ > 0, such that for F , N and the corresponding h of the hypotheses, P (h)
satisfies |P (h)(M)| < ε′ for M ∈ F\N while |P (h)(M)−1| < ε′ for M ∈ N .
Thus χN is approximated by P (h) within ε′ in `∞(F ). With appropriate
scalings (ε = 1/(2S(E))), this could be applied to h = ν̂ where ν = −iµ,
µ ∈ D(S(E)) with =(µ̂) ≥ 1/2 on some F ⊂ E while =(µ̂) ≤ −1/2 on E\F .
It is clear that P (ν) is in D(n) for some n which is determined by S(E) and
ε′ (and P , which is in turn specified to depend only on ε = 1/(2S(E)) and
ε′). If ε′ is set equal to 1/144, one can proceed as in the next paragraphs to
get N(E) ≤ 36n.

Following [12], one could define another degree for I0 sets. For ξ =
(g1, . . . , gn) ∈ Gn and γ ∈ Γ , let ξ(γ) = (γ(g1), . . . , γ(gn)). For ξ ∈ Gn and
real ε > 0, let U(ξ, ε) = {λ ∈ Γ | supi |λ(gi) − 1| < ε}. A basis for the
topology of bΓ consists of γ +U(ξ, ε), where γ ranges over Γ , ξ ranges over⋃

nG
n and ε ranges over R+. By [6] and [12, Theorem 1, p. 172], E ⊂ Γ is

I0 if and only if there are some k and real ε > 0 such that, for all F ⊂ E,
there is some ξ ∈ Gk for which F +U(ξ, ε) and (E\F )+U(ξ, ε) are disjoint.
Such sets are said to have order k (regardless of ε) [12]. Define M(E) as
the least k for which this result holds for k and ε = 1/k. By following the
proof in [12, pp. 175–176], one can prove that N(E) ≤ ψ(M(E)) for some
non-decreasing function ψ such that ψ(Z+) ⊂ Z+. Also, M(E) ≤ 4N(E).

Here’s how one could specify ψ. Given f in the unit ball of `∞(E)
and M(E) ≤ k, one can approximate f within 1/4 with a linear sum of
characteristic functions:

36∑
j=1

cjχFj
with |cj | ≤ 1.

Each χFj can be approximated within 1/144 by the transform of a measure
in D(n) where n is chosen as follows. In [12, p. 175] there is a function
χ ∈ A(T k) chosen in a manner which depends only on k. Based upon it,
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choose N so that ∑
(n1,...,nk)∈Zk

& |n1|+...+|nk|>N

|χ̂(n1, . . . , nk)| ≤ 1/144.

Set
n =

∑
(n1,...,nk)∈Zk

& |n1|+...+|nk|≤N

d|χ̂(n1, . . . , nk)|e.

In [12, p. 175], given an idempotent e ∈ `∞(E) and a particular ξ =
(g1, . . . , gk) which separates the support of e from its complement with
U(ξ, 1/k), there is some Φe such that e = Φe ◦ ξ|E and |Φ̂e(n1, . . . , nk)| ≤
|χ̂(n1, . . . , nk)|. Then, if

µ =
∑

(n1,...,nk)∈Zk

& |n1|+...+|nk|≤N

Φ̂e(n1, . . . , nk)δ−n1g1−...−nkgk
,

µ ∈ D(n) and µ̂ interpolates e within 1/144. By doing this to each Fj for f ,
one interpolates f within 1/2 by the transform of a measure in D(36n) and
hence N(E) ≤ 36n. If ψ(k) = sup{N(E) | M(E) ≤ k}, then ψ(k) < ∞, ψ
is non-decreasing and N(E) ≤ ψ(M(E)).

To see that M(E) ≤ 4N(E), let n = N(E) < ∞ and F ⊂ E. Let
f = 1 on F and −1 on E\F . Let µ ∈ D(n) interpolate f within 1/2. If
µ =

∑n
j=1 cjδgj , let ξ = (g1, . . . , gn). If λ ∈ U(ξ, 1/(4n)), then for all γ,

|µ̂(γ + λ)− µ̂(γ)| ≤ 1/4.

Thus for γ ∈ F ,
<(µ̂(γ + λ)) ≥ 1/2− 1/4 = 1/4,

while for γ ∈ E\F ,

<(µ̂(γ + λ)) ≤ −1/2 + 1/4 = −1/4.

It is evident that F + U(ξ, 1/(4n)) and (E\F ) + U(ξ, 1/(4n)) are disjoint.
Thus M(E) ≤ 4n.

The proof of Theorem 8 provides an analog for I0 sets of “sup-norm
partitions” used among Sidon sets [4, p. 370]. What is different about this
construction is the “DC-offset” (an electrical engineering term): shifting the
Wi’s into “odd” cosets before unioning them. This is not required in the
usual sup-norm partition constructions.

Proposition 12. Let Wi be a sequence of I0 sets, with Wi a subset of
an abelian group Ωi and S(Wi) ≤ N for some N . If Γi = Z2 × Ωi and
Ei = {1} ×Wi, then E =

⋃
iEi is an I0 set in the direct sum of the Γi’s
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with S(E) ≤ 32MN2 (where M is the cardinality of a finite set which is
1/(8N) dense in T).

P r o o f. In the proof of Theorem 8, E is J(8MN2, 1/8). By repeating
the interpolating measures 4 times, one sees that E is J(32MN2, 1/2) and
hence S(E) ≤ 32MN2.

Proposition 12 is proved in the category of discrete abelian groups, where
there is plenty of room to fit diverse groups together. The analog of Propo-
sition 12 is proved within Z in the next proposition. Some care must be
taken with this new construction of I0 sets, but its basic ideas are simple:
rapidly dilate successive sets of the given sequence of I0 sets and provide a
“DC-offset”.

