COLLOQUIUM MATHEMATICUM

VOL. LXX 1996 FASC. 2

CR-SUBMANIFOLDS OF LOCALLY CONFORMAL
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We consider a Riemannian submersion 7w : M — N, where M is a CR-
submanifold of a locally conformal Kaehler manifold L with the Lee form
w which is strongly non-Kaehler and NV is an almost Hermitian manifold.
First, we study some geometric structures of N and the relation between
the holomorphic sectional curvatures of L and N. Next, we consider the
leaves M of the foliation given by w = 0 and give a necessary and sufficient
condition for M to be a Sasakian manifold.

1. Introduction. Let L be an almost Hermitian manifold with almost
complex structure J. Let M be a real submanifold of L and T'M its tangent
bundle. We set T"M = TM N J(TM). Then we have

(a) JT}M = T} M for each p € M.

Let M be a CR-submanifold of an almost Hermitian manifold L such
that the differentiable distribution 7"M : p — TZ?M C T, M on M satisfies
the following conditions:

(b) JTyM C T,M L for each p € M, where TV M is the complementary
orthogonal distribution of T"M in TM:;

(c) J interchanges TVM and TM*;

(d) there is a Riemannian submersion 7 : M — N of M onto an almost
Hermitian manifold N such that (i) 7VM is the kernel of 7w, and (ii) 7. :
TI?M — Tr(pyN is a complex isometry for every p € M.

This set up is similar to the set up of symplectic geometry. Indeed, one
has the following analogue (due to S. Kobayashi) of the symplectic reduction
theorem of Marsden—Weinstein.

THEOREM 1 ([7]). Let L be a Kaehler manifold. Under the assumptions

stated above, N is a Kaehler manifold. If HY and HN denote the holomor-
phic sectional curvatures of L and N, then, for any horizontal unit vector
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X € T"M, we have
HY(X) = HY (1, X) — 4|o(X, X)|?,
where o denotes the second fundamental form of M in L.

In the above theorem, L is a Kaehler manifold. In this paper, we consider
the case where L is a locally conformal Kaehler manifold which is strongly
non-Kaehler. Then TVM is integrable [3]. Let B", BY and Bt be the
horizontal part, the vertical part and the normal part of the Lee vector field
B respectively. First, we show the following theorem:

THEOREM 2. Under the assumptions (a)—(d), assume further that L is a
locally conformal Kaehler manifold. Then the Lee vector field B € T"M @
TM* and for any horizontal unit vector X € T" M, we have

HY(X) = HY (1, X) = 3|Ax JX|? — |o(X, X)|?,

where o is the second fundamental form of M in L and A is the integrability
tensor with respect to w. Moreover, if we assume in addition that the hori-
zontal component B of the Lee vector field B is basic and dim N > 4 then
N is also a locally conformal Kaehler manifold. In particular, if L is a gen-
eralized Hopf manifold and if the Lee vector field B is basic and horizontal
then N 1is also a generalized Hopf manifold.

Next, we consider the case where the Lee vector field B € TM*.

THEOREM 3. Under the assumptions (a)—(d), if L is a locally conformal
Kaehler manifold and B € TM~*, then N is a Kaehler manifold.

THEOREM 4. Under the assumptions (a)—(d), if L is a PyK-manifold
and M is a totally umbilical submanifold whose mean curvature vector is
parallel and B € TM~*, then N is a locally symmetric Kaehler manifold
and the holomorphic sectional curvature HY of N is HN(X) > 0, where X
18 any unit tangent vector.

Next, let L be a locally conformal Kaehler manifold which is strongly
non-Kaehler, w the Lee form and M the distribution defined by w = 0.
Since dw = 0, M is integrable. Let M be a maximal connected integral
submanifold of M, that is, M is an orientable hypersurface of L. Then M
is a CR-submanifold satisfying (a)-(c) such that TM+ = {B} and T"M =
{JB}. In the case where L is PyK-manifold, we get the following theorem.

THEOREM 5. Let L be a complete Py K -manifold and M a mazimal con-
nected integral submanifold of M. Let N be an almost Hermitian manifold
and m: M — N be a Riemannian submersion satisfying the condition (d).
Then N is isometric to the complex projective space Py, (C).
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It is known that every orientable hypersurface of an almost Hermitian
manifold has an almost contact metric structure (¢, V,n,g) (see [2], [17]).
We show the following theorem:

THEOREM 6. Let L be a locally conformal Kaehler manifold and M a
mazimal connected integral submanifold of M. Then (M,$,V,n,g) is a
Sasakian manifold if and only if

k= (3vw(B) —1)g+an@n,
where k is the second fundamental form of M and « is a function.

