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The aim of this paper is to study singular integrals T generated by
holomorphic kernels Φ defined on a natural neighbourhood of the set {zζ−1 :
z, ζ ∈ Γ, z 6= ζ}, where Γ is a star-shaped Lipschitz curve, Γ = {exp(iz) :
z = x+ iA(x), A′ ∈ L∞[−π, π], A(−π) = A(π)}. Under suitable conditions
on F and z, the operators are given by

(1) TF (z) = p.v.
∫
Γ

Φ(zη−1)F (η)
dη

η
.

We identify a class of kernels of the stated type that give rise to bounded
operators on L2(Γ, |dΓ |). We establish also transference results relating the
boundedness of kernels on closed Lipschitz curves to corresponding results
on periodic, unbounded curves.

1. Introduction. We are interested in holomorphic kernels which
satisfy locally the standard Calderón–Zygmund size conditions and give rise
to L2-bounded operators on star-shaped closed Lipschitz curves. Our results
identify the class of kernels, and the corresponding Fourier multipliers.

We could consider more general closed curves such as those which can
be extended to be regular curves in the sense of David [D]. The reason we
restrict ourselves to star-shaped ones is as follows. Denote a closed curve
by Γ and let γ = {ζ = i−1 log z : z ∈ Γ, Re ζ ∈ [−π, π]}. A convolution
kernel on γ has to be defined on a neighbourhood of the difference set
D = {z − η : z, η ∈ γ, z 6= η}. If Γ is not star-shaped, then D may
cover an annular region 0 < |z| < a. However, according to Laurent series
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theory, a 2π-periodic holomorphic kernel on such a region which satisfies the
Calderón–Zygmund size conditions at z = 0 is of the form A cot(z/2)+ψ(z),
where A is a constant and ψ is a bounded holomorphic function on a bounded
neighbourhood of D. The corresponding singular integral theory on Γ can
then be deduced, for instance, from David’s theory, by using a partition of
unity [D].

Section 2 presents notation and terminology, some previously known re-
sults that will be referred to, as well as statements of the results of the
paper. Sections 3 and 4 give the details of two alternative proofs of the as-
sertion (ii) of Theorem 2.1, our main result. The proof in Section 3 adapts
the proof by Coifman and Meyer in [CM1] for the infinite Lipschitz graph
case to our situation, and relies on a Littlewood–Paley type result of Jeri-
son and Kenig [JK]. Section 4 contains a proof based on the result in the
infinite graph case [McQ1], the Fourier transform result of [Q], and adapta-
tion of multiplier restriction theorems from non-periodic to periodic curves.
Section 5 gives a brief indication of how a martingale version of the T (b)
theorem could also be used to give a further proof, adapting the ideas of
[CJS], [GLQ], and [T].

The authors wish to thank Alan McIntosh for his comments on this topic.
The research was partly supported by the Australian Research Council.

2. Preliminaries. Let γ be a Lipschitz curve defined on the interval
[−π, π] with the parameterization γ(x) = x+ iA(x), A : [−π, π] → R, where
R denotes the set of real numbers, A(−π) = A(π), A′ ∈ L∞([−π, π]), and
‖A′‖∞ = N <∞. Denote by γp the periodic extension of γ to−∞ < x <∞,
and by Γ the closed curve

Γ = {exp(iz) : z ∈ γ} = {exp(i(x+ iA(x))) : −π ≤ x ≤ π}.

We shall call Γ the star-shaped Lipschitz curve associated with γ. We shall
frequently identify a curve, thought of as a function, with its range. This is
legitimate, since our curves are injective.

If f is a function on γ, we shall denote by fp its periodic extension to
γp. We shall usually use upper-case letters to denote functions on Γ . The
Lp-spaces are taken with respect to arc-length measure.

For F ∈ L2(Γ ) define

F̂Γ (n) =
1

2πi

∫
Γ

z−nF (z)
dz

z
,

the nth Fourier coefficient of F with respect to Γ . We shall sometimes
suppress the subscript and write F̂ (n), if no confusion occurs when we do so.
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Let
σ = exp(−maxA(x)), τ = exp(−minA(x)).

As in [CM1], we consider the following subclass of L2(Γ, |dz|):
A(Γ ) = {F (z) :

F (z) is holomorphic in σ − η < |z| < τ + η for some η > 0}.
The subclass is dense. Otherwise, there would exist a non-zero function
g(ζ) ∈ L2(Γ ) = L2(Γ, |dz|) orthogonal to all of A(Γ ), and so in particular
to fz(ζ) = (ζ − z)−1 for z outside the annulus σ − η < |z| < τ + η and
σ − η < |ζ| < τ + η. We would have, therefore,

(2)
∫
Γ

h(ζ)
dζ

ζ − z
= 0,

where

h(ζ) = g(ζ)

√
1 +A′(x)2

i−A′(x)
exp(−ix), ζ = exp(ix−A(x)).