Proposition 13. Let {Wn}n be a sequence of finite I0 subsets of Z with
S(Wn) ≤ N for all n. There is a sequence of integers {kn} with kn 6= 0 for
all n such that

E =
⋃
n

(2knWn + kn)

is an I0 set with (2knWn + kn) ∩ (2kjWj + kj) = ∅ for n 6= j.

Lemma 14. Let E ⊂ Z. For any N , let S be a finite set which is
1/(8N) dense in T. Assume that S(E) ≤ N and that E ⊂ k + 2kZ for
some non-zero integer k. Let F ⊂ E. Then for each s ∈ S there are 8N2

points of T, here labeled as ts,j , such that

(∀γ ∈ F )[=(τ̂(γ)) ≥ 1/8] and (∀γ ∈ (E′\F ))[=(τ̂(γ)) ≤ −1/8],

where

τ = (8N)−1
∑
s∈S

s

8N2∑
j=1

δts,j
.

P r o o f. Let T, the dual group of Z, be presented as the interval (−π, π]
with operations modulo 2π. An integer n acts on t ∈ T as follows:

n(t) = 〈n, t〉 = eint.

For all x ∈ E, δ̂0(x) = 1 while

δ̂π/k(x) = eixπ/k = ei(k+2kj)π/k = eiπ = −1.

Thus, for x ∈ E, δ̂0(x) + δ̂π/k(x) = 0. From this point, the proof is identical
to that of Lemma 11, with δπ/k replacing δp in that proof.

P r o o f o f P r o p o s i t i o n 13. Without loss of generality, we may as-
sume that Wn 6= ∅ for all n. The integers kn shall be chosen inductively.
Let k1 = 1; given kj for j ≤ n, let Dn be the maximum absolute value of
any element of

⋃
j≤n(2kjWj +kj). Fix some finite subset S which is 1/(8N)

dense in T and of cardinality Q. For n > 1 choose kn ≥ 32NQDn−1 and



116 L. T. RAMSEY

let En = kn + 2knWn. Since every element of En is an odd multiple of kn,
|x| ≥ kn for all x ∈ En; since En 6= ∅, Dn ≥ kn. Since F1 6= ∅, Dn ≥ k1 > 0.
Thus, for n > 1, kn ≥ 32NQDn−1 > Dn−1, which guarantees that En is
disjoint from Ej for j < n. Finally, for j < n and x ∈ Ej ,

kn ≥ (32NQ)n−jDj ≥ (32NQ)n−j |x|.
In particular, kn ≥ (32NQ)n−1D1 ≥ (32NQ)n−1 for n > 1. [Of course,
k1 = 1 ≥ (32NQ)0 as well.]

Let F ⊂ E and Fi = F ∩ Ei. Lemma 14 provides a discrete measure µ1

on T of the form

µ1 = (8N)−1
∑
s∈S

s

8N2∑
j=1

δt1
s,j

such that

(∀γ ∈ F1)[=(µ̂1(γ)) ≥ 1/8] and (∀γ ∈ E1\F1)[=(µ̂1(γ)) ≤ −1/8].

Proceed inductively. Suppose that for j < n one has µj such that

(∀γ ∈ Fj)[=(µ̂j(γ)) ≥ 1/8] and (∀γ ∈ Ej\Fj)[=(µ̂j(γ)) ≤ −1/8],

where

µj = (8N)−1
∑
s∈S

s

8N2∑
q=1

δtj
s,q

and |tjs,q − tj−1
s,q | ≤ π/kj for j ∈ (1, n), s ∈ S, and q ∈ [1, 8N2]. Because

En = kn + 2knWn with kn 6= 0, one has S(En) = S(Wn) ≤ N . By Lemma
14, there is some µ such that

(∀γ ∈ Fn)[=(µ̂(γ)) ≥ 1/8] and (∀γ ∈ En\Fn)[=(µ̂(γ)) ≤ −1/8],

where

µ = (8N)−1
∑
s∈S

s

8N2∑
q=1

δzn
s,q
.

However, since every x ∈ En is a multiple of kn, for any integers pq,s,̂δw+zn
s,q

(x) = δ̂zn
s,q

(x) for w = 2πpq,s/kn.

Thus µ̂|En
= λ̂|En

when

λ = (8N)−1
∑
s∈S

s

8N2∑
q=1

δzn
s,q+pq,s2π/kn

.

Choose pq,s so that

|zn
s,q + pq,s2π/kn − tn−1

s,q | ≤ π/kn.

Let µn = λ with this choice of the pq,s. That is, tns,q = zn
s,q + pq,s2π/kn.
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It follows that, for each s ∈ S and 1 ≤ q ≤ 8N2, ts,q = limj→∞ tjs,q exists
because

∞∑
j=2

|tjs,q − tj−1
s,q | ≤

∞∑
j=2

π/kj ≤ π

∞∑
j=2

(32NQ)−j+1 <∞.

Moreover, for x ∈ Ej and n > j,

|δ̂tn
s,q

(x)− δ̂tj
s,q

(x)| = |e−ixtn
s,q − e−ixtj

s,q |

=
∣∣∣ n∑

w=j+1

e−ixtw
s,q − e−ixtw−1

s,q

∣∣∣
≤

n∑
w=j+1

|e−ixtw
s,q − e−ixtw−1

s,q |

≤
n∑

w=j+1

|x(tws,q − tw−1
s,q )| ≤ |x|

n∑
w=j+1

(π/kw)

≤ π|x|
n∑

w=j+1

|x|−1(32NQ)−(w−j)

< (π/(32NQ))(1− 1/(32NQ))−1

= π/(32NQ− 1) < π/(31NQ).

If one fixes j and lets n→∞, then for x ∈ Ej ,

|δ̂ts,q (x)− δ̂tj
s,q

(x)| ≤ π/(31NQ).

Set

% = (8N)−1
∑
s∈S

s

8N2∑
q=1

δts,q .

