PROBABILITY MEASURE FUNCTORS PRESERVING INFINITE-DIMENSIONAL SPACES

```
NGUYEN TO NHU (HANOI AND BLOOMINGTON, INDIANA)
    ANd KATSURO SAKAI (TSUKUBA)
```

0. Introduction. Let $Q=[-1,1]^{\omega}$ be the Hilbert cube, $s=(-1,1)^{\omega}$ the pseudo-interior of $Q, \Sigma=\left\{\left(x_{i}\right)_{i \in \mathbb{N}}|\sup | x_{i} \mid<1\right\}$ the radial-interior of Q and

$$
\sigma=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \in s \mid x_{i}=0 \text { except for finitely many } i\right\}
$$

As is well-known, s is homeomorphic (\approx) to the Hilbert space ℓ_{2}. We put

$$
\begin{aligned}
\ell_{2}^{Q} & =\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \in \ell_{2}|\sup | i x_{i} \mid<\infty\right\} \\
\ell_{2}^{f} & =\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \in \ell_{2} \mid x_{i}=0 \text { except for finitely many } i\right\}
\end{aligned}
$$

It is shown in $[\mathrm{SW}]$ that $\left(\ell_{2}, \ell_{2}^{Q}, \ell_{2}^{f}\right) \approx(s, \Sigma, \sigma)$, that is, there exists a homeomorphism $h: \ell_{2} \rightarrow s$ such that $h\left(\ell_{2}^{Q}\right)=\Sigma$ and $h\left(\ell_{2}^{f}\right)=\sigma$.

The space of probability measures $\left({ }^{1}\right)$ on a metrizable space X is denoted by $P(X)$. By integration, $P(X)$ can be regarded as a subset of the dual $C_{\mathrm{b}}(X)^{*}$ of the Banach space $C_{\mathrm{b}}(X)$ of all bounded continuous real-valued functions on X with the sup-norm. For details, see [Va2, Part I] and [DS, Introduction]. The topology of $P(X)$ is inherited from the weak*-topology of $C_{\mathrm{b}}(X)^{*}$. For each $k \in \mathbb{N}$, let $P_{k}(X) \subset P(X)$ be the subspace of all measures with supports consisting of at most k points, and let $P_{\mathfrak{F}}(X)=\bigcup_{k \in \mathbb{N}} P_{k}(X)$. It is known that $P_{k}(Q) \approx Q$ and $P_{k}\left(\ell_{2}\right) \approx \ell_{2}$ for each $k \in \mathbb{N}\left(\left[\mathrm{Fe}_{1}\right]\right.$ and $[\mathrm{NT}])$. For related topics, see $\left[\mathrm{Fe}_{3}\right]$. For a subspace A of a metrizable space X, we can regard $P_{k}(A)$ as a subspace of $P_{k}(X)$ by identifying as follows:

$$
P_{\mathfrak{F}}(A)=\left\{\mu \in P_{\mathfrak{F}}(X) \mid \operatorname{supp} \mu \subset A\right\},
$$

where supp μ denotes the support of μ. Using the open base in [Va_{2}, Part II, Remark 3 to Theorem 2] (or [NT, Proposition 2.1]), it is easy to see that

[^0]the topology of $P_{\mathfrak{F}}(A)$ is identical with the relative topology inherited from $P_{\mathfrak{F}}(X)$ (cf. [DS, Subspace Lemma]). In the present paper, applying the results of $[\mathrm{SW}],[\mathrm{CDM}],\left[\mathrm{vM}_{2}\right]$ and $[\mathrm{We}]$, we prove

Main Theorem. For each $k \in \mathbb{N}$, the following hold:
(a) $\left(P_{k}(Q), P_{k}(s), P_{k}(\Sigma), P_{k}(\sigma)\right) \approx(Q, s, \Sigma, \sigma)$,
(b) $\left(P_{k}\left(Q^{\omega}\right), P_{k}\left(\Sigma^{\omega}\right)\right) \approx\left(Q^{\omega}, \Sigma^{\omega}\right)$, hence $P_{k}\left(\left(\ell_{2}^{f}\right)^{\omega}\right) \approx\left(\ell_{2}^{f}\right)^{\omega}\left(^{2}\right)$, and
(c) $\left(P_{k}\left(\ell_{2} \times Q\right), P_{k}\left(\ell_{2} \times \Sigma\right)\right) \approx\left(\ell_{2} \times Q, \ell_{2} \times \Sigma\right)\left(^{3}\right)$, hence $P_{k}\left(\ell_{2} \times \ell_{2}^{f}\right) \approx$ $\ell_{2} \times \ell_{2}^{f}$
Remark 1. Relating to the above result, one may ask whether $P_{k}(H) \approx$ H for any infinite-dimensional pre-Hilbert space H or not. This question can be answered negatively. In $\left[\mathrm{vM}_{1}\right]$, Jan van Mill showed that every separable Banach space (hence ℓ_{2}) contains a dense linear subspace X which has restricted domain invariance, that is, for every continuous injection $g: U \rightarrow X$ with domain a non-empty open set in X, there exists a nonempty open set $V \subset U$ such that $g \mid V$ is an open embedding in X. For such a normed linear space (or a pre-Hilbert space) $X, P_{k}(X) \not \approx X$ if $k>1$.

