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CR-SUBMANIFOLDS OF LOCALLY CONFORMAL
KAEHLER MANIFOLDS AND RIEMANNIAN SUBMERSIONS

BY

FUMIO NAR ITA (AKITA)

We consider a Riemannian submersion π : M → N , where M is a CR-
submanifold of a locally conformal Kaehler manifold L with the Lee form
ω which is strongly non-Kaehler and N is an almost Hermitian manifold.
First, we study some geometric structures of N and the relation between
the holomorphic sectional curvatures of L and N . Next, we consider the
leaves M of the foliation given by ω = 0 and give a necessary and sufficient
condition for M to be a Sasakian manifold.

1. Introduction. Let L be an almost Hermitian manifold with almost
complex structure J . Let M be a real submanifold of L and TM its tangent
bundle. We set T hM = TM ∩ J(TM). Then we have

(a) JT h
p M = T h

p M for each p ∈ M .

Let M be a CR-submanifold of an almost Hermitian manifold L such
that the differentiable distribution T hM : p → T h

p M ⊂ TpM on M satisfies
the following conditions:

(b) JT v
p M ⊂ TpM

⊥ for each p ∈ M , where T vM is the complementary
orthogonal distribution of T hM in TM ;

(c) J interchanges T vM and TM⊥;
(d) there is a Riemannian submersion π : M → N of M onto an almost

Hermitian manifold N such that (i) T vM is the kernel of π∗ and (ii) π∗ :
T h

p M → Tπ(p)N is a complex isometry for every p ∈ M .

This set up is similar to the set up of symplectic geometry. Indeed, one
has the following analogue (due to S. Kobayashi) of the symplectic reduction
theorem of Marsden–Weinstein.

Theorem 1 ([7]). Let L be a Kaehler manifold. Under the assumptions
stated above, N is a Kaehler manifold. If HL and HN denote the holomor-
phic sectional curvatures of L and N , then, for any horizontal unit vector
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X ∈ T hM , we have

HL(X) = HN (π∗X)− 4|σ(X, X)|2,

where σ denotes the second fundamental form of M in L.

In the above theorem, L is a Kaehler manifold. In this paper, we consider
the case where L is a locally conformal Kaehler manifold which is strongly
non-Kaehler. Then T vM is integrable [3]. Let Bh, Bv and B⊥ be the
horizontal part, the vertical part and the normal part of the Lee vector field
B respectively. First, we show the following theorem:

Theorem 2. Under the assumptions (a)–(d), assume further that L is a
locally conformal Kaehler manifold. Then the Lee vector field B ∈ T hM ⊕
TM⊥ and for any horizontal unit vector X ∈ T hM , we have

HL(X) = HN (π∗X)− 3|AXJX|2 − |σ(X, X)|2,

where σ is the second fundamental form of M in L and A is the integrability
tensor with respect to π. Moreover , if we assume in addition that the hori-
zontal component Bh of the Lee vector field B is basic and dim N ≥ 4 then
N is also a locally conformal Kaehler manifold. In particular , if L is a gen-
eralized Hopf manifold and if the Lee vector field B is basic and horizontal
then N is also a generalized Hopf manifold.

Next, we consider the case where the Lee vector field B ∈ TM⊥.

Theorem 3. Under the assumptions (a)–(d), if L is a locally conformal
Kaehler manifold and B ∈ TM⊥, then N is a Kaehler manifold.

Theorem 4. Under the assumptions (a)–(d), if L is a P0K-manifold
and M is a totally umbilical submanifold whose mean curvature vector is
parallel and B ∈ TM⊥, then N is a locally symmetric Kaehler manifold
and the holomorphic sectional curvature HN of N is HN (X̃) > 0, where X̃
is any unit tangent vector.

Next, let L be a locally conformal Kaehler manifold which is strongly
non-Kaehler, ω the Lee form and M the distribution defined by ω = 0.
Since dω = 0, M is integrable. Let M be a maximal connected integral
submanifold of M, that is, M is an orientable hypersurface of L. Then M
is a CR-submanifold satisfying (a)–(c) such that TM⊥ = {B} and T vM =
{JB}. In the case where L is P0K-manifold, we get the following theorem.