Since the integral in (2) is absolutely convergent, (2) would remain valid for
all z 6∈ Γ , by analytic continuation. Taking, in particular, z = r exp(ix −
A(x)) and z∗ = z/r2, 0 < r < 1, we would have, as a consequence of
[CMcM],

0 = h(exp(ix−A(x))) = lim
r→1−

1
2πi

∫
Γ

h(ζ)
(

1
ζ − z

− 1
ζ − z∗

)
dζ

for almost all x ∈ [0, 2π], and so g(ζ) = 0 for almost all ζ ∈ Γ . This is a
contradiction.

Without loss of generality, we assume that A(0) = 0, and that minA(x)
< 0, maxA(x) > 0. In this case the domains of the functions inA(Γ ) contain
the unit circle T. In view of the Cauchy theorem, we have F̂Γ (n) = F̂T(n). If
F and G belong to A(Γ ), this remark, together with Laurent series theory,
implies the Fourier inversion formula

(3) F (z) =
∞∑

n=−∞
F̂Γ (n)zn,

where z is in the annulus in which F is defined. The Cauchy theorem implies
also the Parseval formula

(4)
1

2πi

∫
Γ

F (z)G(z)
dz

z
=

∞∑
n=−∞

F̂Γ (n)ĜΓ (−n).

Kernels and their Fourier transforms. We shall use arg z and log z to
denote the principal branches of argument and logarithm.
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We define the following single and double sectors in the complex plane
C: for ω ∈ (0, π/2],

(5)
S0

ω,+ = {z ∈ C : |arg(z)| < ω, z 6= 0},
S0

ω,− = − S0
ω,+, S0

ω = S0
ω,+ ∪ S0

ω,−,

and the sets

C0
ω,+ = S0

ω ∪ {z ∈ C : Im(z) > 0},(6)
and

C0
ω,− = S0

ω ∪ {z ∈ C : Im(z) < 0}.(7)

If X is any subset of C, let X(π) be the truncated set

(8) X(π) = X ∩ {z ∈ C : |Re(z)| ≤ π},

and

(9) Xp(π) =
∞⋃

k=−∞

{X(π) + 2kπ}

be the periodic set associated with X(π). We shall use sets of the form
exp(iO) = {exp(iz) : z ∈ O}, where O is the truncation of one of the
sectors, or is a curve lying in such a set. If Q is an open subset of C, H∞(Q)
denotes the function space {f : Q → C : f is holomorphic and bounded on
Q}. We shall usually take Q to be a double sector or a single sector. The
norm ‖ · ‖∞ is the sup-norm on the corresponding space H∞(Q).

The sectors just defined arise because, if z and ζ, with z 6= ζ, are points of
Γ , then the point zζ−1 appearing in (1) lies in exp(iS0

ω)(π). In a similar way,
if z and ζ, with z 6= ζ, are points of a non-periodic Lipschitz curve x+ ia(x),
x ∈ (−∞,∞), ‖a′‖∞ = tanω, then z − ζ lies in S0

ω. So convolution kernels
for a Lipschitz curve having Lipschitz constant N are in practice defined
on (subsets of) S0

ω, where tanω > N . The intervention of the sets C0
ω,± is

explained below.
The basic theory relating a holomorphic Calderón–Zygmund kernel φ

on S0
ω with its Fourier transform b is contained in [McQ1] and [Q]. It is

summarised as follows.
Assume b ∈ H∞(S0

ω). Decompose b as b = b+ + b−, where

b+ = bχ{z:Re(z)>0}, b− = bχ{z:Re(z)<0}

and b± ∈ H∞(S0
ω,±), respectively. In each of the following statements where

“±” occurs, the reader should take “+” or “−” throughout.
If b+ ∈ H∞(S0

ω,+), and z ∈ C0
ω,+, we may choose a ray %+

θ = s exp(iθ),
0 < s < ∞, in S0

ω,+ in such a way that exp(izζ) decays exponentially as
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z →∞ on %+
θ . So the transform

G+(b+)(z) = φ+(z) =
1
2π

∫
%+

θ

exp(izζ)b+(ζ) dζ

converges. Its value is independent of the choice of %+
θ , subject to the

requirements just stated. In a similar way, we may define

G−(b−)(z) = φ−(z) =
1
2π

∫
%−

θ

exp(izζ)b−(ζ) dζ

for each z ∈ C0
ω,−, with %−θ chosen appropriately in S0

ω,−. Define

(10) φ±1 (z) =
∫

δ±(z)

φ±(ζ) dζ, z ∈ S0
ω,+,

where the integral is along a path δ±(z), from −z to z, in C0
ω,±.