Then, for all x ∈ Ej ,

|µ̂j(x)− %̂(x)| =
∣∣∣(8N)−1

∑
s∈S

s

8N2∑
q=1

(δ̂tj
s,q

(x)− δ̂ts,q (x))
∣∣∣

≤ (8N)−1
∑
s∈S

|s|
8N2∑
q=1

(π/(31NQ)) = π/31.

Thus for all i,

(∀γ ∈ Fi)[=(%̂(γ)) ≥ 1/8− π/31] and
(∀γ ∈ (Ei\Fi))[=(%̂(γ)) ≤ −1/8 + π/31].
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Since F =
⋃

i Fi, the imaginary part of %̂ is at least .02 on F and at most−.02
on E\F . Because this holds for any F ⊂ E with a measure in D(8QN2), E
is J(8QN2, .02) and hence I0.

Proportions of Sidon sets are I0 sets. The following theorem origi-
nated in conversations with Gilles Pisier.

Theorem 15. Let Γ be a discrete abelian group. Then E ⊂ Γ is Sidon
if and only if there are N and some real r > 0 such that , for all finite
F ⊂ E, there is some H ⊂ F for which |H| ≥ r|F | and S(E) ≤ N .

A key ingredient of the proof of Theorem 15 is a theorem of Pisier’s [14,
p. 941]. Other critical ingredients are recycled from [3, 13].

P r o o f o f T h e o r e m 15. To prove sufficiency, suppose that E ⊂ Γ
has some N and real r > 0 such that, for every finite subset F ⊂ E,

(∃H ⊂ F )(|H| ≥ r|F | and S(H) ≤ N).

ThenH is I(φ(N), 1/2) by Theorem 8. By the proof of Theorem 7 of the Ap-
pendix, condition (3) of that theorem holds withM = 2 and δ = (1/2)1/φ(N).
It follows that, for every f in the unit ball of `∞(H), there is some µ ∈
Md(G) such that µ̂|H = f and ‖µ‖Md(G) ≤ L = 2

∑∞
j=1 2−j/φ(N) < ∞.

Thus, there is a constantLwhich depends only onN and satisfies ‖f‖Bd(H) ≤
L‖f‖`∞(H) for all f ∈ `∞(H). Since ‖f‖B(H) ≤ ‖f‖Bd(H), one has ‖f‖B(H) ≤
L‖f‖`∞(H). Thus H is a Sidon set with Sidon constant at most L. That
suffices to make E be Sidon by Corollary 2.3 of [14, p. 924].

Now suppose that E is Sidon. By [14, p. 941] there is some δ > 0 such
that, for all finite F ⊂ E, there are at least 2δ|F | points gj of G such that,
for i 6= j,

(5) sup
γ∈F

|γ(gj)− γ(gi)| ≥ δ.

Necessarily, δ ≤ 2.
Let F ⊂ E with |F | = n. Enumerate F as γ1, . . . , γn. Choose p so that

τ = 2π/p < δ/2 (e.g., let p = 1+ d4π/δe). Partition T into disjoint arcs, Tk,
0 ≤ k < p, of the form

Tk = {eiθ | kτ ≤ θ < (k + 1)τ}.

Let Q = d(1 − 2−δ/2)−1e and set τ ′ = τ/Q. Partition each Tk into Q
arcs Uk,m of the form

Uk,m = {eiθ | kτ +mτ ′ ≤ θ < kτ + (m+ 1)τ ′},

for 0 ≤ m < Q. Finally, let S0 denote a set of at least 2δ|F | points of G
which satisfy inequality (5).
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Define Si inductively. Let

Si
k = {g ∈ Si−1 | γi(g) ∈ Tk} and Si

k,m = {g ∈ Si−1 | γi(g) ∈ Uk,m}.

Then Si−1 =
⋃p−1

k=0 Si
k and Si

k =
⋃Q−1

m=0 Si
k,m. There is some m(i, k) such that

|Si
k,m(i,k)| ≤ Q−1|Si

k|.
So, ∣∣∣ p−1⋃

k=0

Si
k,m(i,k)

∣∣∣ ≤ Q−1|Si−1|.

Let

Si = Si−1

∖ p−1⋃
k=0

Si
k,m(i,k).

Then |Si| ≥ (1 − Q−1)|Si−1|. By induction one has |Sn| ≥ (1 − Q−1)n|S0|.
Note that Q ≥ (1− 2−δ/2)−1; consequently, (1−Q−1) ≥ 2−δ/2. Therefore,

|Sn| ≥ (1−Q−1)n|S0| ≥ (2−δ/2)n2δn = 2nδ/2.

For 1 ≤ i ≤ n and 1 ≤ k < p, let Ii,k be the arc between Uk−1,m(i,k−1)

and Uk,m(i,k). For k = 0, let Ii,0 be the arc between Up−1,m(i,p−1) and
U0,m(i,0). Necessarily,

(6) Ii,k ⊂ {eiθ | (k − 1)τ + τ ′ ≤ θ < (k + 1)τ − τ ′}.
The length (and hence the diameter) of each of these arcs is at most (2 −
2/Q)τ < 2 · (δ/2) = δ. For j 6= k there are arcs of length τ ′ separating Ii,k
from eijτ within T, namely Uk−1,m(i,k−1) and Uk,m(i,k) when 1 ≤ k < p, and
Up−1,m(i,p−1) and U0,m(i,0) for k = 0.

Each sequence {ki}n
i=1, with 0 ≤ ki < p, defines a cylinder in `∞(F ) of

the following form:

W [{ki}n
i=1] = {f ∈ `∞(F ) | f(γi) ∈ Ii,ki}.