Theorem 5. Let L be a complete P0K-manifold and M a maximal con-
nected integral submanifold of M. Let N be an almost Hermitian manifold
and π : M → N be a Riemannian submersion satisfying the condition (d).
Then N is isometric to the complex projective space Pm(C).
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It is known that every orientable hypersurface of an almost Hermitian
manifold has an almost contact metric structure (φ, V, η, g) (see [2], [17]).
We show the following theorem:

Theorem 6. Let L be a locally conformal Kaehler manifold and M a
maximal connected integral submanifold of M. Then (M,φ, V, η, g) is a
Sasakian manifold if and only if

k =
(

1
2

√
ω(B)− 1

)
g + αη ⊗ η,

where k is the second fundamental form of M and α is a function.

R e m a r k 1. (I) In [17], I. Vaisman proved that if L is a locally conformal
Kaehler manifold with parallel Lee form, then a maximal connected integral
submanifold M of M is a totally geodesic submanifold of L and M is a
Sasakian manifold. In Theorem 6, we obtain a necessary and sufficient
condition for M to be a Sasakian manifold without the assumption that the
Lee form is parallel.

(II) It is known that if M is an orientable hypersurface of a Kaehler
manifold L, then the induced almost contact metric structure (φ, V, η, g) is
Sasakian if and only if k = −g + αη⊗ η, where k is the second fundamental
form of M and α is a function [14]. When L is a locally conformal Kaehler
manifold, from Theorem 6 we obtain a similar result.

2. Preliminaries. Let L be an almost Hermitian manifold with metric
g, complex structure J and fundamental 2-form Ω. The manifold L will
be called a locally conformal Kaehler manifold if every x ∈ L has an open
neighborhood U with a differentiable function γ : U → R such that g′U =
e−γg|U is a Kaehler metric on U . The locally conformal Kaehler manifold
L is characterized by

(1) dΩ = ω ∧Ω, dω = 0,

where ω is a globally defined 1-form on L. We call ω the Lee form. Since
for dim L = 2 we have dΩ = 0, we may suppose dim L ≥ 4. Next we define
the Lee vector field B by

(2) g(X, B) = ω(X).

The Weyl connection W∇ is the linear connection defined by

(3) W∇XY := ∇XY − 1
2ω(X)Y − 1

2ω(Y )X + 1
2g(X, Y )B,

where ∇ is the Levi-Civita connection of g. It is shown in [15] that an almost
Hermitian manifold L is a locally conformal Kaehler if and only if there is
a closed 1-form ω on L such that

(4) W∇XJ = 0.
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The equation (4) is equivalent to

(5) ∇XJY − 1
2ω(JY )X + 1

2g(X, JY )B
= J∇XY − 1

2ω(Y )JX + 1
2g(X, Y )JB,

where X and Y are vector fields on L.
The Riemannian curvature tensor field RL of L is given by

(6) RL(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

We set

(7) RL(W,Z,X, Y ) = g(RL(X, Y )Z,W ).

Let WR be the curvature tensor field of the Weyl connection W∇. Then

(8) WR(X, Y )Z

= RL(X, Y )Z − 1
2

{[
(∇Xω)Z + 1

2ω(X)ω(Z)
]
Y

−
[
(∇Y ω)Z + 1

2ω(Y )ω(Z)
]
X − g(Y, Z)

(
∇XB + 1

2ω(X)B
)

+ g(X, Z)
(
∇Y B + 1

2ω(Y )B
)}
− 1

4 |ω|
2(g(Y, Z)X − g(X, Z)Y ),

where X, Y and Z are any vector fields on L [18].
A locally conformal Kaehler manifold (L, J, g) is said to be a generalized

Hopf manifold if the Lee form is parallel , that is, ∇ω = 0 (ω 6= 0). A
generalized Hopf manifold is called a P0K-manifold if the Weyl curvature
tensor is zero, that is, WR(X, Y ) = 0. In this paper, we consider the case
where L is a locally conformal Kaehler manifold which is strongly non-
Kaehler in the sense that dΩ 6= 0 (and so ω 6= 0) at every point of L.