The main results in [McQ1] and [Q] are as follows. The constants c0, c1,
and C are universal constants and Cω,µ are constants that depend on ω, µ,
and so on. Each may vary from line to line, and even in the same line.

Theorem A. Let ω ∈ (0, π/2] and b± ∈ H∞(S0
ω,±). Then φ± = G±(b±)

and φ±1 defined as above are holomorphic functions in their domains, and
for every µ ∈ (0, ω),

(i) we have

(11) |φ±(z)| ≤ Cω,µ‖b±‖∞/|z|, z ∈ C0
µ,±;

(ii) φ±1 ∈ H∞(S0
µ,+), ‖φ±1 ‖H∞(S0

µ,+) ≤ Cω,µ‖b±‖∞, and

φ±′1 (z) = φ±(z) + φ±(−z), z ∈ S0
ω,+; and

(iii) we have

(2π)−1
∞∫

−∞
b±(ζ)f̂(−ζ) dζ = lim

ε→0

{ ∫
|x|≥ε

φ±(x)f(x) dx+ φ±1 (ε)f(0)
}

for all f in the Schwartz class S(R), where f̂ stands for the standard Fourier
transform of f .

Theorem B. Let ω ∈ (0, π/2] and (φ, φ1) be a pair of holomorphic func-
tions defined on S0

ω and S0
ω,+, respectively , which satisfy

(i) there is a constant c0 such that

(12) |φ(z)| ≤ c0/|z|, z ∈ S0
ω;

(ii) there is a constant c1 such that ‖φ1‖H∞(S0
ω,+) ≤ c1, and

φ′1(z) = φ(z) + φ(−z), z ∈ S0
ω,+.
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Then there is a unique function b such that b ∈ H∞(S0
µ) for every µ ∈ (0, ω),

‖b‖H∞(S0
µ) ≤ Cω,µ(c0 + c1),

and the function pair determined by b according to Theorem A is identical to
(φ, φ1). Moreover , for all complex numbers ζ ∈ S0

ω, the function b is given by

(13) b(ζ) = lim
ε→0

lim
N→0

{ ∫
ε<|x|<N

exp(−iζx)φ(x) dx+ φ1(ε)
}
.

R e m a r k. If φ|R, the restriction of φ to R, is a good enough function, for
instance, if φ|R is in L2(R)∩L1(R), then b|R is the standard Fourier transform
of φ|R, limε→0 φ1(εz) = 0 for z ∈ S0

ω,+, and Theorem A(iii) reduces to the
standard Parseval equation.

Let γ(x) = x+ ia(x), −∞ < x <∞, be a bounded Lipschitz curve, and
define (see also [CM1]) A(γ) to be the space of functions f which are, for
some η > 0 depending on f , holomorphic in the strip min a(x)− η < Im z <
max a(x) + η, and supy

∫∞
−∞ |f(x+ iy)|2 dx ≤ Cη <∞.

For f ∈ A(γ) one can define the Fourier transform of f :

f̂γ(ξ) =
∫
γ

exp(−iξz)f(z) dz, ξ ∈ R.

It is easy to verify, by using the Cauchy theorem, that the Parseval formula
holds: ∫

γ

f(z)g(z) dz =
1
2π

∞∫
−∞

f̂(ξ)ĝ(−ξ) dξ, f, g ∈ A(γ).

Let ω > arctan ‖a′‖∞. For a function b ∈ H∞(S0
ω) one can formally define

a multiplier operator on A(γ):

mb(f)(z) =
1
2π

∞∫
−∞

exp(iξz)b(ξ)f̂γ(ξ) dξ.

For a pair of functions (φ, φ1) as specified in Theorems A and B, with
ω > arctan ‖a′‖∞, one can define the following integral operator on A(γ):

T(φ,φ1)(f)(z) = lim
ε→0

{ ∫
|ζ−z|>ε, ζ∈γ

φ(z−ζ)f(ζ) dζ+φ1(εt(z))f(z)
}
, z ∈ γ,

where t(z) is the normalized tangent vector to γ at the point z ∈ γ. It lies
inside S0

ω,+.
Now we are ready to state

Theorem C. Let ω ∈ (arctan ‖a′‖∞, π/2] and (φ, φ1) be associated with
b ∈ H∞(S0

ω) as in Theorem A. Then mb = T(φ,φ1), and mb extends to a
bounded operator on L2(γ, |dγ|).
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The converse to Theorem C is proved in [McQ2]. The following results
were proved in [Q].

