
COLLOQU IUM MATHEMAT ICUM
VOL. LXX 1996 FASC. 2

PROBABILITY MEASURE FUNCTORS
PRESERVING INFINITE-DIMENSIONAL SPACES

BY

NGUYEN TO NHU (HANOI AND BLOOMINGTON, INDIANA)
AND KATSURO SAKAI (TSUKUBA)

0. Introduction. Let Q = [−1, 1]ω be the Hilbert cube, s = (−1, 1)ω

the pseudo-interior of Q, Σ = {(xi)i∈N | sup |xi| < 1} the radial-interior of
Q and

σ = {(xi)i∈N ∈ s | xi = 0 except for finitely many i}.
As is well-known, s is homeomorphic (≈) to the Hilbert space `2. We put

`Q
2 = {(xi)i∈N ∈ `2 | sup |ixi| < ∞},

`f
2 = {(xi)i∈N ∈ `2 | xi = 0 except for finitely many i}.

It is shown in [SW] that (`2, `
Q
2 , `f

2 ) ≈ (s,Σ, σ), that is, there exists a homeo-
morphism h : `2 → s such that h(`Q

2 ) = Σ and h(`f
2 ) = σ.

The space of probability measures (1) on a metrizable space X is denoted
by P (X). By integration, P (X) can be regarded as a subset of the dual
Cb(X)∗ of the Banach space Cb(X) of all bounded continuous real-valued
functions on X with the sup-norm. For details, see [Va2, Part I] and [DS,
Introduction]. The topology of P (X) is inherited from the weak∗-topology of
Cb(X)∗. For each k ∈ N, let Pk(X) ⊂ P (X) be the subspace of all measures
with supports consisting of at most k points, and let PF(X) =

⋃
k∈N Pk(X).

It is known that Pk(Q) ≈ Q and Pk(`2) ≈ `2 for each k ∈ N ([Fe1] and
[NT]). For related topics, see [Fe3]. For a subspace A of a metrizable space
X, we can regard Pk(A) as a subspace of Pk(X) by identifying as follows:

PF(A) = {µ ∈ PF(X) | suppµ ⊂ A},
where supp µ denotes the support of µ. Using the open base in [Va2, Part
II, Remark 3 to Theorem 2] (or [NT, Proposition 2.1]), it is easy to see that

1991 Mathematics Subject Classification: 28A33, 46E27, 57N20, 60B05.
Key words and phrases: probability measure functor, support, the Hilbert cube,

pseudo-interior, radial-interior, σ, `2, `
f
2 , (`

f
2 )
ω , `2 × `f2 , hyperspace, G-symmetric power.

(1) A non-negative Borel measure µ on X with µ(X) = 1 is called a probability mea-
sure.
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the topology of PF(A) is identical with the relative topology inherited from
PF(X) (cf. [DS, Subspace Lemma]). In the present paper, applying the
results of [SW], [CDM], [vM2] and [We], we prove

Main Theorem. For each k ∈ N, the following hold :

(a) (Pk(Q), Pk(s), Pk(Σ), Pk(σ)) ≈ (Q, s,Σ, σ),
(b) (Pk(Qω), Pk(Σω)) ≈ (Qω, Σω), hence Pk((`f

2 )ω) ≈ (`f
2 )ω (2), and

(c) (Pk(`2×Q), Pk(`2×Σ)) ≈ (`2×Q, `2×Σ) (3), hence Pk(`2× `f
2 ) ≈

`2 × `f
2 .

R e m a r k 1. Relating to the above result, one may ask whether Pk(H) ≈
H for any infinite-dimensional pre-Hilbert space H or not. This question
can be answered negatively. In [vM1], Jan van Mill showed that every
separable Banach space (hence `2) contains a dense linear subspace X which
has restricted domain invariance, that is, for every continuous injection
g : U → X with domain a non-empty open set in X, there exists a non-
empty open set V ⊂ U such that g|V is an open embedding in X. For such
a normed linear space (or a pre-Hilbert space) X, Pk(X) 6≈ X if k > 1.

In fact, let U1, . . . , Uk be disjoint open sets in X. By ∆
◦

k−1, we denote
the standard open (k − 1)-simplex, that is,

∆
◦

k−1 =
{

(t1, . . . , tk) ∈ Rk
∣∣∣ k∑

i=1

ti = 1 and ti > 0 for each i
}

.

We define ϕ : U1 × . . .× Uk ×∆
◦

k−1 → Pk(X) as follows:

ϕ(x1, . . . , xk; t1, . . . , tk) =
k∑

i=1

tiδxi ,

where δx ∈ P (X) is the Dirac measure at x ∈ X (i.e. δx({x}) = 1).
Then by using the open base in [Va2] (or [NT]), it is easy to see that ϕ is
an open embedding. If Pk(X) ≈ X then we have a continuous injection
g : U1 → X such that g(U1) has no interior point, which contradicts the
restricted domain invariance of X. Therefore Pk(X) 6≈ X for any k > 1.