For g ∈ G, let fg(γ) = γ(g) for γ ∈ F . Because these cylinders are disjoint,
each fg is in at most one of them. g ∈ Sn was specified to guarantee that fg

would be in at least one of these cylinders. For g ∈ Sn, define h(g) ∈ `∞(F )
by h(g)(γi) = ki where fg(γi) ∈ Ii,ki and thus fg ∈ W [{ki}n

i=1]. Because
each cylinder has diameter less than δ, each cylinder contains at most one
fg for g ∈ Sn. Hence |h(Sn)| = |Sn| ≥ 2nδ/2. For any subset H ⊂ F , let ΠH

be this projection: for f ∈ `∞(F ), ΠH(f) = f |H . By Corollary 2 of [13,
p. 742], there is a constant c′′ > 0 which depends only on δ/2 and p (which
themselves depend only on δ) such that there are some H ⊂ F and integers
a < b from [1, p] such that

|H| ≥ c′′|F | and {a, b}H ⊂ ΠH(h(Sn)).
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If b−a ≤ p/2, let a′ = a and b′ = b. If b−a > p/2, let a′ = b and b′ = a+p.
In either case, let a′′ = a′ mod p and b′′ = b′ mod p. Then {a′′, b′′} = {a, b}
with a′ < b′ and b′ − a′ ≤ p/2.

C a s e 1: b′ − a′ ≥ 2. Let c = (a′ + b′)/2. Then b′ − c ≥ 1, c − a′ ≥ 1,
b′ − c ≤ p/4 and c− a′ ≤ p/4. If z2 ∈ Ii,b′′ , then z2 = eiθ with

cτ + τ ′ ≤ (b′ − 1)τ + τ ′ ≤ θ < (b′ + 1)τ − τ ′ < cτ + pτ/4 + 1,

because τ = 2π/p < δ/2 and δ ≤ 2 (see condition (6)). Hence

e−icτz2 = ei(θ−cτ) with τ ′ ≤ θ − cτ < π/2 + 1.

Thus e−icτz2 is in the upper half-plane, with

=(e−icτz2) ≥ τ ′′ = min{sin(τ ′), sin(π/2 + 1)} > 0.

Likewise, if z1 ∈ Ii,a′′ , then then z1 = eiθ with

cτ − pτ/4− 1 < (a′ − 1)τ + τ ′ ≤ θ < (a′ + 1)τ − τ ′ < cτ − τ ′.

Hence
e−icτz1 = ei(θ−cτ) with − π/2− 1 < θ − cτ < −τ ′.

Thus e−icτz1 is in the lower half-plane, with

=(e−icτz1) < −τ ′′ < 0.

Because {a, b}H ⊂ ΠH(h(Sn)) and {a, b} = {a′′, b′′}, for any A ⊂ H
there is some g ∈ Sn such that h(g)(γ) = b′′ for γ ∈ A and h(g)(γ) = a′′ for
γ ∈ H\A. Let µ = e−icτδ−g; µ ∈ D(1). For γ ∈ A we have

=( ̂e−icτδ−g(γ)) = =(e−icτγ(g)) ≥ τ ′′.

Likewise, for γi ∈ H\A,

=( ̂e−icτδ−g(γ)) = =(e−icτγ(g)) < −τ ′′.

This proves that H is J(1, τ ′′).

C a s e 2: b′ = a′ + 1. Because {a, b}H ⊂ ΠH(h(Sn)) and {a, b} =
{a′′, b′′}, for every A ⊂ H there are g1 and g2 such that

(∀γ ∈ A)(h(g1)(γ) = b′′ and h(g2)(γ) = a′′),
while

(∀γ ∈ H\A)(h(g2)(γ) = a′′ and h(g2)(γ) = b′′).

The arc Ui,m(i,a′′) equals {eiθ | x ≤ θ < x+ τ ′} with a′τ ≤ x < x+ τ ′ ≤ b′τ .
If z2 ∈ Ii,b′′ , then z2 = eiθ with x + τ ′ ≤ θ < (b′ + 1)τ − τ ′. If z1 ∈ Ii,a′′ ,
then z1 = eiθ with (a′ − 1)τ + τ ′ ≤ θ < x. Thus, for γi ∈ A, γi(g1 − g2) =
γi(g1)/γi(g2) = eiθ with

τ ′ < θ < (b− a)τ + 2τ − 2τ ′ = (3− 2/Q)τ < 3.
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Thus, when γ ∈ A, γ(g1 − g2) is in the upper half-plane and

=(γ(g1 − g2)) ≥ τ ′′′ = min{sin(τ ′), sin(3)}.
For γi ∈ H\A,

γi(g1 − g2) = γi(g1)/γi(g2) = eiθ

with − 3 < (−3 + 2/Q)τ < θ < a′ − b′ = −τ ′.
Thus, when γ ∈ H\A, γi(g1 − g2) in the lower half-plane with

=(γ(g1 − g2)) ≤ −τ ′′′.
This makes H a J(1, τ ′′′) set.

The proof of Theorem 15 produces “proportional” subsets of Sidon sets
(and therefore I0 sets) which are of order 1 according to [12, pp. 182–186].
In [12] this unresolved question was posed: must I0 sets be finite unions of
order 1 sets?

Are Sidon sets finite unions of I0 sets? David Grow asked in [5]
whether Sidon sets had to be finite unions of I0 sets. Theorem 15 provides
some evidence that they could be, but that question is not resolved here.
The next two theorems provide a necessary condition: one for Z and one for
the category of abelian groups.

Definition. For discrete abelian groups Γ and E ⊂ Γ , let ν(E,m) be
the minimum number of I0 sets of degree at most m of which E is the union
and let ν(E,m) = ∞ when no such finite union exists.

Theorem 16. If every Sidon subset of Z is a finite union of I0 sets,
then there is some m ∈ Z+ and a non-decreasing function φ : [1,∞) → Z+

such that
ν(E, φ(r)) ≤ φ(r) if α(E) ≤ r.

Theorem 17. Suppose that , for all abelian groups Γ and Sidon subsets
E of Γ , E is the finite union of I0 sets. Then there is a non-decreasing
function φ : [0,∞) → Z+ such that

α(E) ≤ r implies ν(E, φ(r)) ≤ φ(r).

These lemmas will be helpful. Their proofs are close to the definitions.