Theorem D. Let ω ∈ (0, π/2] and (Φ,Φ1) be a pair of holomorphic func-
tions defined on exp(iS0

ω(π)) and exp(iS0
ω,+(π)), respectively , that satisfy

(i) there is a constant c0 such that

(14) |Φ(z)| ≤ c0/|1− z|, z ∈ exp(iS0
ω(π));

(ii) there is a constant c1 such that ‖Φ1‖H∞(exp(iS0
ω,+(π))) ≤ c1, and

Φ′1(z) =
1
iz

(Φ(z) + Φ(z−1)), z ∈ exp(iS0
ω,+(π)).

Then there exists a unique function b in H∞(S0
µ), µ ∈ (0, ω), such that

‖b‖H∞(S0
µ) ≤ Cω,µ(c0 + c1)

and

(15)
∞∑

n=−∞
n 6=0

b(n)F̂T(−n)

=
1

2πi
lim
ε→0

{ ∫
π≥|log z|>ε, z∈T

Φ(z)F (z)
dz

z
+ Φ1(exp(iε))F (1)

}
for all smooth functions F on T such that F̂T(0) = 0, where F̂T(n) is the
n-th standard Fourier coefficient of F. Moreover ,

b(η) = lim
ε→0

{ ∫
π≥|log z|>ε, z∈T

z−ηΦ(z)
dz

z
+ Φ1(exp(iε))

}
for any η ∈ S0

ω.

Theorem E. Let ω ∈ (0, π/2] and b ∈ H∞(S0
ω). Then the functions

(16) Φ±(z) = ±
±∞∑

n=±1

b(n)zn, |z±1| < 1,

can be holomorphically extended to exp(iC0
ω±(π)). If Φ = Φ+ + Φ−, then

the inequality (14) is satisfied for 0 < µ < ω, and some constants Cω,µ. Let
Φ±1 be defined on exp(iS0

ω(π)) by

(17) Φ±1 (z) =
∫

δ±(z)

Φ±(η)
dη

η
, z ∈ exp(iS0

ω,+(π)),

where δ±(z) is a path in exp(iC0
ω,±(π)) from z−1 to z. Let Φ1 = Φ+

1 + Φ−1 .
Then the Parseval formula (15) holds with respect to the function b and the
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pair (Φ,Φ1). Moreover , the H∞ function determined by (Φ,Φ1) according
to Theorem D is identical to b.

Statement of results. For a function b ∈ H∞(S0
ω) we define the operator

Mb : A(Γ ) → A(Γ ) by

MbF (z) =
∞∑

n=−∞
n 6=0

b(n)F̂Γ (n)zn.

Let (Φ,Φ1) be determined by b as in Theorem E. There is a corresponding
operator associated with the function pair (Φ,Φ1). Its action on smooth
functions on Γ is given by

(18) T(Φ,Φ1)F (z)

=
1

2πi
lim
ε→0

{ ∫
|log(ηz−1)|>ε, η∈Γ

Φ(zη−1)F (η)
dη

η
+ Φ1(t(z)ε)F (z)

}
,

where t(z) is the normalized tangent vector to Γ at z.
With this background, we can now state the Main Theorem.

Theorem 2.1 (Main Theorem). Let ω ∈ (arctanN,π/2], b ∈ H∞(S0
ω)

and (Φ,Φ1) be associated with b as in Theorem E. Then

(i) T(Φ,Φ1) = Mb on A(Γ );
(ii) Mb extends to a bounded operator on L2(Γ ).

The assertion (i) of the Main Theorem was proved in [Q]. We shall devote
ourselves to proofs of the assertion (ii) in the rest of the paper.

R e m a r k. Theorem 2.1 has important consequences. For instance, let
Φ be as above, and let T be the operator

TF (z) =
∫
Γ

Φ(zζ−1)F (ζ)
dζ

ζ
,

defined, a priori , for z 6∈ Γ and F , say, continuous on Γ . Then the non-
tangential boundary limit TF (z0) of TF (z) exists for a.e. z ∈ Γ , and defines
an operator which is L2-bounded from C(Γ ) to L2(Γ ).