R e m a r k 2. By our results, each (Pk(X), Pk(M), Pk(N)) is a (Q,Σ, σ)-
manifold (or an (`2, `

Q
2 , `f

2 )-manifold) triple if so is (X, M, N) and each func-
tor Pk preserves manifolds modeled on the spaces Q, `2, `Q

2 , `f
2 , (`f

2 )ω and
`2 × `f

2 . However, Pk(X) 6≈ X in general even if X is such a manifold.
In fact, Pk(X) is path-connected for any (disconnected) space X and

k > 1. To see this, let x0 ∈ X and µ =
∑r

i=1 siδxi ∈ Pk(X). We define a

(2) It is known that (`f2 )
ω ≈ Σω (cf. the proof of [vM2, Corollary 4.2]).

(3) It is known that (`2 ×Q, `2 ×Σ) ≈ (`2 ×Q, `2 × σ), hence `2 ×Σ ≈ `2 × `f2 .
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path ϕ : I → Pk(X) as follows:

ϕ(t) =
{ ∑r

i=1(1− 2t)siδxi
+ 2tδx1 if 0 ≤ t ≤ 1/2,

(2− 2t)δx1 + (2t− 1)δx0 if 1/2 ≤ t ≤ 1.

Then ϕ(0) = µ, ϕ(1/2) = δx1 and ϕ(1) = δx0 .

R e m a r k 3. Let SM be the category of separable metrizable spaces
with (continuous) maps. Then each Pk : SM→ SM is a covariant functor.
Our Main Theorem holds if Pk is replaced by any covariant functor F :
SM→ SM satisfying the following conditions:

(1) if A is a subspace of X then F (A) is a subspace F (X);
(2) if A is closed in X then F (A) is also closed in F (X);
(3) for A ⊂ X, any deformation h : A×I → X induces the deformation

h∗ : F (A) × I → F (X) defined by h∗t = F (ht) (hence h∗t (F (A)) ⊂
F (ht(A)));

(4) F (
⋃

i∈N Xi) =
⋃

i∈N F (Xi) for X1 ⊂ X2 ⊂ . . . ;
(5) F (X ∩ Y ) = F (X) ∩ F (Y );
(6) F (X \A) ⊂ F (X) \ F (A) for A ⊂ X;
(7) F (

⋂
i∈N Xi) =

⋂
i∈N F (Xi) for X1 ⊃ X2 ⊃ . . . ;

(8) if X is a finite-dimensional compactum then so is F (X);
(9) if X is separable completely metrizable then so is F (X);

(10) F (Q) ≈ Q.

Let F(X) be the hyperspace of non-empty finite subsets of X with the
Vietoris (or finite) topology (cf. [Na]). For a subspace A of X, we can regard
F(A) as a subspace of F(X) by identifying F(A) =

{
F ∈ F(X) | F ⊂ A

}
.

From the definition of the Vietoris topology, it follows that the topology of
F(A) is identical with the relative topology inherited from F(X). As easily
observed, if A is closed in X then F(A) is closed in F(X).

For each k ∈ N, let Fk(X) ⊂ F(X) be the subspace of all subsets of X
consisting of at most k points. Then the functor Fk : SM → SM satisfies
(1) and (2). By [Fe2, Corollary 5], Fk(Q) ≈ Q, that is, Fk satisfies (10). We
show that Fk also satisfies the conditions (3)–(9). Thus the following can
be obtained:

Theorem 2. For each k ∈ N, the following hold :

(a) (Fk(Q),Fk(s),Fk(Σ),Fk(σ)) ≈ (Q, s,Σ, σ),
(b) (Fk(Qω),Fk(Σω)) ≈ (Qω, Σω), hence Fk((`f

2 )ω) ≈ (`f
2 )ω, and

(c) (Fk(`2×Q),Fk(`2×Σ)) ≈ (`2×Q, `2×Σ), hence Fk(`2×`f
2 ) ≈ `2×`f

2 .

Let G be a subgroup of the kth symmetric group Sk. Then G acts
on Xk as a permutation group of the coordinates. The orbit space of this
action is denoted by SPk

G(X) and called the G-symmetric power of X, where
SPk

G(X) is the quotient space of Xk. We put SPk(X) = SPk
Sk

(X), which
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is called the symmetric power of X. For a subspace A of X, we can regard
SPk

G(A) as a subspace of SPk
G(X) by identifying SPk

G(A) = q(Ak), where
q : Xk → SPk

G(X) is the quotient map. In fact, since q is an open map,
it is easy to see that the topology of SPk

G(A) is identical with the relative
topology inherited from SPk

G(X). Since SPk
G(X) \ SPk

G(A) = q(Xk \ Ak),
if A is closed in X then SPk

G(A) is closed in SPk
G(X). Thus the functor

SPk
G : SM→ SM satisfies (1) and (2). By [Fe2, Corollary 5], SPk

G(Q) ≈ Q,
that is, SPk

G satisfies (10). We show that SPk
G also satisfies the conditions

(3)–(9). Thus we can obtain the following:

Theorem 3. For any subgroup G of the kth symmetric group, the fol-
lowing hold :

(a) (SPk
G(Q),SPk

G(s),SPk
G(Σ),SPk

G(σ)) ≈ (Q, s,Σ, σ),
(b) (SPk

G(Qω),SPk
G(Σω)) ≈ (Qω, Σω), hence SPk

G((`f
2 )ω) ≈ (`f

2 )ω, and
(c) (SPk

G(`2×Q),SPk
G(`2×Σ)) ≈ (`2×Q, `2×Σ), hence SPk

G(`2×`f
2 ) ≈

`2 × `f
2 .