Lemma 18. For discrete abelian groups Γ and subsets E and F of Γ ,
if E ⊂ F then ν(E,m) ≤ ν(F,m). If m ≤ n, then ν(E,m) ≥ ν(E,n).

Lemma 19. For E ⊂ Z and integers k 6= 0 and q, α(kE + q) = α(E),
N(kE + q) = N(E), and ν(kE + q,m) = ν(E,m).

Lemma 20. For discrete abelian groups Γ and E ⊂ Γ ,

(4F) ν(E,m) = sup{ν(F,m) | F ⊂ E & F is finite}.
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The proof of Lemma 20 is postponed until after the proof of Theorem 16.

P r o o f o f T h e o r e m 16. Suppose that, for all real r ≥ 1, there is
some m such that

(7) α(E) ≤ r implies ν(E,m) ≤ m.

If φ(r) is defined to be the minimum m such that condition (7) holds, then
φ is non-decreasing with r and meets the requirements of the theorem.

So, for some real r ≥ 1, suppose that for all m there is some Em ⊂ Z
for which α(Em) ≤ r and ν(Em,m) > m. By Lemma 20, there is a finite
subset Fm of Em with α(Fm) ≤ r and ν(Fm,m) > m. Let

F =
⋃
m

kmFm.

By Lemmas 18 and 19, ν(F,m) ≥ ν(kmFm,m) = ν(Fm,m) > m for all m.
Thus F is not a finite union of I0 sets. If we choose km to increase rapidly,
F will be a Sidon set; this will contradict the hypotheses.

To make F be Sidon let k1 = 1 and, for m > 1, let km > π22mMm−1,
where Mt is the maximum absolute value of an element of

⋃
s<t ksFs. Then,

just as in the proof of Proposition 12.2.4, pages 371–372 of [4], {kmFm}m

is a sup-norm partition for F : if pm is a kmFm-polynomial (on T) and is
non-zero for at most finitely many m, then

∞∑
m=1

‖pm‖∞ ≤ 2π
∥∥∥ ∞∑

m=1

pm

∥∥∥
∞
.

Recall that B(F ) (the restrictions to F of Fourier transforms of bounded
Borel measures on T) is the Banach space dual of TrigF (T) (the trigono-
metric polynomials with spectrum in F ). For p ∈ TrigF (T), let pm de-
note its summand in TrigkmFm

(T) under the natural decomposition. Then
f ∈ B(F ), and

|〈f, p〉| =
∣∣∣ ∞∑

m=1

〈f, pm〉
∣∣∣ ≤ ∞∑

m=1

|〈f, pm〉|

≤
∞∑

m=1

‖f |kmFm‖B(kmFm)‖pm‖∞

≤ ( sup
m∈Z+

‖f |kmFm‖B(kmFm))
∞∑

m=1

‖pm‖∞

≤ (r sup
m∈Z+

‖f |kmFm‖∞)(2π‖p‖∞) ≤ (2πr‖f‖∞)‖p‖∞.

Thus, ‖f‖B(F ) ≤ 2πr‖f‖∞. By the definition of Sidon constant, α(F ) ≤ 2πr
and thus F is Sidon.
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P r o o f o f T h e o r e m 17. As in the proof of Theorem 8, suppose that
there is some r ∈ [1,∞) such that, for all m, there is an abelian group Γm

and Fm ⊂ Γm for which α(Fm) ≤ r and µ(Fm,m) > m. Let Γ be the
direct sum of the Γm’s. Embed Γm into Γ canonically: x 7→ γx, where
γx(m) = x and γx(j) = 0 for j 6= m. Under this embedding, neither α(Fm)
nor ν(Fm,m) changes. Let

F =
∞⋃

m=1

Fm.

Then for all m, ν(F,m) ≥ ν(Fm,m) > m. Evidently, F is not the finite
union of I0 sets.

To see that F is a Sidon set, set E = F\{0} and Em = Fm\{0}. Then
{Em}∞m=1 is a sup-norm partition of E. Specifically, let G be the compact
group dual to Γ (Γ is given the discrete topology). For p ∈ TrigE(G), if pj

denotes its natural summand in TrigEj
(Γ ), then

∞∑
j=1

‖pj‖∞ ≤ π‖p‖∞,

by Lemma 12.2.2 of page 370 of [4]. To apply that lemma two things are
required. First, no Ej may contain 0, which is true here. Second, in the
language of [4], the ranges of {pj}∞j=1 are 0-additive: given {gj}∞j=1 from G,
there is some g ∈ G for which

(8)
∣∣∣p(g)− ∞∑

j=1

pj(gj)
∣∣∣ = 0.

Here’s a proof of equation (8). G is the infinite direct product of Gm = Γ̂m.
That is, g ∈ G if and only if

g : Z+ →
⋃
m

Gm, with g(m) ∈ Gm.

Let g ∈ G satisfy g(j) = gj(j). Note that for any character γ used in pj ,
〈γ, g〉 is determined by g(j) (because γ is 0 in every other coordinate):

〈γ, g〉 =
∏
s

〈γ(s), g(s)〉 = 〈γ(j), g(j)〉 = 〈γ(j), gj(j)〉 = 〈γ, gj〉.

Thus p(g) =
∑∞

j=1 pj(g) =
∑∞

j=1 pj(gj). Once it is known that E is sup-
norm partitioned by the Et’s, then just as in the proof of Theorem 16 one
has

α(E) ≤ π sup
t
α(Et) ≤ πr.

That proves that E is Sidon. Since {0} is a Sidon set, and the union of two
Sidon sets is Sidon [11], E ∪{0} is Sidon. Because F ⊂ E ∪{0}, that makes
F be Sidon as well.
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P r o o f o f L e m m a 20. Let t equal the right-hand side of (4F). By
Lemma 18, t ≤ ν(E,m). Consider next the reversed inequality. For finite
F ⊂ E there are I0 sets Iq,F (possibly equal to ∅) with I0-degree no more
than m such that

F =
t⋃

q=1

Iq,F .