The Hopf manifolds are defined as Hn
λ = (Cn − {0})/∆λ, n > 1, where

C is the complex plane, λ ∈ C, |λ| 6= 0, 1 and ∆λ is the group generated by
the transformation z 7→ λz, z ∈ Cn − {0} (see [15]). On the manifold Hn

λ ,
we consider the Hermitian metric

ds2 =
1∑n

k=1 zkzk

n∑
j=1

dzj ⊗ dzj ,

where zj (j = 1, . . . , n) are complex Cartesian coordinates on Cn. The Hopf
manifold Hn

λ is an example of a P0K-manifold which is strongly non-Kaehler.
Let M be a submanifold of a Riemannian manifold L. We denote by the

same g the Riemannian metric tensor field induced on M from that of L.
Let ∇M denote covariant differentiation of M . Then the Gauss formula for
M is written as

(9) ∇XY = ∇M
X Y + σ(X, Y )

for any vector fields X, Y tangent to M , where σ denotes the second fun-
damental form of M in L. Let M be an n-dimensional submanifold of L.
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The mean curvature vector % of M is defined by % = 1
n trace(σ). A sub-

manifold M is called totally umbilical if the second fundamental form σ
satisfies σ(X, Y ) = g(X, Y )%. A submanifold M is called totally geodesic if
the second fundamental form vanishes identically, that is, σ = 0.

Let RM be the Riemannian curvature tensor field of M . Then we have
the equation of Gauss

RL(W,Z,X, Y ) = RM (W,Z,X, Y ) + g(σ(X, Z), σ(Y, W ))(10)
− g(σ(Y, Z), σ(X, W )).

Let N be an almost Hermitian manifold with almost complex structure
J ′ and π : M → N a Riemannian submersion such that TM ∩J(TM) is the
horizontal part of TM and, at each point p ∈ M , π∗ is a complex isometry
of T h

p M = TpM ∩ J(TpM) onto Tπ(p)N . Let X denote a tangent vector at
p ∈ M . Then X decomposes as VX + HX, where VX is tangent to the
fiber through p and HX is perpendicular to it. We define tensors T and A
associated with the submersion by

TXY := V∇M
VXHY +H∇M

VXVY,(11)
AXY := V∇M

HXHY +H∇M
HXVY,(12)

for any vector fields X, Y on M . Then T and A have the following proper-
ties [11].

(i) TX and AX are skew symmetric linear operators on the tangent
space of M , and interchange the horizontal and vertical parts.

(ii) TX = TVX while AX = AHX .
(iii) For V , W vertical, TV W is symmetric, that is, TV W = TW V . For

X, Y horizontal, AXY is skew symmetric, that is, AXY = −AY X.

A vector field X on M is said to be basic if X is horizontal and π-related
to a vector field X̃ on N . Every vector field X̃ on N has a unique horizontal
lift X to M , and X is basic. We denote it by X = h.l.(X̃).

Lemma 1 ([11]). Let X and Y be any basic vector fields on M . Then

(i) g(X, Y ) = g(X̃, Ỹ ) ◦ π;
(ii) H[X, Y ] is the basic vector field corresponding to [X̃, Ỹ ];
(iii) H∇M

X Y is the basic vector field corresponding to ∇N
X̃

Ỹ , where g is
the metric of N and ∇N is the covariant differentiation on N .

Let RN denote the curvature tensor field of N . The horizontal lift of
the curvature tensor RN of N will also be denoted by RN . We recall the
following curvature identity which will be needed in the sequel:

RM (W,Z,X, Y ) = RN (W̃ , Z̃, X̃, Ỹ )− g(AY Z,AXW )(13)
+ g(AXZ,AY W ) + 2g(AXY, AZW ),
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where X, Y, Z,W are any basic vector fields on M . As before, this result is
proven in [11].

Let X and Y be any basic vector fields on M . We define the operator
∇N by

(14) ∇N
XY := H∇M

X Y.

Then, by Lemma 1(iii), ∇N
XY is a basic vector field and

(15) π∗(∇N
XY ) = ∇N

X̃
Ỹ .

Next, we give the definition of a Sasakian manifold. A Riemannian
manifold (M, g) is said to be a Sasakian manifold if there exist a tensor
field φ of type (1, 1), a unit vector field V and a 1-form η such that

φV = 0, η(φX) = 0, φ2X = −X + η(X)V,

g(φX, φY ) = g(X, Y )− η(X)η(Y ),(16)
(∇M

X φ)Y = g(X, Y )V − η(Y )X,

for any vector fields X, Y on M [2].

3. Proof of Theorem 2. We put B = Bh + Bv + B⊥, where Bh, Bv

and B⊥ are the horizontal part, the vertical part and the normal part of the
Lee vector field B respectively.