It should be remarked that Theorems 2(a) and 3(a) refine the results in
[Ng2] and [Ng1], respectively.

1. Preliminaries. Let X1 ⊂ X2 ⊂ . . . be a tower of closed sets in
X. We say that (Xn)n∈N is expansive (or finitely expansive) [Cu] if for each
n ∈ N, there is an embedding h : Xn ×Q → Xn+1 (or h : Xn × I → Xn+1)
such that h(x, 0) = x for every x ∈ Xn (4). It is said that (Xn)n∈N has the
mapping absorption property for compacta in X provided for any compactum
A ⊂ X and for any ε > 0 and n ∈ N there exists a map f : A → Xm for some
m ≥ n such that f |A ∩Xn = id and f is ε-close to id (cf. [Cu, Definition
4.5]). It is said that (Xn)n∈N has the compact absorption property (abbrev.
cap) (or the finite-dimensional compact absorption property (abbrev. fd-
cap)) in X and M =

⋃
n∈N Xn is called a cap set (or an fd-cap set) for X

[Ch] if each Xn is a (finite-dimensional) compact Z-set in X and for each
(finite-dimensional) compact Z-set A in X, ε > 0 and n ∈ N, there is an
embedding g : A → Xm for some m ≥ n such that g is ε-close to id and
g|A∩Xn = id, where a closed set A in X is a Z-set if each map f : Q → X
can be approximated by maps g : Q → X \ A. In case X is an ANR, a
closed set A in X is Z-set if and only if there are maps f : X → X \ A
arbitrarily close to id [vM3, 7.2.5], or, more strongly, there is a deformation
h : X × I → X such that h0 = id and ht(X) ⊂ X \ A if 0 < t ≤ 1 [To1,
Theorem 2.4 with Corollary 3.3].

Lemma 1.1. If X1 ⊂ X2 ⊂ . . . is an expansive (resp. finitely expan-
sive) tower of compact (resp. finite-dimensional compact) Z-sets in X and

(4) We mean 0 = (0, 0, . . .) ∈ Q.
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has the mapping absorption property for compacta (resp. finite-dimensional
compacta) in X, then (Xn)n∈N has the cap (resp. the fd-cap) in X, whence⋃

n∈N Xn is a cap set (resp. an fd-cap set) for X.

P r o o f. For each (finite-dimensional) compact Z-set A in X, ε > 0 and
n ∈ N, we have a map f : A → Xm for some m ≥ n such that f |A∩Xn = id
and f is ε/2-close to id. On the other hand, we have a map h : A → Q
(h : A → Ik for some k ∈ N) such that h(A ∩ Xn) = {0} and h|A \ Xn

is injective. Since (Xn)n∈N is (finitely) expansive, there is an embedding
ϕ : Xm × Q → Xm+1 (or ϕ : Xm × Ik → Xm+k) such that ϕ(x, 0) = x
and diam ϕ({x} ×Q) < ε/2 (or diam ϕ({x} × Ik) < ε/2) for every x ∈ Xm.
Then we have the embedding g : A → Xm+1 (or g : A → Xm+k) defined by
g(x) = ϕ(f(x), h(x)), which is ε-close to id.

The following is due to Anderson [An] (cf. [Ch, Lemma 4.3]):

Lemma 1.2. If M is a cap set (resp. an fd-cap set) for Q , then (Q,M) ≈
(Q,Σ) (resp. (Q,M) ≈ (Q, σ)). Moreover , if M ⊂ s in the above, then
(Q, s,M) ≈ (Q, s,Σ) (resp. (Q, s,M) ≈ (Q, s, σ)).

As is well-known, the pseudo-boundary Q \ s is a cap set for Q. Then
(Q,Q \ s) ≈ (Q,Σ), whence (Q,Q \Σ) ≈ (Q, s).

To prove (a) in the Main Theorem, we apply the following characteriza-
tion due to Sakai and Wong [SW]:

Theorem 1.3. In order that (X, M, N) ≈ (Q,Σ, σ) (or (X, M, N) ≈
(`2, `

Q
2 , `f

2 )), it is necessary and sufficient that X ≈ Q (or X ≈ `2) and X
has a tower X1 ⊂ X2 ⊂ . . . of compacta such that

(i) Xn ≈ Q for each n ∈ N,
(ii) each Xn is a Z-set in Xn+1,
(iii) M =

⋃
n∈N Xn is a cap set for X and

(iv) each Xn ∩N is an fd-cap set for Xn.

A Z-matrix in X is a double sequence (An
i )n,i∈N of Z-sets in X such

that An+1
i ⊂ An

i ⊂ An
i+1 for all n, i ∈ N (5), that is,

A1
1 ⊂ A1

2 ⊂ A1
3⊂ . . .

∪ ∪ ∪
A2

1 ⊂ A2
2 ⊂ A2

3⊂ . . .
∪ ∪ ∪
A3

1 ⊂ A3
2 ⊂ A3

3⊂ . . .
∪ ∪ ∪
...