Without loss of generality, it may be assumed that the Iq,F ’s are disjoint
for distinct q’s. Hence

(9) χF =
t∑

q=1

χIq,F
.

By using Alaoglu’s theorem in `∞(Γ ) = `1(Γ )∗ with successive subnets t
times, there is a subnet Fβ of the net of all finite subsets of E (ordered by
increasing inclusion) such that

lim
β→∞

χIq,Fβ
= fq weak-* in `∞(Γ ), for 1 ≤ q ≤ t.

This convergence implies pointwise convergence on Γ .
Necessarily, fq = χIq for some set Iq ⊂ Γ . By equation (9),

t∑
q=1

χIq = lim
β→∞

t∑
q=1

χIq,Fβ
= lim

β→∞
χFβ

= χE .

Thus, E is the disjoint union of the Iq’s. Because each Iq is the limit of
Iq,Fβ

with N(Iq,Fβ
) ≤ m, we have N(Iq) ≤ m by Proposition 5.

We conclude this section by observing that the class of finite unions of
I0 sets is Fσ in 2Γ .

Proposition 21. The class of subsets of Γ which are finite unions of
I0 sets is Fσ in 2Γ : they are

⋃
i{E ⊂ Γ | ν(E, i) ≤ i}, where {E ⊂ Γ |

ν(E, i) ≤ i} is closed in 2Γ .

P r o o f. E is in the class if and only if there are m and n such that
ν(E,m) ≤ n. Since ν(E,m) ≤ n implies ν(E, i) ≤ i for i = max{m,n}, this
class is equal to

⋃
i Ui, where

Ui = {E ⊂ Γ | ν(E, i) ≤ i}.
As in the proof of Lemma 2, equation (4F) and Lemma 18 imply that Ui is
closed in 2Γ .

Appendix

Lemma 1. For E ⊂ Γ ,

AP (E) = C(bΓ )|E = C(E)|E = AP (Γ )|E .
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P r o o f. Let us adopt as the definition of AP (E) that it is the closure in
`∞(E) of Bd(E). First consider AP (E) = C(bΓ )|E . Let g ∈ C(bΓ ). By [18,
p. 32], there is a sequence µj ∈Md(G) such that µ̂j converges uniformly on
Γ to g. Necessarily, since E ⊂ Γ ,

µ̂j |E ∈ Bd(E) and lim
j→∞

µ̂j |E = g|E in `∞(E).

That puts g|E in AP (E). Conversely, suppose that w ∈ AP (E). There is
a sequence of µj ∈ Md(G) such that µ̂j |E converges uniformly on E to w.
Because E is dense in E and this convergence is uniform on E, it follows
that

lim
j→∞

µ̂j |Ē = f

for some f which is a continuous function on E and f |E = w. Because
bΓ is compact and Hausdorff, it is normal; thus Tietze’s extension theorem
applies to f and there is some g ∈ C(bΓ ) such that g|Ē = f (see [2]). Since
E ⊂ E,

w = f |E = g|E .
Thus, w ∈ C(bΓ )|E .

Next, consider C(bΓ )|E = C(E)|E . Let f ∈ C(E). As happened in the
previous paragraph, Tietze’s extension theorem provides some g ∈ C(bΓ )
such that g|Ē = f . Since E ⊂ E, one has f |E = g|E . Conversely, suppose
that g ∈ C(bΓ ). Then g|Ē ∈ C(E). Necessarily, since E ⊂ E,

g|E = (g|Ē)|E .

Finally, consider C(bΓ )|E = AP (Γ )|E . Let f ∈ AP (Γ ). By [18, p. 32],
f extends to a continuous function g ∈ C(bΓ ). Since E ⊂ Γ , f |E = g|E .
Conversely, let g ∈ C(bΓ ); by [18, p. 32], g|Γ ∈ AP (Γ ). Since E ⊂ Γ ,

g|E = (g|Γ )|E .

Definition. E ⊂ Γ is called helsonian if and only if E ⊂ bΓ is a Helson
set in bΓ .

Proposition 2. E ⊂ Γ is helsonian if and only if Bd(E) = AP (E).

P r o o f. Suppose that E ⊂ Γ is helsonian. Let f ∈ AP (E). By
Lemma 1, there is some g ∈ C(E) such that g|E = f . By hypothesis,
E ⊂ bΓ is Helson; the definition of Helson is that, for every continuous
function g on E, there is some µ ∈ L1(Gd) = Md(G) such that µ̂|Ē = g.
Because E ⊂ E,

µ̂|E = g|E = f.

Thus, AP (E) ⊂ Bd(E); by condition (1) of the first section, AP (E) =
Bd(E).
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Next, suppose that AP (E) = Bd(E) and let f ∈ C(E). By Lemma 1,
f |E ∈ AP (E); since AP (E) = Bd(E),

f |E = µ̂|E for some µ ∈Md(G).

Since µ̂ is continuous on bΓ and E ⊂ bΓ , µ̂|Ē is continuous on E. Because
both µ̂|Ē and f are continuous on E, E is dense in E, and f |E = µ̂|E , one
has

f = µ̂|Ē .
This makes E be a Helson subset of bΓ and hence E helsonian.

Proposition 3. Helsonian implies Sidon.

P r o o f. By [18, p. 115, Thm. 5.6.3], E ⊂ bΓ is Helson if and only if
there is someK ∈ R+ such that, for all bounded Borel measures µ supported
on E,

‖µ‖ ≤ K‖µ̂‖`∞(Gd).

This applies to the discrete measures supported on E, µ ∈Md(E). Because
E ⊂ Γ , for µ ∈ Md(E) one has µ̂ continuous on G with respect to the
original compact topology on G. Thus, for µ ∈ `1(E) = Md(E),

(A-1) ‖µ‖ ≤ K‖µ̂‖C(G).