Remark1. (I) In [17], I. Vaisman proved that if L is a locally conformal
Kaehler manifold with parallel Lee form, then a maximal connected integral
submanifold M of M is a totally geodesic submanifold of L and M is a
Sasakian manifold. In Theorem 6, we obtain a necessary and sufficient
condition for M to be a Sasakian manifold without the assumption that the
Lee form is parallel.

(IT) It is known that if M is an orientable hypersurface of a Kaehler
manifold L, then the induced almost contact metric structure (¢, V,n,g) is
Sasakian if and only if £k = —g + an®n, where k is the second fundamental
form of M and « is a function [14]. When L is a locally conformal Kaehler
manifold, from Theorem 6 we obtain a similar result.

2. Preliminaries. Let L be an almost Hermitian manifold with metric
g, complex structure J and fundamental 2-form (2. The manifold L will
be called a locally conformal Kaehler manifold if every x € L has an open
neighborhood U with a differentiable function v : U — R such that g, =
e Vgly is a Kaehler metric on U. The locally conformal Kaehler manifold
L is characterized by

(1) d2=wAN {2, dw=0,

where w is a globally defined 1-form on L. We call w the Lee form. Since
for dim L = 2 we have df2 = 0, we may suppose dim L > 4. Next we define
the Lee vector field B by

(2) 9(X, B) = w(X).
The Weyl connection WV is the linear connection defined by
(3) WWxY :=VxY — Lw(X)Y — 2w(Y)X + 19(X,Y)B,

where V is the Levi-Civita connection of g. It is shown in [15] that an almost
Hermitian manifold L is a locally conformal Kaehler if and only if there is
a closed 1-form w on L such that

(4) WV xJ =0.
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The equation (4) is equivalent to
(5) VxJY —Jw(JY)X + 39(X,JY)B
= JVxY — Iw(Y)JX + $9(X,Y)JB,

where X and Y are vector fields on L.
The Riemannian curvature tensor field R of L is given by

(6) R*(X,Y)=VxVy —VyVx — Vixy]
We set
(7) RMW,Z,X,Y) = g(R"(X,Y)Z,W).

Let WR be the curvature tensor field of the Weyl connection WV. Then
8) YR(X,Y)Z
=RMX,Y)Z - H{[(Vxw)Z + 3w(X)w(2)]Y

— [(Vyw)Z + 30(Y)w(2)] X = g(Y, 2)(Vx B + 50(X)B)
+9(X, 2)(Vy B+ 50(Y)B)} = ;| (9(Y, 2)X — g(X, Z)Y),

where X,Y and Z are any vector fields on L [18].

A locally conformal Kaehler manifold (L, J, g) is said to be a generalized
Hopf manifold if the Lee form is parallel, that is, Vw = 0 (w # 0).
generalized Hopf manifold is called a PyK-manifold if the Weyl curvature
tensor is zero, that is, WR(X,Y) = 0. In this paper, we consider the case
where L is a locally conformal Kaehler manifold which is strongly non-
Kaehler in the sense that df2 # 0 (and so w # 0) at every point of L.

The Hopf manifolds are defined as HY = (C™ — {0})/Ax, n > 1, where
C is the complex plane, A € C, |A| # 0,1 and A, is the group generated by
the transformation z — Az, z € C" — {0} (see [15]). On the manifold HY,
we consider the Hermitian metric

1 n . ,
ds? = —=——— dz? @ dz7,
D1 242 JZ:;

where 27 (j = 1,...,n) are complex Cartesian coordinates on C". The Hopf
manifold HY is an example of a Py K-manifold which is strongly non-Kaehler.

Let M be a submanifold of a Riemannian manifold L. We denote by the
same ¢ the Riemannian metric tensor field induced on M from that of L.
Let VM denote covariant differentiation of M. Then the Gauss formula for
M is written as

(9) VxY =V¥Y +0(X,Y)

for any vector fields X, Y tangent to M, where o denotes the second fun-
damental form of M in L. Let M be an n-dimensional submanifold of L.
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The mean curvature vector ¢ of M is defined by ¢ = %trace(a). A sub-
manifold M is called totally umbilical if the second fundamental form o
satisfies 0(X,Y) = g(X,Y)p. A submanifold M is called totally geodesic if
the second fundamental form vanishes identically, that is, o = 0.