...
...

(5) For a technical reason, it is assumed in [vM2] that An1 = ∅ for each n ∈ N. One
can add An0 = ∅ to the matrix if necessary.
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To prove (b) in the Main Theorem, we apply the following theorem due
to van Mill, which is a combination of Theorem 3.6 and Corollaries 2.3
and 4.2 of [vM2]:

Theorem 1.4. Suppose that X ≈ Q. Let (An
i )n,i∈N be a Z-matrix in X

which has the following properties (6):

(i) each (An
i )i∈N has the cap for X (7),

(ii)
⋂m

j=1 A
nj

ij
≈ Q for each n1 < . . . < nm and i1, . . . , im ∈ N,

(iii) for each n1 <. . .<nm and i1, . . . , im, p ∈ N, (Anm+p
i ∩

⋂m
j=1 A

nj

ij
)i∈N

has the cap in
⋂m

j=1 A
nj

ij
and

(iv) for each n1 < . . . < nm and i1, . . . , im, n, i ∈ N,
⋂m

j=1 A
nj

ij
6⊂ An

i

implies that An
i ∩

⋂m
j=1 A

nj

ij
is a Z-set in

⋂m
j=1 A

nj

ij
.

Then (X,
⋂

n∈N
⋃

i∈N An
i ) ≈ (Qω, Σω), hence

⋂
n∈N

⋃
i∈N An

i ≈ (`f
2 )ω.

For any collection U of open sets in X, two maps f, g : A → X are
U-close if for each x ∈ A, f(x) = g(x) or {f(x), g(x)} is contained in some
U ∈ U . Let M be a Zσ-set in X, that is, a countable union of Z-sets. We
call M a Z-absorber for X [DM] (cf. [We]) if for any Z-set A in X and any
collection U of open sets in X, there exists a homeomorphism h : X → X
such that h is U-close to id and h(A ∩

⋃
U) ⊂ M . The following is due to

West [We] (cf. [Dij, 1.2.11]):

Theorem 1.5. Suppose that X is completely metrizable. If M and N are
Z-absorbers for X , then for any collection U of open sets in X, there exists
a homeomorphism h : X → X U-close to id with h(M ∩

⋃
U) = N ∩

⋃
U .

In particular , (X, M) ≈ (X, N).

It is known that `2 × Σ and `2 × σ are Z-absorbers for `2 × Q. Since
`2 ×Q ≈ `2, we have the following:

Corollary 1.6. In order that (X, M) ≈ (`2×Q, `2×Σ), it is necessary
and sufficient that X ≈ `2 and M is a Z-absorber for X.

We apply this to prove (c) in the Main Theorem, but it is a little hard
to check the condition in the definition of Z-absorbers, where the existence
of homeomorphisms of X onto itself is required. So we give here a charac-
terization of Z-absorbers for `2-manifolds which can be easily applied. An
embedding f : A → X is called a Z-embedding if f(A) is a Z-set in X.

Theorem 1.7. Let X be an `2-manifold and M ⊂ X. Then the following
are equivalent :

(6) A Z-matrix with these properties is called a Q-matrix in [vM2].
(7) In case X ≈ Q (or X is a Q-manifold), a tower of compact Z-sets in X with the

cap is called a skeleton in [vM2].
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(a) M is a Z-absorber for X;
(b) M is a Zσ-set in X and for each open set W in X and each Z-set

A in W and each map α : W → (0, 1), there exists a Z-embedding
f : A → M ∩W such that d(f(x), x) < α(x) for each x ∈ W , where
d is an admissible metric for X;

(c) there exist a deformation h : X× I → X and a tower X1 ⊂ X2 ⊂ . . .
of Z-sets in X such that h0 = id, ht(X) ⊂ Xn for t ≥ 2−n, each Xn

is an `2-manifold and M =
⋃

n∈N Xn.

P r o o f. (b)⇒(a): Let A be a Z-set in X and U a collection of open
sets in X. Then W =

⋃
U is an `2-manifold and A ∩W is a Z-set in W .

By [We, Lemma 2], W has an open cover U0 such that U0 refines U and
if a homeomorphism h : W → W is U0-close to id then h extends to the
homeomorphism h̃ : X → X with h̃|X \W = id. Let U1 be an open star-
refinement of U0. Since W is an ANR, U1 has an open refinement U2 such
that any two U2-close maps of an arbitrary space to W are U1-homotopic (cf.
[vM3, 5.1.1]). Choose a map α : W → (0, 1) so that the α(x)-neighborhood
of x in X is contained in some member of U2. By (b), there exists a Z-
embedding f : A∩W → M∩W such that d(f(x), x) < α(x) for each x ∈ W .
Then f is U1-homotopic to id. By the Z-set Unknotting Theorem for `2-
manifolds (cf. [Sa, §3]), f extends to a homeomorphism h : W → W which
is U0-isotopic to id. Then h extends to the homeomorphism h̃ : X → X by
h̃|X \W = id, whence h̃ is U-close to id and h̃(A ∩

⋃
U) ⊂ M . Hence M is

a Z-absorber for X.
(c)⇒(b): Let d be an admissible metric for X, let A be a Z-set in an open

set W in X and α : W → (0, 1) a map. Then we have a map β : W → (0, 1)
such that β(x) < 2−1α(x) and

(]) d(h(x, β(x)), x) < min{2−1α(x), d(x,X \W )} for each x ∈ W.

