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STRONGLY CHAOTIC DENDRITES

BY

J. J. C H A R A T O N I K AND W. J. C H A R A T O N I K (WROC LAW)

The concept of a strongly chaotic space is introduced, and its relations
to chaotic, rigid and strongly rigid spaces are studied. Some sufficient as
well as necessary conditions are shown for a dendrite to be strongly chaotic.

1. Introduction. A nondegenerate topological Hausdorff space X is
said to be:

(a) chaotic if for any two distinct points p and q of X there exists an
open neighbourhood U of p and an open neighbourhood V of q such that
no open subset of U is homeomorphic to any open subset of V ;

(b) rigid if it has a trivial autohomeomorphism group, i.e., if the only
homeomorphism of X onto X is the identity;

(c) strongly rigid if the only homeomorphism of X into X is the identity
of X onto itself.

These three concepts were extensively studied in many papers. In [1], a
comprehensive list of references is produced and a number of results are pre-
sented or recalled, especially those related to curves (i.e., one-dimensional
metric continua). In a discussion with the authors, Dr. Krzysztof Omil-
janowski and Dr. Janusz R. Prajs have proposed to define a narrower class
of spaces than chaotic ones, called here strongly chaotic. In this paper we
investigate this new class of spaces. First, we establish some inclusions of the
new class in the previous ones. Next, we study strongly chaotic dendrites
and show that no other inclusions hold, even for dendrites.

2. Preliminaries. All spaces considered in this paper are assumed
to be Hausdorff and all mappings are continuous. Given a subset A of a
space X, we denote by clA its closure in X. A continuum means a compact
connected metric space. A dendrite means a locally connected continuum
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containing no simple closed curve. Given two points p and q of a dendrite
X, we denote by pq the unique arc from p to q in X.

We shall use the notion of order of a point in the sense of Menger–
Urysohn (see e.g. [5], §51, I, p. 274), and we denote by ord(p, X) the order
of the space X at a point p ∈ X . It is well known (see e.g. [5], §51,
pp. 274–307) that the function ord takes values from the set

S = {0, 1, 2, . . . , ω,ℵ0, 2ℵ0}.
Points of order 1 in X are called end points of X; the set of all end points

of X is denoted by E(X). Points of order 2 are called ordinary points. It
is known that the set of all ordinary points of a dendrite is a dense subset.
For each n ∈ {3, 4, . . . , ω,ℵ0, 2ℵ0} points of order n are called ramification
points; the set of all ramification points of X is denoted by R(X). It is
known that for each dendrite X the set R(X) is at most countable, and
that points of order ℵ0 and 2ℵ0 do not occur in any dendrite.

Given a dendrite X we decompose it into disjoint subsets of points of a
fixed order. Namely for each n ∈ {1, 2, . . . , ω} we put

Rn(X) = {p ∈ X : ord(p, X) = n}.

3. General properties. We start with a proposition that will lead to
the definition of a strongly chaotic space.

3.1. Proposition. The following conditions are equivalent for a topo-
logical Hausdorff space X :

(3.2) for any two distinct points p and q of X there exists an open neigh-
bourhood U of p and an open neighbourhood V of q such that no
open subset of U is homeomorphic to any subset of V ;

(3.3) for any two disjoint subsets U and V of X with U being open there
is no homeomorphism from U onto V ;

(3.4) for any two distinct subsets U and V of X with U being open there
is no homeomorphism from U onto V ;

(3.5) for every open subset U of X every homeomorphism h : U → h(U) ⊂
X is the identity on U ;

(3.6) for any two distinct points p and q of X there exists an open neigh-
bourhood U of p and an open neighbourhood V of q such that no
subset of U is homeomorphic to any open subset of V ;

(3.7) for any two disjoint subsets U and V of X with V being open there
is no homeomorphism from U onto V ;

(3.8) for any two distinct subsets U and V of X with V being open there
is no homeomorphism from U onto V ;