Let RM be the Riemannian curvature tensor field of M. Then we have
the equation of Gauss

(10)  R*(W,Z,X,Y)=RM(W,Z,X,Y) + g(0(X, Z),0(Y,W))
- g(U(Y7 Z)’ G(X7 W))

Let N be an almost Hermitian manifold with almost complex structure
J"and m: M — N a Riemannian submersion such that TM NJ(T'M) is the
horizontal part of T'M and, at each point p € M, 7, is a complex isometry
of ThM = T,M N J(T,M) onto Tyr,)N. Let X denote a tangent vector at
p € M. Then X decomposes as VX + HX, where VX is tangent to the
fiber through p and HX is perpendicular to it. We define tensors T" and A
associated with the submersion by
(11) TxY = VVYNHY + HVYK VY,

(12) AxY = VV{xHY + HV3/x VY,
for any vector fields X, Y on M. Then T and A have the following proper-
ties [11].

(i) Tx and Ay are skew symmetric linear operators on the tangent
space of M, and interchange the horizontal and vertical parts.
(11) TX = TVX while AX = AHX-
(iii) For V, W vertical, Ty W is symmetric, that is, Ty W = Ty V. For
X, Y horizontal, AxY is skew symmetric, that is, AxY = —Ay X.
A vector field X on M is said to be basic if X is horizontal and w-related

to a vector field X on N. Every vector field X on N has a unique horizontal
lift X to M, and X is basic. We denote it by X = h.1.(X).

LEMMA 1 ([11]). Let X and Y be any basic vector fields on M. Then
(i) o(X,Y) =g(X, V) om; o
(ii) H[X,Y] is the basic vector field corresponding to [X,Y];
(iii) HVYY is the basic vector field corresponding to VgY, where g 1s
the metric of N and VY is the covariant differentiation on N.

Let RYN denote the curvature tensor field of N. The horizontal lift of
the curvature tensor R of N will also be denoted by RY. We recall the
following curvature identity which will be needed in the sequel:

(13) RM(W,Z,X,Y)=RN(W,Z,X,Y) — g(Ay Z, AxW)
+ 9(Ax Z, Ay W) + 29(AxY, Az W),
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where X,Y, Z,W are any basic vector fields on M. As before, this result is
proven in [11].

Let X and Y be any basic vector fields on M. We define the operator
VN by

(14) VY == VY.
Then, by Lemma 1(iii), VYY is a basic vector field and
(15) (VYY) = Vviy.

Next, we give the definition of a Sasakian manifold. A Riemannian
manifold (M, g) is said to be a Sasakian manifold if there exist a tensor
field ¢ of type (1,1), a unit vector field V' and a 1-form 7 such that

oV =0, n(¢X)=0, ¢*X=-X+nX)V,
(16) 9(6X,0Y) = g(X,Y) = n(X)n(Y),

(VX )Y = g(X,Y)V —n(Y)X,
for any vector fields X, Y on M [2].

3. Proof of Theorem 2. We put B = B® + BY + Bt where B® BY
and B are the horizontal part, the vertical part and the normal part of the
Lee vector field B respectively.

From (9) and (12), for any horizontal vector fields X and Y, we have

(17) VxY =HVYY + AxY + o(X,Y).

Since M is a CR-submanifold of L, using (5) and (17), we obtain

(18) HVYJIY —tw(JY)X + 1g(X,JY)B" = THVYY — fw(Y)JX
+19(X,Y)JB" € T" M,

(19)  AxJY + 39(X,JY)BY = Jo(X,Y) + 3g(X,Y)JB € TV M,

(20)  o(X,JY)+ig9(X,JY)BT = JAxY + $9(X.Y)JBY € TM*,

where X and Y are any horizontal vector fields on M.
From (19) and (20), for any horizontal vector fields X and Y, we obtain

o(JX,JY) = o(X,Y)+g(JX,Y)JBY, A;xJY = AxY — g(X,Y)B",

because AxY is skew symmetric. In the last equation, we set X = Y’; then
we have AjxJX = Ax X —g(X, X)B". Since Ax X = 0, we obtain BY = 0.
Since BY = 0, for any horizontal vector fields X and Y, we obtain

(21) o(JX,JY)=0(X,Y), A;xJY =AxY.