By (]), we can define a map f0 : A → W ∩M by f0(x) = h(x, β(x)). Then
d(f0(x), x) < 2−1α(x) for each x ∈ W . For each n ∈ N, let

Wn = W ∩Xn and An = {x ∈ A | β(x) ≥ 2−n}.
Then each Wn is a Z-submanifold of an `2-manifold W and each An is a
closed set in A such that f0(An) ⊂ Wn. Moreover, it follows that

W ∩M =
⋃
n∈N

Wn and A =
⋃
n∈N

An =
⋃
n∈N

intAn.

Since each Wn is a Z-set in W , W ∩M is a Zσ-set in W .
Since W1 is an `2-manifold, f0|A1 is 2−3-homotopic to a Z-embedding

g1 : A1 → W1 (cf. [Sa, §3]). By the Homotopy Extension Theorem (cf.
[vM3, 5.1.3]), f0 is 2−3-homotopic to a map f1 : A → W ∩ M such that
f1|A1 = g1, f1(A2) ⊂ W2 and f1|A \ A2 = f0|A \ A2. Since W2 is an
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`2-manifold, f1|A2 is 2−4-homotopic to a Z-embedding g2 : A2 → W2 such
that g2|A1 = g1 = f1|A1. Again by the Homotopy Extension Theorem,
f1 is 2−4-homotopic to a map f2 : A → W ∩ M such that f2|A2 = g2,
f2(A3) ⊂ W3 and f2|A \ A3 = f0|A \ A3. Thus we inductively construct
maps fn : A → W ∩M such that fn is 2−n−2-homotopic to fn−1, fn|An is
a Z-embedding into Wn, and fn|A \An+1 = f0|A \An+1.

We define f : A → W ∩ M by f |An = fn|An for each n ∈ N. Since
(fn)n∈N is uniformly Cauchy, f is the uniform limit of (fn)n∈N, whence f
is continuous. Since each pair of points of A are contained in some An and
fn|An is injective, it follows that f is injective. For each x ∈ An \ An−1,
f(x) = fn(x) and fn−2(x) = f0(x), whence

d(f(x), x) ≤ d(fn(x), fn−1(x)) + d(fn−1(x), fn−2(x)) + d(f0(x), x)

< 2−n−2 + 2−n−1 + 2−1α(x) < 2−n + 2−1α(x)

≤ β(x) + 2−1α(x) < α(x).

To see that f is closed, let (xi)i∈N be a sequence in A such that f(xi)
converges to y in W . Assume that lim inf α(xi) = 0. Then (xi)i∈N has a
subsequence (xni)i∈N such that lim α(xni) = 0, whence xni converges to y
because

d(xni
, y) ≤ d(xni

, f(xni
)) + d(f(xni

), y) < α(xni
) + d(f(xni

), y).

This contradicts α(y) 6= 0. Therefore lim inf α(xi) > 2−n for some n ∈ N,
which means that α(xi) ≥ 2−n for sufficiently large i ∈ N, whence f(xi) =
fn(xi) because xi ∈ An. Since fn|An is a closed embedding, xi converges
to some x in An. This means that f is closed. Since f(A) is a closed set in
W and f(A) ⊂ W ∩M , f(A) is a Z-set in W ([vM3, 6.2.2(3)]), hence f is
a Z-embedding.

(a)⇒(c): For each n ∈ N, let Qn = [−1 + 2−n, 1 − 2−n]ω ⊂ Q. Note
that X ≈ X × `2 ≈ X × `2 × Q ≈ X × Q by the Stability Theorem for
`2-manifolds (cf. [Sa, §2]), X × Σ =

⋃
n∈N X × Qn and each X × Qn is a

Z-set in X ×Q, which in turn is an `2-manifold. We have the deformation
h : X×Q×I → X×Q defined by ht(x, y) = (x, (1− t)y). Then h0 = id and
ht(X×Q) ⊂ X×Qn for t ≥ 2−n. Thus X×Σ satisfies the condition (c) for
X ×Q. The implication (c)⇒(a) has already been proved. Hence X ×Σ is
a Z-absorber for X ×Q. Since (X, M) ≈ (X ×Q,X ×Σ) by Theorem 1.5,
M also satisfies the condition (c).

2. Proofs of Theorems. Let h : A × I → X be a deformation of
A ⊂ X. We define a deformation h∗ : PF(A)× I → PF(X) as follows:

h∗t (µ) =
k∑

i=1

siδht(xi) for each µ =
k∑

i=1

siδxi ∈ PF(A).
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In other words,∫
X

f dh∗t (µ) =
∫

X

fht dµ =
∑

f(ht(x))µ(x) for each f ∈ Cb(X).

Then the continuity of h∗ is obvious. Note that h∗t (Pk(A)) ⊂ Pk(ht(A)) ⊂
Pk(X) for every t ∈ I and k ∈ N. If h0 = id then h∗0 = id.