(3.9) for every subset U of X and for every homeomorphism h : U →
h(U) ⊂ X with h(U) open, h is the identity on U.
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P r o o f. The implications (3.2)⇒(3.3), (3.3)⇒(3.2), (3.4)⇒(3.3) and
(3.5)⇒(3.4) are obvious. We show (3.3)⇒(3.5). Assume (3.3) and suppose
on the contrary that there an open set U and a homeomorphism h : U →
h(U) ⊂ X which is not the identity on U . Then there is a point x ∈ U with
h(x) 6= x. Since X is Hausdorff, there exist disjoint open sets U1 and V1

such that x ∈ U1 and h(x) ∈ V1. Put h1 = h|U1. Then U2 = h−1
1 (V1∩h(U))

is an open subset of U1. The homeomorphism h2 = h1|U2 = h|U2 sends the
set U2 into V1, so h(U2) is disjoint from U2 ⊂ U1. This contradicts (3.3).
Thus the equivalence of the conditions (3.2) through (3.5) is established.

Interchanging the roles of U and V and considering the homeomorphism
h−1 in place of h we get the conditions (3.6)–(3.9) from (3.2)–(3.5). The
proof is complete.

A nondegenerate topological space X is said to be strongly chaotic if it
satisfies any of the conditions (3.2)–(3.9) listed in Proposition 3.1. Putting
U = X in (3.5) we get the following.

3.10. Observation. Each strongly chaotic space is strongly rigid.

3.11. Corollary. If a chaotic space is not strongly rigid , then it is not
strongly chaotic.

3.12. R e m a r k. Chaotic and not strongly rigid spaces are known: see
e.g. [1], Statements 7 and 8, pp. 226 and 227. A chaotic and not strongly
rigid (thus not strongly chaotic) dendrite is constructed in Statement 10
of [1], p. 229.

3.13. Proposition. For every topological space X we have the following
four implications and none of them can be reversed , even if X is a dendrite.

(X is strongly chaotic) =⇒ (X is strongly rigid)
⇓ ⇓

(X is chaotic) =⇒ (X is rigid)
P r o o f. The two vertical implications are obvious. The upper horizontal

one is just Observation 3.10, and the lower horizontal one is Proposition 6 of
[1], p. 221. To see that the two vertical implications cannot be reversed for
dendrites, one can take the example of a chaotic (thus rigid) dendrite which
is not strongly rigid (thus not strongly chaotic), presented in Statement 10
of [1], p. 229. It is shown in Example 33 of [4] that there exists a strongly
rigid and not chaotic dendrite. Thus the two horizontal implications cannot
be reversed. The argument is complete.

4. Universal dendrites. A dendrite is said to be universal if it con-
tains a homeomorphic image of any other dendrite. Similarly, if the order
of each point of a dendrite X is bounded by a number n ∈ {3, 4, . . . , ω},
and X contains homeomorphic copies of other dendrites whose points have
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orders not greater than n, then X is called a universal dendrite of order n.
Thus, since no dendrite contains points of order exceeding ω ([5], §51, VI,
Theorem 4, p. 301), a universal dendrite of order ω is universal according
to the former definition.

Observe that if a dendrite X contains a universal dendrite Y , then X is
universal itself. The same holds for universal dendrites of order n. Hence,
to avoid any confusion with other universal dendrites, we shall consider,
for each n ∈ {3, 4, . . . , ω}, some special universal dendrite Dn of order n,
which will be called the standard universal dendrite of order n. It is well
known that Dn is characterized by the following two conditions (see e.g. [3],
Theorem 3.1, p. 169):

(4.1) each ramification point of Dn is of order n,

and

(4.2) for every arc A contained in Dn the set of all ramification points of
Dn which belong to A is a dense subset of A.

Assuming (4.1), condition (4.2) is equivalent to the following:

(4.3) for every arc A contained in Dn we have A ∩Rn(X) 6= ∅.

The construction of Dn is known from Ważewski’s doctoral dissertation
(see [7], Chapter K, p. 137). It has been simplified by K. Menger in [6],
Chapter X, §6, p. 318, and is recalled in [3], Chapter 3, p. 167. Another de-
scription of these continua for finite n, which uses limits of inverse sequences
of finite dendrites (i.e. dendrites having a finite number of end points only)
with monotone onto bonding mappings, is given in [2], p. 491.

The following result generalizes Proposition 3.2 of [3], p. 169.