3. A proof using Littlewood–Paley theory. We begin by intro-
ducing the space H2(Γ ) by using non-tangential maximal functions and
non-tangential limits of holomorphic functions. We then use a characterisa-
tion ofH2(Γ ) in terms of an appropriate g-function. This is analogous to the
approach of Jerison and Kenig [K] for (non-periodic) unbounded Lipschitz
curves.

Definition 1. Let ∆ and ∆c be the bounded and the unbounded
connected components of C \ Γ , and α > 0. The non-tangential approach
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regions Λα(z) and Λc
α(z) to a point z ∈ Γ are defined by

Λα(z) = Λα(z,∆) = {ζ ∈ ∆ : |z − ζ| < (1 + α) dist(ζ, Γ )}.
The definition of Λc

α(z) uses ∆c in place of ∆.

It is known ([K, [JK]) that there exists a positive constant α0, depending
only on the Lipschitz constant N , such that Λα(z) ⊂ ∆ and Λc

α(z) ⊂ ∆c for
0 < α < α0 and all z ∈ Γ . The arguments given below are valid for each
fixed α in the range (0, α0), and give rise to the same spaces irrespective of
the choice of α. We choose and fix α.

Definition 2. The interior non-tangential maximal function Nα(F ) of
a function F on ∆ is

Nα(F )(z) = sup{|F (ζ)| : ζ ∈ Λα(z)}, z ∈ Γ.
A similar definition applies to the exterior maximal function N c

α(F ), for
functions defined on ∆c.

Definition 3. Given 0 < p <∞, the Hardy space Hp(∆) is defined by

Hp(∆) = {F : F is holomorphic in ∆, and Nα(F ) ∈ Lp(Γ )}.
The norm ‖F‖Hp(∆) is defined by

‖F‖Hp(∆) = ‖Nα(F )‖Lp(Γ ) =
( ∫

Γ

Nα(F )p(z) |dz|
)1/p

.

The space Hp(∆c) is defined similarly, except that the functions in Hp(∆c)
are assumed to vanish at infinity.

Proposition 3.1. If F ∈ Hp(∆), p > 1, then the non-tangential limit
of F ,

lim
ζ→z, ζ∈Λα

F (ζ),

exists almost everywhere with respect to arc-length measure on Γ . If the
limit is denoted by FΓ (z), z ∈ Γ , then FΓ ∈ Lp(Γ, |dΓ |), and

CN‖F‖Hp(∆) ≤ ‖FΓ ‖Lp(Γ,|dz|) ≤ C ′N‖F‖Hp(∆), F ∈ Hp(∆),

where CN , C ′N depend on p and the Lipschitz constant N . A similar state-
ment holds for the exterior component ∆c.

Proposition 3.2. Suppose that F ∈ H2(∆). Then the norm ‖F‖H2(∆)

is equivalent to the norm

(19)
( π∫
−π

∞∫
0

(1− exp(−η))2j−1|DjF (exp i(x+ iA(x) + iη))|2 dη dx
)1/2

,

where D = iz d
dz . A similar statement applies to F ∈ Hp(∆c).



142 G. GAUDRY ET AL.

Proofs of Propositions 3.1 and 3.2 can be found in [JK]. The following
is a consequence of [CMcM].

Proposition 3.3. Suppose that FΓ ∈ L2(Γ ). Then there exist F+ ∈
H2(∆), F− ∈ H2(∆c) such that their boundary values F±Γ lie in L2(Γ ), and
FΓ = F+

Γ + F−Γ . The mappings FΓ 7→ F±Γ are continuous on L2(Γ ).

In the following lemma, we use the notation Γη, η > 0, for the curve
exp i(x+ iA(x) + iη).

Lemma 3.4. Suppose z0 = exp(i(x0 + iA(x0))) ∈ Γ . Let η > 0, and
z = exp(i(x0 + iA(x0)+ iη)), η > 0, be the corresponding point on Γη. Then
there is a constant CN , depending on the Lipschitz constant of Γ , such that

(20) |1− zζ−1| ≥ CN{(1− exp(−η/2))2 + |x− x0|2}1/2,

for all points ζ = exp(i(x+ iA(x) + iη/2)), −π ≤ x ≤ π, in Γη/2.

P r o o f. In fact,

|1− zζ−1|2 = |1− β exp(i(x− x0))|2

= (1− β)2 + 4β sin2

(
x− x0

2

)
≥ (1− β)2 +

4β
π2

(x− x0)2,

where β = exp(A(x)−A(x0)− η/2).
We have two cases to consider.

C a s e 1: η > 2(1 +Nπ). In this case 1− β has a positive lower bound.
Since the right-hand side of (20) is bounded above by a constant, it is less
than a constant multiple of the right side of (21).