Here we observe that Pk satisfies the conditions (1)–(10) in Remark 3.
Indeed, as mentioned in the Introduction, Pk satisfies (1) and (10). Us-
ing the open base in [Va2, Part II, Remark 3 to Theorem 2] (or [NT,
Proposition 2.1]), it can be shown that Pk(A) is closed in Pk(X) if A is
closed in X, that is, Pk satisfies (2). And as seen in the above, Pk satis-
fies (3). Obviously Pk satisfies (4)–(7). We have the continuous surjection
π : Xk ×∆k−1 → Pk(X) defined by

π(x1, . . . , xk; s1, . . . , sk) =
k∑

i=1

siδxi
,

where ∆k−1 is the standard (k−1)-simplex. Observe that π−1(µ) is finite for
each µ ∈ Pk(X). If X is a finite-dimensional compactum, then so is Pk(X),
that is, Pk satisfies (8). It has been shown in [Va1] that if X is separable
completely metrizable then so is P (X), hence Pk(X), which means that Pk

satisfies (9).
In the following, we use only these properties (1)–(10).

Lemma 2.1. If A is a Z-set in an ANR X , then each Pk(A) is a Z-set in
Pk(X).

P r o o f. First note that P (A) is a closed set in P (X). Since A is a Z-set
in an ANR X, there is a deformation h : X × I → X such that h0 = id and
ht(X) ⊂ X \ A if 0 < t ≤ 1 [To1, Theorem 2.4 with Corollary 3.3]. Then
h induces the deformation h∗ : Pk(X) × I → Pk(X) such that h∗0 = id and
h∗t (P (X)) ⊂ Pk(X \ A) ⊂ Pk(X) \ Pk(A) for 0 < t ≤ 1. Therefore Pk(A) is
a Z-set in Pk(X).

For each n ∈ N, Pk(Qn) ≈ Q [Fe1], where Qn = [−1+2−n, 1−2−n]ω ⊂ Q.
Since Qn ⊂ (−1 + 2−n−1, 1− 2−n−1)ω, Qn is a Z-set in Qn+1 [vM3, 6.2.4].
Then each Pk(Qn) is a Z-set in Pk(Qn+1) by Lemma 2.1. Thus we have a
tower Pk(Q1) ⊂ Pk(Q2) ⊂ . . . which satisfies the conditions (i) and (ii) in
Theorem 1.3. To prove (a), it remains to show that Pk(Σ) =

⋃
n∈N Pk(Qn)

is a cap set for Pk(Q) and each Pk(Qn)∩Pk(σ) is an fd-cap set for Pk(Qn).

Lemma 2.2. For each k ∈ N, (Pk(Qn))n∈N has the cap in both Pk(Q)
and Pk(s), whence Pk(Σ) =

⋃
n∈N Pk(Qn) is a cap set for both Pk(Q) and

Pk(s).
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P r o o f. First note that Pk(Σ) =
⋃

n∈N Pk(Qn) and Pk(Qn) ≈ Q for
each n ∈ N. By Lemma 2.1, each Pk(Qn) is a Z-set for Pk(Qn+1). By the
Z-set Unknotting Theorem [vM3, 6.4.6], we have

(Pk(Qn+1), Pk(Qn)) ≈ (Q×Q,Q× {0}) ≈ (Pk(Qn)×Q,Pk(Qn)× {0}),
hence the tower (Pk(Qn))n∈N is expansive. Let θ : [−1, 1] × I → [−1, 1] be
the deformation defined by

θt(s) =
{

s if s ≤ 1− t,
1− t if s ≥ 1− t.

We define a deformation h : Q × I → Q by ht(x1, x2, . . .) = (θt(x1),
θt(x2), . . .). Then h induces the deformation h∗ : Pk(Q) × I → Pk(Q)
such that h∗(Pk(s)× I) ⊂ Pk(s), h∗0 = id and each h∗2−n is a retraction onto
Pk(Qn). Hence (Pk(Qn))n∈N has the mapping absorption property in both
Pk(Q) and Pk(s). By Lemma 1.1, we have the result.

Lemma 2.3. For each k, n ∈ N, Pk(Qn) ∩ Pk(σ) = Pk(Qn ∩ σ) is an
fd-cap set for Pk(Qn).

P r o o f. For each i ∈ N, let Xi
n = [−1+2−n, 1−2−n]i×{0} ⊂ Qn. Then

Qn ∩ σ =
⋃

i∈N Xi
n. Each Pk(Xi

n) is a finite-dimensional compactum, which
is a Z-set in Pk(Qn) by Lemma 2.1. We define a deformation ϕ : Xi

n × I →
Xi+1

n by
ϕt(x1, . . . , xi, 0, 0, . . .) = (x1, . . . , xi, t/2, 0, . . .).

Note that ϕ is an embedding. Let ϕ∗ : Pk(Xi
n) × I → Pk(Xi+1

n ) be the
deformation induced by ϕ. Then ϕ∗0 = id and ϕ∗ is obviously injective by
the definition, that is, ϕ∗ is an embedding. Hence the tower (Pk(Xi

n))i∈N
is finitely expansive. We define a deformation h : Qn × I → Qn as follows:
h0 = id and

ht(x1, x2, . . .) = (x1, . . . , xi, (2− 2it)xi+1, 0, 0, . . .) if 2−i < t ≤ 2−i+1.