4.4. Theorem. Let a dendrite X be given, and let n ∈ {3, 4, . . . , ω} be
fixed. If

(4.5) A ∩Rn(X) 6= ∅ for every arc A in X,

then X contains a homeomorphic copy of the standard universal dendrite
Dn of order n.

P r o o f. Fix an arbitrary arc A ⊂ X and, for every point p ∈ A∩Rn(X),
consider n arcs emanating from p and pairwise disjoint apart from p. On
each of them repeat this construction. According to the characterization
(4.1) and (4.2) of Dn the closure of the union of all these arcs is homeomor-
phic to Dn.

5. Strongly chaotic dendrites. As an application of Theorem 4.4 we
have the following result.
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5.1. Proposition. Let a dendrite X be given, and let n ∈ {3, 4, . . . , ω}
be fixed. If

(5.2) ord(p, X) ≤ n for each p ∈ X,

and if

(4.5) A ∩Rn(X) 6= ∅ for every arc A in X,

then the dendrite X is not strongly chaotic.

P r o o f. We use condition (3.5) of Proposition 3.1. Let U be an open
subset of X. Take an open connected subset of X whose closure V is disjoint
from U . As a subcontinuum of the dendrite X, the set V is also a dendrite
([5], §51, VI, a corollary to Theorem 4, p. 301). Then condition (4.5) implies
a similar condition for V :

(5.3) A ∩Rn(V ) 6= ∅ for every arc A ⊂ V.

Thus we infer from Theorem 4.4 that V contains a homeomorphic copy
Y of the standard universal dendrite Dn of order n. Now condition (5.2)
and the universality of Y imply that Y contains a homeomorphic copy X0

of X. Let U0 be a homeomorphic copy of U contained in X0. So, we have
U0 ⊂ X0 ⊂ Y ⊂ V , and we see that V contains a homeomorphic copy of U .
Since U ∩V = ∅, it follows that the homeomorphism is not the identity, and
therefore X is not strongly chaotic. The proof is complete.

5.4. R e m a r k. It can be observed from the construction that the
chaotic dendrite D of Statement 13 of [1], p. 231, satisfies conditions (5.2)
and (4.5) of Proposition 5.1 for n = 4; analogously, the chaotic dendrites
X(m,n) of Theorem 27 of [4] also satisfy these conditions. Consequently,
no one of them is strongly chaotic. Moreover, each X(m,n) is strongly
rigid. Thus not only can no other implication be added to the diagram of
Proposition 3.13, but also the condition of being strongly rigid and chaotic
does not imply being strongly chaotic, even for dendrites.

However, a similar construction can be applied to obtain examples of
strongly chaotic dendrites. In fact, it is enough to change the role of the
numbers m and n in the definition of the dendrites X(m,n) of Theorem 27
of [4] and to modify the construction a little to get some extra properties.
For clarity, however, we repeat the whole construction.

5.5. Theorem. For any two integers m and n with 3 ≤ n < m there
exists a dendrite X such that

(5.6) ord(x,X) ∈ {1, 2, n,m} for each x ∈ X;
(4.5) A ∩Rn(X) 6= ∅ for every arc A in X ;
(5.7) if α ∈ {1, 2, n,m}, then cl Rα(X) = X;
(5.8) X is strongly chaotic.
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P r o o f. First we define two auxiliary dendrites D0 and D1. Within a
straight line segment ab ordered from a to b by < we choose a sequence of
points {ai : i ∈ N} so that

ai+1 < ai and lim
i→∞

ai = a.

Within each interval ai+1ai choose a sequence of points {ai,j : j ∈ N} so
that

ai,j < ai,j+1 and lim
j→∞

ai,j = ai.

At each point ai and ai,j erect m − 2 straight line segments mutually
disjoint apart from these points and having only these points in common
with the segment ab. Take the segments so that for any positive number
ε only finitely many of them have length greater than ε. The set of points
obtained in this way is called D0. It is clear that D0 is a dendrite.

The definition of D1 is the same except that the points ai,j are taken
within the intervals ai+1ai so that

ai,j+1 < ai,j and lim
j→∞

ai,j = ai+1.

So D1 is also a dendrite. The point a is called the origin of either D0 or
D1, and the straight line segments which we have erected are all referred to
as straight line segments of rank 1.