From (9) and (12), for any horizontal vector fields X and Y , we have

(17) ∇XY = H∇M
X Y + AXY + σ(X, Y ).

Since M is a CR-submanifold of L, using (5) and (17), we obtain

(18) H∇M
X JY − 1

2ω(JY )X + 1
2g(X, JY )Bh = JH∇M

X Y − 1
2ω(Y )JX

+ 1
2g(X, Y )JBh ∈ T hM,

(19) AXJY + 1
2g(X, JY )Bv = Jσ(X, Y ) + 1

2g(X, Y )JB⊥ ∈ T vM,

(20) σ(X, JY ) + 1
2g(X, JY )B⊥ = JAXY + 1

2g(X, Y )JBv ∈ TM⊥,

where X and Y are any horizontal vector fields on M .
From (19) and (20), for any horizontal vector fields X and Y , we obtain

σ(JX, JY ) = σ(X, Y ) + g(JX, Y )JBv, AJXJY = AXY − g(X, Y )Bv,

because AXY is skew symmetric. In the last equation, we set X = Y ; then
we have AJXJX = AXX−g(X, X)Bv. Since AXX = 0, we obtain Bv = 0.

Since Bv = 0, for any horizontal vector fields X and Y , we obtain

(21) σ(JX, JY ) = σ(X, Y ), AJXJY = AXY.

Next, we compare the holomorphic sectional curvatures of L and N . We
set Z = JW and Y = JX in (10) and (13) to obtain
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(22) RL(W,JW, X, JX)

= RN (W̃ , J ′W̃ , X̃, J ′X̃)

− g(AJXJW, AXW )− g(AXJW, AW JX)

− 2g(AXJX, AW JW ) + g(σ(X, JW ), σ(JX, W ))

− g(σ(JX, JW ), σ(X, W )),

where X and W are any basic vector fields on M .
Setting X = W in the above equation, using (21), by σ(X, JX) = 0, we

obtain

(23) RL(X, JX,X, JX) = RN (X̃, J ′X̃, X̃, J ′X̃)− 3|AXJX|2 − |σ(X, X)|2.

Thus, for any horizontal unit vector X on M , we obtain

(24) HL(X) = HN (π∗X)− 3|AXJX|2 − |σ(X, X)|2.

Now, we assume that the horizontal component Bh of the Lee vector
field B is basic and dim N ≥ 4. We put B̃ := π∗(Bh). Let ω′ be the 1-form
on M induced by the Lee form ω on L. For any vector field X̃ on N , we set
ω̃(X̃) := g(X̃, B̃). Then (π∗ω̃)(X) = ω′(X), where X is any basic vector
field. Since π∗ commutes with d and π is a Riemannian submersion, ω̃ is
closed.

From the definition of ω̃, we obtain

(25) g(X̃, B̃) ◦ π = ω̃(X̃) ◦ π = ω′(X) = ω(X) = g(X, B),

where X̃ is any vector field on N and X = h.l.(X̃). We define the Weyl
connection W∇N of N by

(26) W∇N
X̃

Ỹ = ∇N
X̃

Ỹ − 1
2 ω̃(X̃)Ỹ − 1

2 ω̃(Ỹ )X̃ + 1
2g(X̃, Ỹ )B̃.

From Lemma 1, (18), (25) and (26), for any vector fields X̃, Ỹ and Z̃, we
obtain

(27) g((W∇N
X̃

J ′)Ỹ , Z̃) ◦ π

= g(W∇N
X̃

J ′Ỹ , Z̃) ◦ π − g(J ′(W∇N
X̃

Ỹ ), Z̃) ◦ π

= g
(
H∇M

X JY − 1
2ω(JY )X + 1

2g(X, JY )B

− JH∇M
X Y + 1

2ω(Y )JX − 1
2g(X, Y )JB, Z

)
= 0,

where X, Y and Z are the horizontal lifts of X̃, Ỹ and Z̃ respectively.
Therefore W∇N

X̃
J ′ = 0, that is, N is a locally conformal Kaehler manifold.