C a s e 2: η ≤ 2(1 +Nπ). In this case β > exp(−(1 + 2Nπ)), and so

(22) |1− zζ−1|2 ≥ (1− β)2 +
4
π2

exp(−(1 + 2Nπ))|x− x0|2.

There are three subcases to Case 2.
(i) A(x) − A(x0) ≤ η/4. In this case 1 − β > 1 − exp(−η/4) > C(1 −

exp(−η/2)). Sustituting in (22), we get the desired inequality.
(ii) η/4 < A(x)−A(x0) ≤ η. In this case

η/4 < A(x)−A(x0) ≤ N |x− x0|,
and so

|x− x0| >
η

4N
≥ 1

4N

(
1− exp

(
− η

2

))
.

Therefore,

|x− x0| >
1
2
|x− x0|+

1
8N

(
1− exp

(
− η

2

))
.
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Substituting in (22) and ignoring the entry related to 1− β, we obtain the
desired inequality.

(iii) A(x)−A(x0) > η. In this case β > exp(η/2) > 1, and so

(1− β)2 > (1− exp(η/2))2 ≥ (1− exp(−η/2))2.

Substituting in (7), we obtain the desired inequality.

P r o o f o f T h e o r e m 2.1(ii). Let F ∈ A(Γ ), and suppose Φ is a kernel
satisfying the conditions of Theorem 2.1. Define, for z 6∈ Γ ,

(23) TΦF (z) =
1

2πi

∫
Γ

Φ(zζ−1)F (ζ)
dζ

ζ
.

It can be shown, using the techniques of [Q, Theorem 1], that the non-
tangential limit of (23) as z → z0, z0 ∈ Γ , is equal to the right-hand side
of (18).

Using the Laurent expansion (3), write F = F+ + F−, where F+ is
holomorphic in ∆ and F− is holomorphic in ∆c. Using Theorem E, in
particular (16), write Φ = Φ+ +Φ−. Note that Φ+ and Φ− satisfy the same
kernel conditions as Φ. It follows from (16) that

TΦ(F ) = TΦ+(F+) + TΦ−(F−).

In order to prove Theorem 2.1(ii), it suffices, by Propositions 3.1 and 3.3, to
show that the operators TΦ+ and TΦ− are bounded on H2(∆) and H2(∆c)
respectively. We shall establish the boundedness of TΦ+ by using Proposi-
tion 3.2. The proof of the boundedness of the complementary operator is
similar.

We suppress the superscript “+” , and consider the operator TΦ on
H2(∆). It is easy to verify that

DTΦF (z) =
∫
Γ

Φ(zζ−1)DF (ζ)
dζ

ζ
.

Repeating the procedure and changing the integral contour, we have

D2TF (z) =
∫

Γη/2

DΦ(zζ−1)DF (ζ)
dζ

ζ
.

Now

|DΦ(z)| ≤ C
1

|1− z|2
, z ∈ exp(iS0

µ(π)).

So, by Lemma 3.4, we have
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|D2TF (z)|

≤ C

( ∫
Γη/2

|DΦ(zζ−1)| |dζ|
|ζ|

)1/2( ∫
Γη/2

|DΦ(zζ−1)||DF (ζ)|2 |dζ|
|ζ|

)1/2

≤ C

( ∫
Γη/2

1
|1− zζ−1|2

|dζ|
|ζ|

)1/2( ∫
Γη/2

1
|1− zζ−1|2

|DF (ζ)|2 |dζ|
|ζ|

)1/2

≤ C

( π∫
−π

1
(x− x0)2 + (1− e−η/2)2

dx

)1/2

×
( ∫

Γη/2

1
(x− x0)2 + (1− e−η/2)2

× |DF (exp(i(x+ iA(x) + iη/2)))|2 dx
)1/2

≤ C(1− e−η/2)−1/2

( ∫
Γη/2

|DF (exp(i(x+ iA(x) + iη/2)))|2

(x− x0)2 + (1− e−η/2)2
dx

)1/2

.

Hence
π∫

−π

∞∫
0

(1− e−η)3|D2F (exp(i(x0 + iA(x0) + iη)))|2 dη dx0

≤ C
π∫

−π

∞∫
0

(1− e−η/2)2

×
( π∫
−π

|DF (exp(i(x+ iA(x) + iη/2)))|2

(x− x0)2 + (1− e−η/2)2
dx

)
dη dx0

≤ C
π∫

−π

∞∫
0

|DF (exp(i(x+ iA(x) + iη/2)))|2

×
( π∫
−π

(1− e−η/2)2

(x− x0)2 + (1− e−η/2)2
dx0

)
dη dx

≤ C
π∫

−π

∞∫
0

(1− e−η/2)|DF (exp(i(x+ iA(x) + iη/2)))|2 dη dx.