Next, we compare the holomorphic sectional curvatures of L and N. We
set Z=JW and Y = JX in (10) and (13) to obtain
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(22) RE(W, W, X,JX)
=RNW,J'W,X,J'X)
= 9(Asx W, AxW) — g(Ax JW, Aw J X)
—29(Ax JX, A JW) + g(o(X, JW),o(JX, W))
—g(o(JX,JW),o(X,W)),
where X and W are any basic vector fields on M.

Setting X = W in the above equation, using (21), by (X, JX) =0, we
obtain
(23) RM(X,JX,X,JX)=RN(X,J'X,X,J' X) = 3|Ax JX|?> — |o(X, X)|.
Thus, for any horizontal unit vector X on M, we obtain
(24) HY(X) = HY (1. X) = 3|Ax JX|* — |o(X, X)|2.

Now, we assume that the horizontal component B of the Lee vector
field B is basic and dim N > 4. We put B := 7.(B"). Let w’ be the 1-form
on M induced by the Lee form w on L. For any vector field X on N, we set
w(X) :=g(X,B). Then (7*w)(X) = w'(X), where X is any basic vector
field. Since 7* commutes with d and 7 is a Riemannian submersion, w is

closed.
From the definition of @, we obtain

(25) G(X,B)or =&(X)orm =w'(X) =w(X) = g(X, B),
where X is any vector field on N and X = h.1.(X). We define the Weyl
connection WV of N by
(26) WYY = VY - 1a(X)Y - $a(Y)X + 1g(X,Y)B.
From Lemma 1, (18), (25) and (26), for any vector fields X, Y and Z, we
obtain
@27) g("WRJI)Y,Z)on
=g("WVEIY,Z)or —g(J(WVEY),Z) o
=9

(HVYJTY — tw(JY)X + Lg(X,JY)B

— JHVYY + w(Y)JX - $9(X,Y)JB, Z) =0,

where X, Y and Z are the horizontal lifts of X , Y and Z respectively.
Therefore WV% J' =0, that is, N is a locally conformal Kaehler manifold.

Let L be a generalized Hopf manifold and let the Lee vector field B be
basic and horizontal. Since the Lee form w of L is parallel, for any vector field
X tangent to M, we have Vx B = 0. Hence, by VxB = V%B +o0(X,B),
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we have V¥ B = 0. From Lemma 1 and (25), we obtain
g(VXB.Y)om = (Xg(B,Y) ~g(B,V{Y))on
= Xg(B,Y) = g(B,VXY) = g(VX¥ B,Y) =0,

where X , Y are any vector fields tangent to N, and X, Y are their horizontal
lifts. Hence we obtain VgB = 0, that is, N is a generalized Hopf manifold.

Remark 2. In this theorem, let L be a locally conformal Kaehler mani-
fold and M a totally umbilical CR-submanifold of L and the Lee vector field
B € T'M. Tt is known that if B is tangent to M, then a totally umbilical
proper CR-submanifold M of L is totally geodesic [6]. For X,Y € TPM,
we have AxY = 1V[X,Y] (see [11]). Therefore, using (19), we see that the
horizontal distribution 7" M is integrable and the integral submanifolds are
totally geodesic.

4. Proof of Theorem 3. Since B € TM=*, for any vector field X
tangent to M, we have w(X) = 0. Since M is a CR-submanifold of L, (5)
implies

(28) VxJY +1g(X,JY)B = JVxY + 1g(X,Y)JB,

where X and Y are horizontal vector fields. Using (17) and (28), we obtain
(29) HVY Y = JHVYY € T" M,

(30) AxJY = Jo(X,Y)+ 19(X,Y)JB € TV M,

(31) o(X,JY)+ L9(X,JY)B = JAxY € TM*,

where X and Y are any horizontal vector fields on M.

Since m, is a complex isometry, we have 7, o J = J' o m,. Therefore, if
X is a basic vector field, JX is also a basic vector field. Using Lemma 1,
(15) and (29), we have

N 71y N/
vNIY = VY.

Hence N is a Kaehler manifold.