Let L be a generalized Hopf manifold and let the Lee vector field B be
basic and horizontal. Since the Lee form ω of L is parallel, for any vector field
X tangent to M , we have ∇XB = 0. Hence, by ∇XB = ∇M

X B + σ(X, B),
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we have ∇M
X B = 0. From Lemma 1 and (25), we obtain

g(∇N
X̃

B̃, Ỹ ) ◦ π = (X̃g(B̃, Ỹ )− g(B̃,∇N
X̃

Ỹ )) ◦ π

= Xg(B, Y )− g(B,∇M
X Y ) = g(∇M

X B, Y ) = 0,

where X̃, Ỹ are any vector fields tangent to N , and X, Y are their horizontal
lifts. Hence we obtain ∇N

X̃
B̃ = 0, that is, N is a generalized Hopf manifold.

R e m a r k 2. In this theorem, let L be a locally conformal Kaehler mani-
fold and M a totally umbilical CR-submanifold of L and the Lee vector field
B ∈ T hM . It is known that if B is tangent to M , then a totally umbilical
proper CR-submanifold M of L is totally geodesic [6]. For X, Y ∈ T hM ,
we have AXY = 1

2V[X, Y ] (see [11]). Therefore, using (19), we see that the
horizontal distribution T hM is integrable and the integral submanifolds are
totally geodesic.

4. Proof of Theorem 3. Since B ∈ TM⊥, for any vector field X
tangent to M , we have ω(X) = 0. Since M is a CR-submanifold of L, (5)
implies

(28) ∇XJY + 1
2g(X, JY )B = J∇XY + 1

2g(X, Y )JB,

where X and Y are horizontal vector fields. Using (17) and (28), we obtain

H∇M
X JY = JH∇M

X Y ∈ T hM,(29)
AXJY = Jσ(X, Y ) + 1

2g(X, Y )JB ∈ T vM,(30)

σ(X, JY ) + 1
2g(X, JY )B = JAXY ∈ TM⊥,(31)

where X and Y are any horizontal vector fields on M .
Since π∗ is a complex isometry, we have π∗ ◦ J = J ′ ◦ π∗. Therefore, if

X is a basic vector field, JX is also a basic vector field. Using Lemma 1,
(15) and (29), we have

∇N
X̃

J ′Ỹ = J ′∇N
X̃

Ỹ .

Hence N is a Kaehler manifold.

5. Proof of Theorem 4. Since L is a P0K-manifold, we have WR = 0
and ∇ω = 0. We set c := |ω|/2. Since ∇ω = 0, we have ∇B = 0 and
c = constant (see [17]). From (8), we have

RL(X, Y )Z = 1
4{[ω(X)Y − ω(Y )X]ω(Z)(32)
+ [g(X, Z)ω(Y )− g(Y, Z)ω(X)]B}
+ c2(g(Y, Z)X − g(X, Z)Y ).

Using ∇ω = 0 and ∇B = 0, we obtain ∇RL = 0 (see [6]). Since B ∈ TM⊥,
using (10) and (32), for any vector fields X, Y , Z and W tangent to M , we
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have

RM (W,Z,X, Y ) = c2(g(Y, Z)g(X, W )− g(X, Z)g(Y, W ))(33)
+ g(σ(Y, Z), σ(X, W ))− g(σ(X, Z), σ(Y, W )).

Since M is a totally umbilical submanifold of L and the mean curvature
vector is parallel, the second fundamental form is parallel. Thus M is a
locally symmetric space. Using (33) and σ(X, Y ) = g(X, Y )%, for X, Y, Z ∈
T hM and V ∈ T vM , we obtain RM (X, Y, Z, V ) = 0. Moreover, since
σ(X, Y ) = g(X, Y )% and B ∈ TM⊥, the fibers of π are totally geodesic [6].
Hence the reflections ϕπ−1(x) with respect to the fibers are isometries [4].
Therefore N is a locally symmetric space [4], [9]. From Theorem 3, N is
a Kaehler manifold. Using (32), for any horizontal unit vector X, we get
HL(X) = c2. Thus, from (24), we have HN (X̃) > 0, where X̃ is any unit
tangent vector.