Then h induces the deformation h∗ : Pk(Qn) × I → Pk(Qn) such that
h∗0 = id and each h∗2−i is a retraction onto Pk(Xi

n). Hence (Pk(Xi
n))i∈N

has the mapping absorption property. By Lemma 1.1, Pk(Qn) ∩ P (σ) =
Pk(Qn ∩ σ) =

⋃
i∈N Pk(Xi

n) is an fd-cap set for Pk(Qn).

It is known that Pk(`2) ≈ `2 [NT]. But we will give a short proof.

Lemma 2.4. For each k ∈ N, (Pk(Q), Pk(s)) ≈ (Q, s), hence Pk(`2) ≈ `2.

P r o o f. We show that Pk(Q) \ Pk(s) is a cap set for Pk(Q). Then the
result will follow from Lemma 1.2 because Pk(Q) ≈ Q. It has been shown in
[Va1] that P (X) is separable completely metrizable if so is X. Then Pk(s) is
completely metrizable, so Pk(Q)\Pk(s) is Fσ in Pk(Q). Let h : Q×I → Q be
the deformation defined by ht(x) = (1−t)x. Then h induces the deformation
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h∗ : Pk(Q) × I → Pk(Q) such that h∗0 = id and h∗t (Pk(Q)) ⊂ Pk(s) for
0 < t ≤ 1. Therefore Pk(Q) \ Pk(s) is a Zσ-set in Pk(Q). Observe that

Pk(Q) \ Pk(s) = {µ ∈ Pk(Q) | suppµ 6⊂ s} ⊃ Pk(Q \ s).

Since (Q,Q \ s) ≈ (Q,Σ), we have (Pk(Q), Pk(Q \ s)) ≈ (Pk(Q), Pk(Σ)),
whence Pk(Q \ s) is a cap set for Pk(Q) by Lemma 2.2. Since any Zσ-set
containing a cap set is itself a cap set [Ch, Lemma 4.2 or Theorem 6.6],
Pk(Q) \ Pk(s) is a cap set for Pk(Q).

R e m a r k 4. As for the above lemmas, 2.1 follows from (1)–(3); 2.2 from
(1)–(4) and (10); 2.3 from (1)–(5) and (8); 2.4 from (1)–(4), (6), (9) and (10).

P r o o f o f t h e M a i n T h e o r e m. First we show (a). Since Pk(Q) ≈
Q, we can apply Theorem 1.3 with Lemmas 2.1–2.3 to obtain (Pk(Q), Pk(Σ),
Pk(σ)) ≈ (Q,Σ, σ). In particular, (Pk(Σ), Pk(σ)) ≈ (Σ, σ). On the other
hand, (Pk(Q), Pk(s)) ≈ (Q, s) by Lemma 2.4. By Lemmas 1.2 and 2.2,
(Pk(Q), Pk(s), Pk(Σ))≈(Q, s,Σ). Applying Theorem 2.4 of [CDM], we have

(Pk(Q), Pk(s), Pk(Σ), Pk(σ)) ≈ (Q, s,Σ, σ).

Next we prove (b) by applying Theorem 1.4. For each n, i ∈ N, let

An
i = Qi × . . .×Qi︸ ︷︷ ︸

n times

×Q×Q× . . . ⊂ Qω.

Then observe that for each n1 < . . . < nm and i1, . . . , im ∈ N,
m⋂

j=1

A
nj

ij
= Qp1 × . . .×Qp1︸ ︷︷ ︸

n1 times

×Qp2 × . . .×Qp2︸ ︷︷ ︸
n2−n1 times

× . . .(∗)

×Qpm × . . .×Qpm︸ ︷︷ ︸
nm−nm−1 times

×Q×Q× . . . ,

where pk = min{ik, . . . , im}. It is proved in [vM2, Thm. 4.1] that (An
i )n,i∈N

is a Z-matrix in Qω which has all the properties of Theorem 1.4. Therefore⋂
n∈N

⋃
i∈N An

i ≈ (`f
2 )ω. Then it follows that

Pk((`f
2 )ω) ≈ Pk

( ⋂
n∈N

⋃
i∈N

An
i

)
=

⋂
n∈N

⋃
i∈N

Pk(An
i ).