5. Proof of Theorem 4. Since L is a PyK-manifold, we have WR = 0
and Vw = 0. We set ¢ := |w|/2. Since Vw = 0, we have VB = 0 and
¢ = constant (see [17]). From (8), we have
(32) RY(X,Y)Z = {{w(X)Y — w(Y)X]w(Z)

Using Vw = 0 and VB = 0, we obtain VR = 0 (see [6]). Since B € TM*,
using (10) and (32), for any vector fields X, Y, Z and W tangent to M, we
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have
(33) RM(W.Z,X.Y)=c*(g(Y,Z)g(X, W) — g(X, Z)g(Y,W))
+ g(O'(Y, Z)v U(X’ W)) - g(O'(X, Z)7U(K W))

Since M is a totally umbilical submanifold of L and the mean curvature
vector is parallel, the second fundamental form is parallel. Thus M is a
locally symmetric space. Using (33) and o(X,Y) = g(X,Y)p, for X, Y, Z €
ThM and V € TYM, we obtain RM(X,Y,Z, V) = 0. Moreover, since
o(X,Y) =g(X,Y)p and B € TM~, the fibers of 7 are totally geodesic [6].
Hence the reflections (r-1(,) with respect to the fibers are isometries [4].
Therefore N is a locally symmetric space [4], [9]. From Theorem 3, N is
a Kaehler manifold. Using (32), for any horizontal unit vector X, we get
HL(X) = ¢2. Thus, from (24), we have HY(X) > 0, where X is any unit
tangent vector.

6. Proof of Theorem 5. Since L is a PyK-manifold, the maximal
integral submanifold M of M is a totally geodesic submanifold of L (see
[17]). From (33), we have
(34) RM(W7 Z, X, Y) = CQ(Q(Ya Z)g(X7 W) - g(Xv Z)Q(K W))a
where X, Y, Z and W are any vector fields tangent to M and ¢ (= |w|/2)
is constant. Using (13) and (34), we obtain
(35)  RM(XY,X,Y)=(g(Y.Y)g(X, X)

—9(X,Y)g(X,Y)) + 3g(AxY, AxY),
where X , Y are vector fields on N and X , Y are their respective horizontal

lifts. For each plane p in the tangent space TN, the sectional curvature
KN (p) of N is
(36) K™ (p) = ¢* + 3| AxY ],
where X, Y is an orthonormal basis for p. Let {3(7, J’Xvi} (i=1,...,m) be
an orthonormal basis for T, N, dim(N) = 2m. We denote the Ricci tensor
of N by Ric". Then

Ric"(X,X) => RV(X;, X, X, X)+ > RV(J'X;, X, J'X;, X).

i=1 i=1

From (30) and (31), we get Ax, X; =0, Ayx, X; =0 (i # j), Asx, Xi =
—%JB and Ayx,JX; =0, (i,7 =1,...,m). Now, we compute the scalar
curvature sV (z) of N:

sV (z) =Y RicV (X}, X;) + Y RieV (J'X;, J'X;) = c*(4m? + 6m).
j=1

Jj=1
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Since L is complete and M is a totally geodesic submanifold of L, M is
complete. Since M is complete and 7 : M — N is a Riemannian submersion,
N is complete [11]. From Theorem 3, N is a Kaehler manifold.

It is known that a complete Kaehler manifold with constant scalar cur-
vature and with positive sectional curvature is isometric to the complex
projective space P,,(C) (see [1]). Therefore N is isometric to P,,(C).

7. Proof of Theorem 6. For the Lee vector field B, we set

(37) C:=B/+/g(B,B).
We define a vector field V', a 1-form n and a tensor field ¢ of type (1,1) on
M by

(38) V=JC, n(X)=g(X,V), JX=¢X—nX)C.

Since L is a Hermitian manifold, (M, ¢,V,n,g) admits an almost contact
metric structure [2], [17].

Let HX and VX be the T"M part and TVM part of X € T'M respec-
tively. We set 0(X,Y) = —k(X,Y)C. From (5), for any vector field X in
T" M, we obtain

(39) VyJX = JVy X.

Using Vy X = VM X — k(V, X)C, by (39), we have the following equations:
(40) HVYIX = JHVY X € T"M,

(41) VWM IX = —k(V,X)V € TM,

(42) —k(V,JX)C = JVVM X e TM™,

where X is any vector field in T"M. From (38) and (40), for any vector
fields X and Y in T"M, we obtain

(43) g(VV9)X,Y) = g(Vi/ X — ¢V X,Y)
= g(HVMJIX — JHVYX,Y) = 0.