6. Proof of Theorem 5. Since L is a P0K-manifold, the maximal
integral submanifold M of M is a totally geodesic submanifold of L (see
[17]). From (33), we have

(34) RM (W,Z,X, Y ) = c2(g(Y, Z)g(X, W )− g(X, Z)g(Y, W )),

where X, Y , Z and W are any vector fields tangent to M and c (= |ω|/2)
is constant. Using (13) and (34), we obtain

RN (X̃, Ỹ , X̃, Ỹ ) = c2(g(Y, Y )g(X, X)(35)
− g(X, Y )g(X, Y )) + 3g(AXY, AXY ),

where X̃, Ỹ are vector fields on N and X, Y are their respective horizontal
lifts. For each plane p in the tangent space TxN , the sectional curvature
KN (p) of N is

(36) KN (p) = c2 + 3|AXY |2,

where X̃, Ỹ is an orthonormal basis for p. Let {X̃i, J
′X̃i} (i = 1, . . . ,m) be

an orthonormal basis for TxN , dim(N) = 2m. We denote the Ricci tensor
of N by RicN . Then

RicN (X̃, X̃) =
m∑

i=1

RN (X̃i, X̃, X̃i, X̃) +
m∑

i=1

RN (J ′X̃i, X̃, J ′X̃i, X̃).

From (30) and (31), we get AXiXj = 0, AJXiXj = 0 (i 6= j), AJXiXi =
− 1

2JB and AJXiJXj = 0, (i, j = 1, . . . ,m). Now, we compute the scalar
curvature sN (x) of N :

sN (x) =
m∑

j=1

RicN (X̃j , X̃j) +
m∑

j=1

RicN (J ′X̃j , J
′X̃j) = c2(4m2 + 6m).
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Since L is complete and M is a totally geodesic submanifold of L, M is
complete. Since M is complete and π : M → N is a Riemannian submersion,
N is complete [11]. From Theorem 3, N is a Kaehler manifold.

It is known that a complete Kaehler manifold with constant scalar cur-
vature and with positive sectional curvature is isometric to the complex
projective space Pm(C) (see [1]). Therefore N is isometric to Pm(C).

7. Proof of Theorem 6. For the Lee vector field B, we set

(37) C := B/
√

g(B,B).

We define a vector field V , a 1-form η and a tensor field φ of type (1, 1) on
M by

(38) V = JC, η(X) = g(X, V ), JX = φX − η(X)C.

Since L is a Hermitian manifold, (M,φ, V, η, g) admits an almost contact
metric structure [2], [17].

Let HX and VX be the T hM part and T vM part of X ∈ TM respec-
tively. We set σ(X, Y ) = −k(X, Y )C. From (5), for any vector field X in
T hM , we obtain

(39) ∇V JX = J∇V X.

Using ∇V X = ∇M
V X − k(V,X)C, by (39), we have the following equations:

H∇M
V JX = JH∇M

V X ∈ T hM,(40)
V∇M

V JX = −k(V,X)V ∈ T vM,(41)
−k(V, JX)C = JV∇M

V X ∈ TM⊥,(42)

where X is any vector field in T hM . From (38) and (40), for any vector
fields X and Y in T hM , we obtain

g((∇M
V φ)X, Y ) = g(∇M

V φX − φ∇M
V X, Y )(43)

= g(H∇M
V JX − JH∇M

V X, Y ) = 0.

From the T hM part of (5) and (38), for any vector fields X and Y in T hM ,
we obtain

(44) H∇M
X φY = φH∇M

X Y.

Now, for any vector fields X and Y tangent to M , we assume k(X, Y ) =(
1
2

√
ω(B)− 1

)
g(X, Y ) + αη(X)η(Y ). Let V and W be any vector fields in

T vM and X be any vector field in T hM . From (42), we obtain V∇M
V X = 0,

because k(X, V ) = 0. Using (5), we obtain g(JH∇M
V W,X)=g(H∇V JW, X)

= −g(σ(V,X), JW ) = 0. Hence, we get H∇M
V W = 0.

We shall prove that (M,φ, V, η, g) admits a Sasakian structure. Let X,
Y and Z be any vector fields tangent to M . Using (44) and the above result,
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we have

g((∇M
X φ)Y, Z)

= g((∇M
X φ)Y,HZ) + g((∇M

X φ)Y,VZ)

= g(∇M
X φY,HZ)− g(φ∇M

X Y,HZ) + g(∇M
X φY,VZ)

− g(φ∇M
X Y,VZ)

= g(∇M
HXφHY,HZ) + g(∇M

HXφVY,HZ) + g(∇M
VXφHY,HZ)

+ g(∇M
VXφVY,HZ)− g(φ∇M

HXHY,HZ)− g(φ∇M
HXVY,HZ)