Let W (G) be the space ̂`1(E), with the supremum norm. By (A-1) it is a
closed subspace of C(G) and equivalent under φ = ̂ to `1(E). Therefore,
using Banach space dualities, φ∗ is an equivalence between W (G)∗ and
`∞(E). Since W (G) is a closed subspace of C(G), W (G)∗ is a quotient
Banach space of C(G)∗ = M(G): w ∈ W (G)∗ if and only if there is some
ν ∈M(G) such that w = ν +W (G)⊥, where

W (G)⊥ = {µ ∈M(G) | µ(W (G)) = {0}}.
Thus, for w ∈W (G)∗ and f ∈ `1(E), if w = ν +W (G)⊥, then

〈φ∗(w), f〉 = 〈w, φ(f)〉 = 〈ν, f̂〉.
However, because f =

∑
y∈E cyδy with

∑
y∈E |cy| <∞, we may use Fubini’s

theorem in the following calculation:

〈ν, f̂〉 =
∫
G

f̂(x) dν(x) =
∫
G

( ∑
y∈E

〈−x, y〉cy
)
dν(x)

=
∑
y∈E

cy
∫
G

〈−x, y〉 dν(x) =
∑
y∈E

cy ν̂(y) = 〈ν̂, f〉.

Since this holds for all f ∈ `1(E), φ∗(w) = ν̂|E in `∞(E). Thus, since φ∗ is
onto `∞(E), B(E) = `∞(E) and hence E is Sidon.

Proposition 4. B(E) = AP (E) implies that E is I0.
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P r o o f. Since

‖f‖B(E) ≥ ‖f‖∞,
the two Banach spaces have equivalent norms: there is some K ∈ R+ such
that

‖f‖B(E) ≤ K‖f‖∞.
As in [11], this is equivalent to the Sidonicity of E: `∞(E) = B(E). Since
AP (E) = B(E), one therefore has AP (E) = `∞(E) and thus E is an I0
set.

Example 5. Helsonian does not imply I0.

P r o o f. In general, the union of two helsonian sets E and F is helsonian,
because the union of two Helson sets is Helson [4, pp. 48–67] and

E ∪ F = E ∪ F .

Apply this to the sets {2n}n and {2n + n}n, which are sufficiently lacunary
to be I0 sets and hence helsonian [19]. However, the two sets have some
cluster points in common in bZ and hence the function which is 1 on one of
them and 0 on the other cannot be extended almost periodically to all of Z.
To see that they have a cluster point in common, note that there is a net
{nβ} ⊂ Z+ such that nβ → 0 in bZ. By the compactness of bZ, there is a
subnet βt for which 2nβt is convergent in bZ. By the continuity of the group
operations in bZ,

lim
t

2nβt = lim
t

(2nβt + nβt).

Kalton’s Theorem revisited . This result of Kalton’s is close to previous
work by Kahane, J.-F. Méla, Ramsey and Wells [7, 12, 17].

Definition. Let D(N) denote the set of discrete measures µ on G for
which

µ =
N∑

j=1

cjδtj ,

where |cj | ≤ 1 and tj ∈ G for each j. For E ⊂ Γ and δ ∈ R+, let AP (E,N, δ)
be the set of f ∈ `∞(E) for which there exists µ ∈ D(N) such that

‖f − µ̂|E‖∞ ≤ δ.

E is said to be I(N, δ) if the unit ball in `∞(E) is a subset of AP (E,N, δ).

Lemma 6. For E ⊂ Γ and δ ∈ R+, the set AP (E,N, δ) is closed in
CE (the space of all complex functions on E with the topology of pointwise
convergence).
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P r o o f. Let fα be a net of functions from AP (E,N, δ) which converge
to some f ∈ CE . Let µα ∈ D(N) satisfy

‖fα − µ̂α|E‖∞ ≤ δ.

Write µα as

µα =
N∑

i=1

ci,αδti,α ,

with |ci,α| ≤ 1 and ti ∈ G for all i. Because G and the unit disc of C are
compact, one may choose successive subnets of the α’s so that, if one labels
the final net with β, then

lim
β
ci,β = ci ∈ C and lim

β
ti,β = ti ∈ G, for all i.

Of course, |ci| ≤ 1. Let µ =
∑N

i=1 ciδti . Since the topology on G is that
given by uniform convergence on compact subsets of Γ , we have, for all
x ∈ Γ and each i,

lim
β
δ̂ti,β

(x) = lim
β
〈−x, ti,β〉 = 〈−x, ti〉 = δ̂ti(x).

It follows that, for all x ∈ E ⊂ Γ ,

lim
β
µ̂β(x) = lim

β

N∑
i=1

ci,β δ̂ti,β
(x) =

N∑
i=1

ciδ̂ti
(x) = µ̂(x).

Therefore, for all x ∈ E,

|f(x)− µ̂(x)| = lim
β
|fβ(x)− µ̂β(x)| ≤ δ.

Thus f ∈ AP (E,N, δ).

Theorem 7. For any discrete abelian group Γ and E ⊂ Γ , the following
are equivalent :

(1) E is an I0 set.
(2) There is some δ ∈ (0, 1) and some N for which E is I(N, δ).
(3) There is some δ ∈ (0, 1) and some M ∈ R+ such that , for all f in

the unit ball of `∞(E), there are points gj ∈ G and complex numbers cj
with |cj | ≤Mδj for which

f = µ̂|E , where µ =
∞∑

j=1

cjδgj .

(4) For all δ ∈ (0, 1) there is some N for which E is I(N, δ).
(5) Bd(E) = `∞(E).

P r o o f. (1)⇒(2). Assume (1) above, and consider (2) with δ = 1/2. Let
T denote the complex numbers of modulus 1 and TE the set of all functions
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on E with values in T. Condition (1) implies that

(A-2) TE ⊂
⋃
n

AP (E,n, 1/5).