From the T"M part of (5) and (38), for any vector fields X and Y in T M,
we obtain

(44) HVY $Y = gHVY.

Now, for any vector fields X and Y tangent to M, we assume k(X,Y) =
(3v/w(B) —1)g(X,Y) 4+ an(X)n(Y). Let V and W be any vector fields in
TV M and X be any vector field in 7% M. From (42), we obtain V¥ X = 0,
because k(X, V) = 0. Using (5), we obtain g(JHVYW, X)=g(HVvJW, X)
= —g(a(V,X),JW) = 0. Hence, we get HVMW = 0.

We shall prove that (M, ¢, V,n,g) admits a Sasakian structure. Let X,
Y and Z be any vector fields tangent to M. Using (44) and the above result,
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we have

9(VX )Y, 2)
(VX 0)Y. HZ) + g((VX 9)Y.VZ)

VX Y. HZ) — g(¢VX Y, HZ) + g(VY ¢Y, VZ)
—9(¢VYY,VZ)

g(
g(

= g(ValxOHY, HZ) + g(Va[x dVY, HZ) + g(Vi/x oHY, HZ)
+9(VYxOVY, HZ) — g(6Vaix HY, HZ) — g(¢V3/x VY, HZ)
— g(OVIHY, HZ) — g(¢VY VY, HZ) + (Vi dHY,VZ)
+g(VcdVY, VZ) + (VI dHY, VZ) + (Vi oVY, V)
— 9(OVHXHY,VZ) = g(8V3[x VY, VZ) = g(¢VE X HY, VZ)
— 9(6Vyx VY, VZ)
= g(Vx oHY, HZ) — g(¢VYx HY, HZ) + g(V3{x $HY, VZ)
— 9(6V3x VY, HZ)
= (Ve OHY, HZ) + g(V,VZ)g(Vi{x $HY, V)
— g(V.VY)g(Viix $HZ, V).
Using the TV M part of (5) and the assumption, we obtain
45)  g(Vix¢HY,V) = g(VV}x JHY,V)
= —k(HX,HY) + 39(HX,HY )\/w(B)
=g(HX, HY).
Thus, by (43) and (45),
46)  g(VX @)Y, 2) = g(V,VZ)g(HX, HY) — g(V, VY )g(HX, HZ).
On the other hand,
9(g(X, V)V =n(Y)X, Z) = g(HX, HY )g(V,VZ) + g(VX,VY)g(V.VZ)
— g(HX,HZ)g(V,VY) — g(VX,VZ)g(V,VY)
= g(V,V2)g(HX, HY) — g(V,VY)g(HX, HZ).
Therefore
(47) (VX @)Y = g(X, V)V —n(Y)X.
Hence (M, $,V,n,g) is a Sasakian manifold.
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Conversely, assume that (M, ¢,V,n,g) is a Sasakian manifold. Let X
and Y be any vector fields tangent to M. From (9) and (38), we obtain

VxJY — JVxY =Vx(¢Y —n(Y)O) — J(VYY +0o(X,Y))
= VxoY =Vx(n(Y)O) =V Y +n(VXY)C~Ja(X,Y)
= (VX 9)Y — k(X,¢Y)C — X(Y)C
—n(Y)VxC +n(V¥Y)C + k(X,Y)V.
On the other hand, by (5),
VxJY — JVxY = Lw(JY)X — %g(X JY)B+ 39(X,Y)JB
= — L uBnmY)X - Lg(X,6Y)B + 1 \/w(B)g(X,Y)V.
From these equations and (47), we have
g X, V)V —n(Y)X — k(X,¢Y)C — Xn(Y)C
n(Y)VxC+ n(vﬁ?y)c +E(X,Y)V

:—7\/ B)n(Y 29X¢YB+ Vw(B)g(X,Y)V.
The V' component of thls equatlon is
9(X,Y) =n(Y)n(X) —n(Y)g(VxC,V) + k(X,Y)
= —L/e(Bn(Y)n(X) + 1 /e(Bg(X,Y).
Thus
— (3Vw(B) = )n(X)n(Y) +n(Y)g(VxC,V).
Since k(X,Y) is symmetric, we have n(Y)g(VxC,V) = n(X)g(VyC, V).
This equation shows that g(VxC,V) = n(X), where (3 is a function. We
set @ = —11/w(B) 4+ 1+ B; then we have

k(X,Y) = (3/w(B) —1)g(X,Y) + an(X)n(Y).