Since Pk(Qω) ≈ Q and (Pk(An
i ))n,i∈N is a Z-matrix in Pk(Qω) by Lemma

2.1, it suffices to show that (Pk(An
i ))n,i∈N has all the properties of Theo-

rem 1.4.
Let n1 < . . . < nm and i1, . . . , im ∈ N. Since

⋂m
j=1 A

nj

ij
≈ Q, we have⋂m

j=1 Pk(Anj

ij
) = Pk(

⋂m
j=1 A

nj

ij
) ≈ Q, that is, 1.4(ii). For each p, i ∈ N, we

also have Pk(Anm+p
i ) ∩

⋂m
j=1 Pk(Anj

ij
) ≈ Q. Since Qi is a Z-set in Qi+1,

Anm+p
i ∩

⋂m
j=1 A

nj

ij
is a Z-set in Anm+p

i+1 ∩
⋂m

j=1 A
nj

ij
(see (∗)). Then by
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Lemma 2.1,

Pk(Anm+p
i ) ∩

m⋂
j=1

Pk(Anj

ij
) = Pk

(
Anm+p

i ∩
m⋂

j=1

A
nj

ij

)
is a Z-set in Pk(Anm+p

i+1 ∩
⋂m

j=1 A
nj

ij
) = Pk(Anm+p

i+1 ) ∩
⋂m

j=1 Pk(Anj

ij
). By the

same proof as for Lemma 2.2, it follows that (Pk(Anm+p
i )∩

⋂m
j=1 Pk(Anj

ij
))i∈N

has the cap for Pk(
⋂m

j=1 A
nj

ij
), that is, 1.4(iii) holds. Similarly, 1.4(i) holds,

that is, (Pk(An
i ))i∈N has the cap for Pk(Qω). To see 1.4(iv), suppose

m⋂
j=1

Pk(Anj

ij
) = Pk

( m⋂
j=1

A
nj

ij

)
6⊂ Pk(An

i ).

Then
⋂m

j=1 A
nj

ij
6⊂ An

i , which implies that An
i ∩

⋂m
j=1 A

nj

ij
is a Z-set in⋂m

j=1 A
nj

ij
. By Lemma 2.1, it follows that Pk(An

i )∩
⋂m

j=1 Pk(Anj

ij
) = Pk(An

i ∩⋂m
j=1 A

nj

ij
) is a Z-set in Pk(

⋂m
j=1 A

nj

ij
) =

⋂m
j=1 Pk(Anj

ij
), that is, we have

1.4(iv).
To see (c), notice that each Pk(`2 × Qn) is a Z-set in Pk(`2 × Q) by

Lemma 2.1, Pk(`2×Qn) ≈ `2 by Lemma 2.4 and Pk(`2×Σ) =
⋃

n∈N Pk(`2×
Qn). We have the deformation h : `2×Q× I → `2×Q defined by ht(x, y) =
(x, (1 − t)y). Let h∗ : Pk(`2 × Q) × I → Pk(`2 × Q) be the deformation
induced by h. Then h∗0 = id and h∗t (Pk(`2 × Q)) ⊂ Pk(`2 × Qn) for t ≥
2−n. By Theorem 1.7, Pk(`2 × Σ) is a Z-absorber for Pk(`2 × Q). Since
Pk(`2 ×Q) ≈ `2, (c) follows from Corollary 1.6.

R e m a r k 5. In the above, (a) follows from (1)–(6) and (8)–(10); (b)
from (1)–(5), (7) and (10); (c) from (1)–(6), (9) and (10) (cf. Remark 4).
Thus our Main Theorem holds if Pk is replaced by a functor F : SM→ SM
with the conditions (1)–(10).

P r o o f o f T h e o r e m s 2 a n d 3. As seen in Remark 5, it suffices to
see that Fk and SPk

G satisfy the conditions (1)–(10). The conditions (1), (2)
and (10) have been seen in Remark 3 and the conditions (4)–(7) are obvious.

For a deformation h : A×I → X of A ⊂ X, the induced deformation h∗ :
Fk(A)×I → Fk(X) is defined by h∗(F, t) = h(F×{t}), whence the continuity
of h∗ is easy to see. Thus Fk satisfies (3). We have the natural continuous
surjection p : Xk → Fk(X) defined by p(x1, . . . , xk) = {x1, . . . , xk}. Since p
has finite fibers, if X is a finite-dimensional compactum then so is Fk(X),
that is, Fk satisfies (8). Obviously, Fk(U) is open in Fk(X) for any open set
U in X. If X is separable completely metrizable, then X is a Gδ-set in a
metrizable compactification X̃, which implies that Fk(X) is a Gδ-set in the
compact metrizable space Fk(X̃) = p̃(X̃k), where p̃ : X̃k → Fk(X̃) is the
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natural surjection. Hence Fk(X) is separable completely metrizable, that
is, Fk satisfies (9).

Since the quotient map q : Xk → SPk
G(X) is open, SPk

G(U) is open in
SPk

G(X) for any open set U in X. If X is separable completely metrizable,
then X is a Gδ-set in a metrizable compactification X̃, which implies that
SPk

G(X) is a Gδ-set in the compact metrizable space SPk
G(X̃) = q̃(X̃k),

where q̃ : X̃k → SPk
G(X̃) is the quotient map. Hence SPk

G(X) is separable
completely metrizable, that is, SPk

G satisfies (9). Since q has finite fibers,
if X is a finite-dimensional compactum then so is SPk

G(X), that is, SPk
G

satisfies (8). For a deformation h : A × I → X of A ⊂ X, the induced
deformation h∗ : SPk

G(A) × I → SPk
G(X) is defined by h∗t (q(x1, . . . , xk)) =

q(ht(x1), . . . , ht(xk)), whence the continuity of h∗ is clear. Thus SPk
G satis-

fies (3).
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