Since AP (E,n, 1/5) is closed in CE as is TE (under the topology of pointwise
convergence), AP (E,n, 1/5)∩TE is a closed subset of TE and hence measur-
able. Because condition (A-2) involves the union of sets which increase with
n, there is some N for which the measure of AP (E,N, 1/5)∩TE is at least
1/2 for the Haar measure on TE . Since TE is a connected topological group,
a theorem of Kemperman’s implies that AP (E,N, 1/5) · AP (E,N, 1/5) =
TE (see [10]). So, for any f ∈ TE , there are functions f1 and f2 in
AP (E,N, 1/5) ∩ TE such that f = f1f2. There are discrete measures µ1

and µ2 in D(N) such that µ̂1 approximates f1 within 1/5 on E and µ̂2

approximates f2 within 1/5 on E. It follows that, for x ∈ E,

|f(x)− ̂µ1 ∗ µ2(x)| = |(f1 · f2)(x)− µ̂1(x)µ̂2(x)|
≤ |f1(x)[f2(x)− µ̂2(x)]|+ |µ̂2(x)[f1(x)− µ̂1(x)]|
≤ 1/5 + (1/5) · (|f2(x)|+ 1/5) = (1/5) · (11/5) < 1/2.

Note that µ1 ∗ µ2 can be represented as a sum of N2 point masses with
complex coefficients bounded by 1 in absolute value:

µ1 ∗ µ2 =
( N∑

i=1

ciδxi

)
∗

( N∑
j=1

djδyj

)
=

∑
i,j

(cidj)δxi+yj
.

Finally, note that g on E with ‖g‖∞ ≤ 1 is an average of two functions in
TE : there exist g1 and g2 in TE such that g = (g1 + g2)/2. [In C, project
g(x) to two points of modulus one for which the line segment joining them
is perpendicular to the radial segment from 0 to g(x). If g(x) = 0, let
g1(x) = 1 while g2(x) = −1.] If µi ∈ D(N2) approximates gi within 1/2,
then

‖g − (1/2)( ̂µ1 + µ2|E)‖∞ ≤ (1/2)(‖g1 − µ̂1|E‖∞ + ‖g2 − µ̂2|E‖∞)
≤ (1/2)(1/2 + 1/2) = 1/2.

This puts g in AP (E, 2N2, 1/2).
(2)⇒(3). Condition (2) will be applied inductively. Let f ∈ `∞(E) with

‖f‖∞ ≤ 1. There is some µ1 ∈ D(N) such that

‖f − µ̂1|E‖∞ ≤ δ.

Next, suppose µi ∈ D(N) have been selected for i ≤ J , such that∥∥∥f − J∑
i=1

δi−1µ̂i|E
∥∥∥ ≤ δJ .
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Apply condition (2) to

g = δ−J
(
f −

J∑
i=1

δi−1µ̂i|E
)

to obtain µJ+1 ∈ D(N) such that

‖g − µ̂J+1|E‖∞ ≤ δ.

Then ∥∥∥f − J+1∑
i=1

δi−1µ̂i

∥∥∥
∞

= δJ‖g − µ̂J+1|E‖∞ ≤ δJ+1.

By the induction principle, there is a sequence µi ∈ D(N) such that

f =
∞∑

i=1

δi−1µ̂i|E .

One may enumerate the point masses used in µi consecutively for each i, say
as δxj , so that the coefficient of δxj is bounded by δi−1 for (i−1)N < j ≤ iN .
Let cj be this coefficient. Then, since δ ∈ (0, 1),

|cj | ≤ δi−1 = δdj/Ne−1 ≤ δ(j/N)−1 = (1/δ)(δ1/N )j .

This proves condition (3) with M = 1/δ and δ1/N in the role of δ.
(3)⇒(4). Let condition (3) hold withM and some δ′ ∈ (0, 1) and consider

any δ ∈ (0, 1) for condition (4). Since δ′ ∈ (0, 1) there is some N ′ such that

M

∞∑
j=N ′+1

(δ′)j = M(δ′)N ′+1/(1− δ′) ≤ δ.

Specifically, one needs

(N ′ + 1) log(δ′) ≤ log([δ(1− δ′)/M ])

and hence
N ′ ≥ {log([δ(1− δ′)/M ])/ log(δ′)} − 1.

For j ≤ N ′, set mj = dM(δ′)je.
Let f be in the unit ball of `∞(E). By condition (3), there are coefficients

cj and elements tj of G such that |cj | ≤M(δ′)j and

f = µ̂|E , where µ =
∞∑

j=1

cjδtj .

Let pj = d|cj |e; necessarily, pj ≤ mj . Set cj = |cj |eiθj for some real θj .
Then

cjδtj
=

mj∑
i=1

cj,iδtj,i
,
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where tj,i = tj for all i and

cj,i =

 eiθj for 1 ≤ i < pj ,
eiθj (|cj | − pj + 1) for i = pj ,
0 for i > pj .

It follows that
‖f − ν̂|E‖`∞(E) ≤ δ,

where

ν =
N ′∑
j=1

cjδtj
=

N ′∑
j=1

mj∑
i=1

ci,jδti,j

is a sum of N ′′ =
∑N ′

j=1mj point masses with coefficients bounded by 1 in
absolute value. Thus f ∈ AP (E,N ′′, δ) and E is an I(N ′′, δ) set.

(4)⇒(5). (4) implies (2), which has been shown to imply (3). Let f ∈
`∞(E). If f = 0, f ∈ Bd(E) trivially. If f 6= 0, apply (3) to g = f/‖f‖∞ to
obtain a discrete measure µ such that µ̂|E = g. Clearly,̂‖f‖∞µ|E = f.

(5)⇒(1). By equation (1) of the introduction, Bd(E)⊂AP (E)⊂`∞(E).
If Bd(E) = `∞(E), then AP (E) = `∞(E) and hence E is an I0 set.
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Reçu par la Rédaction le 21.6.1995