− g(φ∇M
VXHY,HZ)− g(φ∇M

VXVY,HZ) + g(∇M
HXφHY,VZ)

+ g(∇M
HXφVY,VZ) + g(∇M

VXφHY,VZ) + g(∇M
VXφVY,VZ)

− g(φ∇M
HXHY,VZ)− g(φ∇M

HXVY,VZ)− g(φ∇M
VXHY,VZ)

− g(φ∇M
VXVY,VZ)

= g(∇M
VXφHY,HZ)− g(φ∇M

VXHY,HZ) + g(∇M
HXφHY,VZ)

− g(φ∇M
HXVY,HZ)

= g((∇M
VXφ)HY,HZ) + g(V,VZ)g(∇M

HXφHY, V )

− g(V,VY )g(∇M
HXφHZ, V ).

Using the T vM part of (5) and the assumption, we obtain

g(∇M
HXφHY, V ) = g(V∇M

HXJHY, V )(45)

= −k(HX,HY ) + 1
2g(HX,HY )

√
ω(B)

= g(HX,HY ).

Thus, by (43) and (45),

(46) g((∇M
X φ)Y, Z) = g(V,VZ)g(HX,HY )− g(V,VY )g(HX,HZ).

On the other hand,

g(g(X, Y )V − η(Y )X, Z) = g(HX,HY )g(V,VZ) + g(VX,VY )g(V,VZ)
− g(HX,HZ)g(V,VY )− g(VX,VZ)g(V,VY )

= g(V,VZ)g(HX,HY )− g(V,VY )g(HX,HZ).

Therefore

(47) (∇M
X φ)Y = g(X, Y )V − η(Y )X.

Hence (M,φ, V, η, g) is a Sasakian manifold.
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Conversely, assume that (M,φ, V, η, g) is a Sasakian manifold. Let X
and Y be any vector fields tangent to M . From (9) and (38), we obtain

∇XJY − J∇XY = ∇X(φY − η(Y )C)− J(∇M
X Y + σ(X, Y ))

= ∇XφY−∇X(η(Y )C)−φ∇M
X Y +η(∇M

X Y )C−Jσ(X, Y )
= (∇M

X φ)Y − k(X, φY )C −Xη(Y )C
− η(Y )∇XC + η(∇M

X Y )C + k(X, Y )V.

On the other hand, by (5),

∇XJY − J∇XY = 1
2ω(JY )X − 1

2g(X, JY )B + 1
2g(X, Y )JB

= − 1
2

√
ω(B)η(Y )X − 1

2g(X, φY )B + 1
2

√
ω(B)g(X, Y )V.

From these equations and (47), we have

g(X, Y )V − η(Y )X − k(X, φY )C −Xη(Y )C

− η(Y )∇XC + η(∇M
X Y )C + k(X, Y )V

= − 1
2

√
ω(B)η(Y )X − 1

2g(X, φY )B + 1
2

√
ω(B)g(X, Y )V.

The V component of this equation is

g(X, Y )− η(Y )η(X)− η(Y )g(∇XC, V ) + k(X, Y )

= − 1
2

√
ω(B)η(Y )η(X) + 1

2

√
ω(B)g(X, Y ).

Thus

k(X, Y ) =
(

1
2

√
ω(B)− 1

)
g(X, Y )

−
(

1
2

√
ω(B)− 1

)
η(X)η(Y ) + η(Y )g(∇XC, V ).

Since k(X, Y ) is symmetric, we have η(Y )g(∇XC, V ) = η(X)g(∇Y C, V ).
This equation shows that g(∇XC, V ) = βη(X), where β is a function. We
set α = − 1

2

√
ω(B) + 1 + β; then we have

k(X, Y ) =
(

1
2

√
ω(B)− 1

)
g(X, Y ) + αη(X)η(Y ).

8. Examples. (I) Let (M,φ, V, η, g) be a Sasakian manifold and S1

the circle with length element ω = dt. Then S1 ×M is a generalized Hopf
manifold with metric ω2 + g and Lee form ω (see [17]).

Let Cn+m be the complex vector space of all (n + m)-tuples of complex
numbers z = (z1, . . . , zn+m) and akj be positive integers and αkj be real
numbers, k = 1, . . . ,m, j = 1, . . . , n + m. Let

fk(z1, . . . , zn+m) =
n+m∑
j=1

αkjz
akj

j , k = 1, . . . ,m,

be a collection of complex polynomials. Let F =
⋂m

k=1 f−1
k (0). Let dk =

LCM(ak1, ak2, . . . , ak,n+m), qkj = dk/akj . Suppose that
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(i) F is a complete intersection of the f−1
k (0).