So, by Proposition 3.3, the boundedness of TΦ on H2(∆) has been estab-
lished.
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4. Restriction of multipliers. Assume that b ∈ H∞(S0
ω) with ω ∈

(arctan ‖A′‖∞, π/2]. Suppose f ∈ A(γp) and g ∈ A(γ). Define

mbf(z) =
1
2π

∞∫
−∞

eitzb(t)f̂γp
(t) dt,(24)

Mbg(z) =
∑
n 6=0

b(n)ĝγ(n)einz,(25)

where, if f is integrable on γp, then

f̂γp
(t) =

∫
γp

exp(−itz)f(z) dz,

ĝγ(n) =
1
2π

∫
γ

exp(−inz)g(z) dz.

We will show that the boundedness of mb, which was proved in [McQ2],
implies the boundedness of Mb. In fact, we shall prove more: we shall show
how to “restrict” multipliers of Lp(γp) to multipliers of Lp(γ), thus extending
well-known techniques of de Leeuw [deL]. Our arguments are modifications
of the corresponding arguments in [SW]. See also [EG].

Denote by wt, t > 0, the Gauss–Weierstrass kernels wt(z) = e−πtz2
.

Lemma 4.1. (i) If 1 ≤ p < ∞, then the set {eimz}∞m=−∞ spans a dense
subspace of Lp(γ, |dγ|).

(ii) If f ∈ L1(γ), and fp is its periodic extension to γp, then

(26) lim
ε→0+

√
ε
∫

γp

|fp(z)| |e−επz2
| |dz| =

∫
γ

|f(z)| |dz|.

(iii) If f and g are in the span of the sets {eimz}m6=0 and {eimz}∞m=−∞
respectively , and fp and gp are their periodic extensions, then

(27) lim
ε→0

√
ε
∫

γp

mb(fpwεα)gpwεβ dz =
∫
γ

(Mbf)g dz

if α > 0, β > 0, and α+ β = 1.

P r o o f. The mappings γ and γp have Jacobian determinant equal to√
1 +A′(t)2, which is uniformly bounded, and uniformly bounded away

from 0. By change of variables, γ induces identifications, with norm equiv-
alence, between the Lp-spaces on γ, with respect to arc length, with those
on [−π, π]. In a similar way, the change of variables γp identifies the (non-
periodic) Lp spaces on γp with those on (−∞,∞). The statement (i) there-
fore follows immediately from the density of the space of trigonometric poly-
nomials in Lp[−π, π].
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(ii) It follows from the periodicity of fp and γp that

(28)
√
ε
∫

γp

|fp(z)| |e−επz2
| |dz|

=
∞∫

−∞
|fp(t+ iA(t))|e−επ(t2−A(t)2)

√
1 +A′(t)2 dt

=
√
ε

π∫
−π

|f(t+ iA(t))|eεπA(t)2
√

1 +A′(t)2
∞∑

k=−∞

e−επ(t+2kπ)2 dt.

The limit, as ε→ 0, of the expression on the right side of (28) is

π∫
−π

|f(t+ iA(t))|
√

1 +A′(t)2 dt,

by a familiar argument [SW, p. 261].
(iii) Let f(z) = eimz, g(z) = e−ikz with m, k ∈ Z and m 6= 0. Then by

(24), and Cauchy’s theorem,
√
ε
∫

γp

mb(fpwεα)gpwεβ dz

=
√
ε

2π

∞∫
−∞

b(x)
∫

γp

e−ixζeimζe−πεαζ2
dζ
∫

γp

eixze−ikze−πεβz2
dz dx

=
√
ε

2π

∞∫
−∞

b(x)
∞∫

−∞
e−i(x−m)ye−πεαy2

dy
∞∫

−∞
ei(x−k)ue−πεβu2

du dx

=
1

2π
√
εαβ

∞∫
−∞

b(x) e−(x−m)2/(4εαπ)e−(x−k)2/(4εβπ) dx.

According to the argument in [SW, pp. 261–262], the limit, as ε→ 0, is
0 if m 6= k, and b(m) if m = k 6= 0, since b is bounded and continuous away
from 0. This equals the right-hand side of (27).