Denoting by Sd the derived set of a set S in a topological space T (i.e.
the set of all accumulation points of S in T ) we see that

(5.9) [ab ∩Rm(D0)]dd = {a} = [ab ∩Rm(D1)]dd.

The defined dendrites D0 and D1 start an inductive construction of den-
drites Dγ1...γk

, where k ∈ N and γ1 . . . γk is a zero-one sequence. Assume
now that we have defined dendrites Dγ1...γk

for some k ∈ N. Assume fur-
thermore that we have defined the expressions: the origin of Dγ1...γk

and
the straight line segments of rank k of Dγ1...γk

(whose one end point is an
end point of Dγ1...γk

). To define Dγ1...γk0 we proceed as follows. We divide
each straight line segment of rank k of Dγ1...γk

into three equal parts. Next
we replace the middle part by a copy of D0 diminished so that the diameter
of the copy equals the length of the middle part. The copy of D0 is located
in such a way that its origin is the closest point of the copy to that end
point of the considered segment of rank k which is the end point of Dγ1...γk

.
Furthermore, we do this, as we clearly can, so that the resulting set Dγ1...γk0

is a dendrite. By the origin of Dγ1...γk0 we mean the origin of Dγ1...γk
, and

by the straight line segments of rank k+1 of Dγ1...γk0 we mean the segments
of rank 1 of the sets D0 used in obtaining Dγ1...γk0 from Dγ1...γk

.
The definition of Dγ1...γk1 is the same except that in obtaining Dγ1...γk1

from Dγ1...γk
we use the sets D1 instead of D0. The inductive definition of

Dγ1...γk
for each k ∈ N is thus finished.
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Now we define the desired dendrite X. The construction uses the se-
quence of dendrites

D0, D10, D110, . . . , D11...10, . . .

which we re-label in the same order as

W1, W2, W3, . . . , Wk, . . .

Putting X1 = W1 we have Rn(X1) = ∅, and, by (5.9),

[ab ∩Rm(X1)]dd = {a}.
Further, if y ∈ Rm(X1), then for each arc B ⊂ X1 ending at y we have

y 6∈ [B ∩Rm(X1)]dd.
Recall that a free arc in a dendrite D is an arc such that all its points

but the ends are of order 2 in D. In particular, a maximal free arc in a
dendrite D is an arc st ⊂ D such that

st ∩ (E(D) ∪R(D)) = {s, t}.
Note that each arc in X1 contains a free subarc. Consider now an arbi-

trary maximal free arc in X1. It is evident from the construction that every
such arc is a straight line segment. Denote its mid point by x. We obtain,
of course, a countable set of points x. With this countable set we associate,
in a one-to-one way, the sets Wk of odd indices k, i.e.,

W3, W5, . . . , W2r+1, . . . ,

taking x as the origin of the associated set W2r+1 = W (x) in such a way
that X1 and W (x) have only the point x in common. Moreover, to the
point x we attach n − 3 straight line segments having x as one end point
and having only x in common with W (x)∪X1. All this can clearly be done
in such a way that the resulting set X2 is a dendrite. Note that

(5.10) for every maximal free arc in the dendrite X1 its mid point x
becomes a point of order n < m in the constructed dendrite X2,
and there are no other points of order n in X2,

and that each arc in X2 contains a free subarc. Further, observe that

(5.11) for every x ∈ Rn(X2) there exists an arc A ⊂ X2 ending at x
(namely an arc contained in W (x)) with [A ∩Rm(X2)]dd = {x},

and that

(5.12) if y ∈ Rm(X2) then y 6∈ [B ∩ Rm(X2)]dd for each arc B ⊂ X2

ending at y.

Now, X3 is related to X2 in the same way as X2 is to X1, except that
we make use of the sets W2(2k+1) instead of W2k+1. In general, Xi+1 is
related to Xi in the same way as Xi is to Xi−1 except that we make use of
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W2i−1(2k+1) instead of W2i−2(2k+1). It can be observed that each arc in Xi

contains a free subarc, and

(5.13) for every maximal free arc in the dendrite Xi its mid point x be-
comes a point of order n < m in the constructed dendrite Xi+1,

and that, analogously to (5.11) and (5.12), similar properties hold for Xi,
namely

(5.14) for every x ∈ Rn(Xi) there exists an arc A ⊂ Xi ending at x such
that [A ∩Rm(Xi)]dd = {x},

(5.15) if y ∈ Rm(Xi), then y 6∈ [B ∩ Rm(Xi)]dd for each arc B ⊂ Xi

ending at y.