(ii) F has an isolated singularity at the origin.
(iii) qkj is independent of k (let qj = qkj).

Let B2n−1 = F ∩ S2(n+m)−1 ⊂ Cn+m. Then B2n−1 is called a general-
ized Brieskorn manifold [12]. It is a (2n − 1)-dimensional submanifold in
S2(n+m)−1. Let (S2(n+m)−1, φ, V, η, g) be the unit sphere with the standard
Sasakian structure and imbedded in Cn+m. Denoting by x1, y1, . . . , xn+m,
yn+m the real coordinates of Cn+m such that zj = xj +

√
−1 yj (j =

1, . . . , n + m), we define a real vector field Ṽ on Cn+m by

Ṽ =
n+m∑
j=1

Aj(xj∂/∂yj − yj∂/∂xj),

where Aj = γqj for a positive constant γ (j = 1, . . . , n + m). We set

µ = Ṽ − V, η̃ = (1 + η(µ))−1η, φ̃(X) = φ(X − η̃(X)Ṽ ),

g̃(X, Y ) = (1 + η(µ))−1g(X − η̃(X)Ṽ , Y − η̃(Y )Ṽ ) + η̃(X)η̃(Y ),

where X and Y are vector fields on S2(n+m)−1. Then, by the theorem
of Takahashi [13], (S2(n+m)−1, φ̃, Ṽ , η̃, g̃) is also a Sasakian manifold. Let
ι : B2n−1 → S2(n+m)−1 be the inclusion mapping. We define four tensor
fields (φ̂, V̂ , η̂, ĝ) on B2n−1 by

φ̂ = φ̃|B2n−1 , V̂ = Ṽ|B2n−1 , η̂ = ι∗η̃, ĝ = ι∗g̃.

Using calculations similar to those of [13], we can prove that every general-
ized Brieskorn manifold (B2n−1, φ̂, V̂ , η̂, ĝ) admits many Sasakian structures.
Therefore, S1 ×B2n−1 is a generalized Hopf submanifold of the generalized
Hopf manifold S1 × S2(n+m)−1.

(II) Let E2n−1(−3) be the Sasakian space form with constant φ-sectional
curvature −3 with standard Sasakian structure in a Euclidean space. Let
S1(ri) be a circle of radius ri, i = 1, . . . , p. A pythagorean product
E2(n−p)−1(−3)×S1(r1)×. . .×S1(rp) is a pseudo-umbilical generic submani-
fold of E2n−1(−3) (p ≥ 2) (see [20]). Let S1 be the circle with length element
ω. Then ω is the Lee form of the generalized Hopf manifold S1×E2n−1(−3).
Hence S1 × E2(n−p)−1(−3) × S1(r1) × . . . × S1(rp) is a CR-submanifold of
S1 × E2n−1(−3) satisfying the conditions (a)–(c) and S1 × E2(n−p)−1(−3)
is tangent to the Lee vector field of S1 × E2n−1(−3). The projection

π : S1 × E2(n−p)−1(−3)× S1(r1)× . . .× S1(rp) → S1 × E2(n−p)−1(−3)

is a Riemannian submersion satisfying (d). S1 × E2(n−p)−1(−3) is also a
generalized Hopf manifold.

(III) The Hopf manifold Hn
e2 is isometric to S1(1/π)× S2n−1 (see [17]).

S2n−1 is a real hypersurface of Hn
e2 and the Lee vector field of Hn

e2 is
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normal to S2n−1. S2n−1 is a CR-submanifold of Hn
e2 satisfying the con-

ditions (a)–(c). π : S2n−1 → Pn−1(C) is a Riemannian submersion sat-
isfying (d). From O’Neill [11], for orthonormal horizontal vectors X, Y ,
AXY = −g(X, JY )JC, where J is an almost complex structure on Hn

e2 and
C is the unit normal vector to S2n−1. The holomorphic sectional curvature
H of Pn−1(C) is H(X̃) = 1 + 3|AXJX|2 = 4, where X̃ is any unit vector
tangent to Pn−1(C) and X = h.l.(X̃).
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