8. Examples. (I) Let (M,¢,V,n,g) be a Sasakian manifold and S!
the circle with length element w = dt. Then S' x M is a generalized Hopf
manifold with metric w? 4+ g and Lee form w (see [17]).

Let C™"*™ be the complex vector space of all (n + m)-tuples of complex

numbers z = (21,...,2n4m) and ay; be positive integers and oy; be real
numbers, k=1,...,m, 7 =1,...,n+m. Let
n+m

Tie(z1s s Znam) = Zaka?kj, k=1,...,m,

be a collection of complex polynomials. Let F = (), f 1(0). Let dj, =
LCM(ak1,ak2, - -, @kntm), Qkj = di/ar;. Suppose that
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(i) F is a complete intersection of the f ' (0).
(ii) F' has an isolated singularity at the origin.
(ili) gx; is independent of k (let ¢; = qi;).

Let B>"~! = Fn §2(ntm)=1 c C**™ Then B?"~! is called a general-
ized Brieskorn manifold [12]. It is a (2n — 1)-dimensional submanifold in
S§2(ntm)=1 Tet (S2(+m)=1 4 V.7, g) be the unit sphere with the standard

Sasakian structure and imbedded in C"*™. Denoting by 1,1, -, Tnim,
Yn+m the real coordinates of C"™™ such that z; = z; + V—1y; (j =
1,...,n+ m), we define a real vector field V on Crtm by
~ n+m
V=" A;j(z;0/0y; —y;0/0z;),
j=1

where A; = vq; for a positive constant v (j =1,...,n+m). We set

p=V=V, = +nw) " n, X)=¢X-H(X)V),
JXY) = (1+n() " g(X = GX)V,Y = 5(Y)V) +7(X)n(Y),
where X and Y are vector fields on G§2(n+m)=1 " Then, by the theorem
of Takahashi [13], (S2("+™)=1 ¢ V 7, 7) is also a Sasakian manifold. Let

L BZ”:1A—> S§2(n+m)—1 he the inclusion mapping. We define four tensor
fields (¢,V,n,g) on B?"~! by

d) = ¢|BQ”—17 V= ‘/|an—17 ;7\ = L*ﬁv § = L*g'
Using calculations similar to those of [13], we can prove that every general-
ized Brieskorn manifold (B?"~1, 6V, 7, 9) admits many Sasakian structures.
Therefore, S' x B?"~! is a generalized Hopf submanifold of the generalized
Hopf manifold S* x §2(nt+m)—1,

(IT) Let E?"~1(—3) be the Sasakian space form with constant ¢-sectional
curvature —3 with standard Sasakian structure in a Euclidean space. Let
S1(r;) be a circle of radius r;, i = 1,...,p. A pythagorean product
E?(r=p)=1(_3)x 81(ry) x...x S'(r,) is a pseudo-umbilical generic submani-
fold of E?"~1(=3) (p > 2) (see [20]). Let S! be the circle with length element
w. Then w is the Lee form of the generalized Hopf manifold S x E2"~1(—3).
Hence S x E?("=P)=1(—-3) x S'(ry) x ... x S'(r,) is a CR-submanifold of
S' x E?"~1(-3) satisfying the conditions (a)-(c) and S' x E2(»=P)=1(_3)
is tangent to the Lee vector field of S' x E?"~1(—3). The projection

71 St x BRI 3) 5 §(rp) x ... x St () — ST x E2nTPITL(13)

is a Riemannian submersion satisfying (d). S x E2(»=P)=1(-3) is also a
generalized Hopf manifold.

(III) The Hopf manifold H", is isometric to S*(1/m) x S**~! (see [17]).
S2n=1 is a real hypersurface of H”, and the Lee vector field of H? is
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normal to S$?7~1. $§27~! is a CR-submanifold of H, satisfying the con-
ditions (a)—(c). m : S*»7! — P,_1(C) is a Riemannian submersion sat-
isfying (d). From O’Neill [11], for orthonormal horizontal vectors X, Y,
AxY = —g(X,JY)JC, where J is an almost complex structure on H, and
C'is the unit normal vector to S?*~1. The holomorphic sectional curvature

H of P,_1(C) is H(X) = 1+ 3]AxJX|? = 4, where X is any unit vector
tangent to P,,_1(C) and X = h.1.(X).
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