It is known that this construction can be carried through so that the
closure of the union of the dendrites Xi obtained is itself a dendrite. We
may then assume that X = cl(

⋃
{Xi : i ∈ N}) is a dendrite.

Now we prove the desired properties of X. We notice first that any
ramification point of X is either of order n or m. Thus (5.6) follows from
the construction. The points of order n are the points x which arise at
the successive stages of the construction. Since, for each i ∈ N, in the
construction of Xi we take the mid points x of all maximal free arcs in Xi,
condition (4.5) follows from (5.13). Thus Rn(X) is dense in X.

Furthermore, notice that (5.14) and (5.15) lead to the following two
properties of the dendrite X:

(5.16) for every x ∈ Rn(X) there exists an arc A ⊂ X ending at x such
that x ∈ [A ∩Rm(X)]dd,

(5.17) if y ∈ Rm(X), then y 6∈ [B ∩Rm(X)]dd for each arc B ⊂ X ending
at y.

Consequently, by (5.16), each open neighbourhood of a point y ∈ Rn(X)
contains points of order m in X and, hence, the density of Rm(X) in X
follows from the density of Rn(X) in X. The set R2(X) is always dense in
a dendrite X ([6], p. 309; cf. [5], §51, VI, Theorem 8, p. 302). Finally, the
density of R1(X) = E(X) is equivalent to the density of R(X) according to
Theorem 2.4 of [3], p. 167. Thus (5.7) is shown.

Now we prove that X is strongly chaotic using condition (3.3) of Propo-
sition 3.1. Let U and V be disjoint subsets of X with U open. Suppose,
on the contrary, that there is a homeomorphism h of U onto V . First, we
notice that Rn(X)∩U 6= ∅ 6= Rm(X)∩U , the sets Rn(X) and Rm(X) being
dense in X. Further, observe that h must carry each point of Rn(X)∩U to
a point of either Rn(X) ∩ V or Rm(X) ∩ V since no point of X is of order
greater than m.

Take u ∈ Rn(X) ∩ U and put v = h(u) ∈ (Rn(X) ∪ Rm(X)) ∩ V .
According to (5.16) there exists an arc A ⊂ U ⊂ X ending at u and such
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that

[A ∩Rm(X)]dd = {u}.
The existence of such an arc is preserved by a homeomorphism, so v has the
same property, i.e., there is an arc B ⊂ V (viz. B = h(A)) such that v is an
end point of B and that

[B ∩Rm(X)]dd = {v}.

Thus v cannot be in Rm(X) by (5.17), and consequently v ∈ Rn(X) ∩ V .
Assume for definiteness (the argument is similar in the opposite case) that
the set Wi with origin u has index lower than the one with origin v. Consider
now an arc ubu ⊂ U that contains a sequence of ramification points of order
m converging to u. It is clear that there is a subarc ub′u of ubu such that
ub′u and h(ub′u) are straight line segments.

If W (u) = W1, we can easily reach a contradiction. Really, W1 = D0

and W (v) = Wi = D111...10, which means that ub′u contains ramification
points of order m which are limit points from the left of ramification points
of order m, while h(ub′u) contains no such points.

If W (u) = W2, consider a fixed ramification point su of order m in X
which is interior to ub′u. Consider a straight line segment standing upright to
ub′u at su whose end point eu is in E(X)∩U . Order the arc eusu from eu to
su. Then there is a point on the arc eusu which is the origin of the inserted
copy of D0, i.e., it is the limit of a sequence of ramification points of order m
which are limit points from the left of ramification points of order m. The
image h(eusu) in V contains no such points since W (v) = Wi = D111...10.
The argument exemplified above can be extended to apply to the general
case where W (u) = Wi and W (v) = Wj for i < j or j < i, respectively.
This contradiction completes the proof.

The authors are greatly indebted to Dr. Krzysztof Omiljanowski and
Dr. Janusz R. Prajs for a helpful discussion on the subject of this paper.
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