Theorem 4.2. Suppose that 1 ≤ r < ∞, and that mb defined by (24)
is a bounded operator on Lr(γp). Then the operator Mb defined by (25) is
bounded on Lr(γ) and

‖Mb‖r ≤ C‖mb‖r,

where C is a constant dependent only on the Lipschitz constant of the
curve γ.
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P r o o f. Let f , g, fp and gp be as in Lemma 4.1(iii). Since mb is a
bounded operator on Lr(γp), we have, for any ε > 0,∣∣∣ ∫

γp

mb(fpwεα)gpwεβ dz
∣∣∣ ≤ ‖mb‖ ‖fpwεα‖Lr(γp)‖gpwεβ‖Lr′ (γp).

Multiplying both sides of the above inequality by
√
ε and taking the limit

as ε→ 0+, the left-hand side becomes∣∣∣∫
γ

(Mbf)g dz
∣∣∣

by Lemma 4.1(iii), while the right-hand side becomes

lim
ε→0+

‖mb‖
(√

ε
∫

γp

|fp(z) e−εαz2
|r |dz|

)1/r(√
ε
∫

γp

|gp(z) e−εβz2
|r
′
|dz|

)1/r′

= ‖mb‖
( ∫

γ

|f(z)|r |dz|
)1/r( ∫

γ

|g(z)|r
′
|dz|

)1/r′

if we choose α = 1/r, β = 1/r′ and use Lemma 4.1(ii).

5. A proof using the T (b) theorem. It is possible to prove the
boundedness of the operator TΦ by using an appropriate version of the T (b)
theorem. We sketch the initial steps only. The details may be filled in by
adapting the ideas of [GLQ] and [T].

Let Φ, with associated primitive function Φ1, be as in Section 2. Let h
be the function defined on S0

ω(π) (see (5) and (8)) by setting

(29) h(z) = Φ(exp iz).

Let h1 be the associated function h1(z) = Φ1(exp iz), defined on S0
ω,+(π).

It may be regarded as a function on the periodic set S0
ω,p(π) (see (9)).

If we use the parameterization γ(x) = x + iA(x), then, modulo a cor-
rection term dominated by the Hardy–Littlewood maximal function, the
singular integral operator (18) is equal to the principal value operator

(30) Sf(x)

= lim
ε→0

( ∫
y∈[−π,π], |y−x|>ε

h(x+ iA(x)− y − iA(y))f(y)(1 + iA′(y)) dy

+ h1(εt(x+ iA(x)))f(x)
)
,

where t(x+ iA(x)) = (1+ iA′(x))/
√

1 +A′(x)2 is the normalized derivative
of γ at x+ iA(x). The correction term arises from the fact that the region
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of integration in (30) does not correspond exactly to that in (18) under the
change of variables z 7→ (1/i) log z. The operator S in (30) acts on functions
on Q = R/2πZ. Regard Q as an additive group, with the natural distance
function | · |.

Replace (30) by the operator

Tf(x) = lim
ε→0

( ∫
y∈Q, |y−x|>ε

h(x+ iA(x)− y − iA(y))f(y) dy(31)

+ h1(εt(x+ iA(x)))f(x)
)
.

Since 1 ≤ |b(x)| ≤ 1 + ‖A‖∞, the boundedness of the operator S is reduced
to that of T . Denote by b the function

(32) b(x) = 1 + iA′(x).

Then b is pseudo-accretive: there exists a constant C such that

(33)
1
C
≤

∣∣∣∣ 1
|I|
∫
I

b(x) dx
∣∣∣∣ ≤ C

for all non-degenerate subintervals I of Q.
Consider the family of finite σ-algebras Fk (k ≥ 0), Fk being generated

by the set of dyadic intervals of Q of order k, also regarded as periodic
subsets of R. The conditional expectation operators Ek associated with the
weight b are given by {Ek}∞k=0:

Ek(f)(x) =
( ∫

I

f(y)b(y) dy
)/( ∫

I

b(y) dy
)

(x ∈ I)

for each dyadic subinterval of order k. The corresponding martingale differ-
ence sequence

(34) ∆kf = Ekf − Ek+1f

has an associated Littlewood–Paley theorem (cf. [CGQ], [GLQ]).
The kernel

K(x, y) = h(x+ iA(x)− y − iA(y))

associated with the operator T in (31) is of Calderón–Zygmund type. The
operator T can be shown to satisfy the conditions of the T (b) theorem by
using Cauchy’s theorem together with the decay properties of the kernel and
the fact that the curve satisfies a Lipschitz condition. The details may be
filled in by adapting the approach in [GLQ] and [T].



BOUNDEDNESS OF OPERATORS 149

REFERENCES
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