In fact, let U_{1}, \ldots, U_{k} be disjoint open sets in X. By Δ^{k-1}, we denote the standard open $(k-1)$-simplex, that is,

$$
\AA^{k-1}=\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k} \mid \sum_{i=1}^{k} t_{i}=1 \text { and } t_{i}>0 \text { for each } i\right\} .
$$

We define $\varphi: U_{1} \times \ldots \times U_{k} \times \stackrel{\circ}{\Delta}^{k-1} \rightarrow P_{k}(X)$ as follows:

$$
\varphi\left(x_{1}, \ldots, x_{k} ; t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k} t_{i} \delta_{x_{i}}
$$

where $\delta_{x} \in P(X)$ is the Dirac measure at $x \in X$ (i.e. $\left.\delta_{x}(\{x\})=1\right)$. Then by using the open base in [Va_{2}] (or $[\mathrm{NT}]$), it is easy to see that φ is an open embedding. If $P_{k}(X) \approx X$ then we have a continuous injection $g: U_{1} \rightarrow X$ such that $g\left(U_{1}\right)$ has no interior point, which contradicts the restricted domain invariance of X. Therefore $P_{k}(X) \not \approx X$ for any $k>1$.

Remark 2. By our results, each $\left(P_{k}(X), P_{k}(M), P_{k}(N)\right)$ is a (Q, Σ, σ) manifold (or an $\left(\ell_{2}, \ell_{2}^{Q}, \ell_{2}^{f}\right)$-manifold) triple if so is (X, M, N) and each functor P_{k} preserves manifolds modeled on the spaces $Q, \ell_{2}, \ell_{2}^{Q}, \ell_{2}^{f},\left(\ell_{2}^{f}\right)^{\omega}$ and $\ell_{2} \times \ell_{2}^{f}$. However, $P_{k}(X) \not \approx X$ in general even if X is such a manifold.

In fact, $P_{k}(X)$ is path-connected for any (disconnected) space X and $k>1$. To see this, let $x_{0} \in X$ and $\mu=\sum_{i=1}^{r} s_{i} \delta_{x_{i}} \in P_{k}(X)$. We define a

[^1]path $\varphi: \mathbf{I} \rightarrow P_{k}(X)$ as follows:
\[

\varphi(t)= $$
\begin{cases}\sum_{i=1}^{r}(1-2 t) s_{i} \delta_{x_{i}}+2 t \delta_{x_{1}} & \text { if } 0 \leq t \leq 1 / 2 \\ (2-2 t) \delta_{x_{1}}+(2 t-1) \delta_{x_{0}} & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$
\]

Then $\varphi(0)=\mu, \varphi(1 / 2)=\delta_{x_{1}}$ and $\varphi(1)=\delta_{x_{0}}$.
Remark 3. Let $\mathcal{S} \mathcal{M}$ be the category of separable metrizable spaces with (continuous) maps. Then each $P_{k}: \mathcal{S M} \rightarrow \mathcal{S} \mathcal{M}$ is a covariant functor. Our Main Theorem holds if P_{k} is replaced by any covariant functor F : $\mathcal{S M} \rightarrow \mathcal{S M}$ satisfying the following conditions:
(1) if A is a subspace of X then $F(A)$ is a subspace $F(X)$;
(2) if A is closed in X then $F(A)$ is also closed in $F(X)$;
(3) for $A \subset X$, any deformation $h: A \times \mathbf{I} \rightarrow X$ induces the deformation $h^{*}: F(A) \times \mathbf{I} \rightarrow F(X)$ defined by $h_{t}^{*}=F\left(h_{t}\right)\left(\right.$ hence $h_{t}^{*}(F(A)) \subset$ $\left.F\left(h_{t}(A)\right)\right)$;
(4) $F\left(\bigcup_{i \in \mathbb{N}} X_{i}\right)=\bigcup_{i \in \mathbb{N}} F\left(X_{i}\right)$ for $X_{1} \subset X_{2} \subset \ldots$;
(5) $F(X \cap Y)=F(X) \cap F(Y)$;
(6) $F(X \backslash A) \subset F(X) \backslash F(A)$ for $A \subset X$;
(7) $F\left(\bigcap_{i \in \mathbb{N}} X_{i}\right)=\bigcap_{i \in \mathbb{N}} F\left(X_{i}\right)$ for $X_{1} \supset X_{2} \supset \ldots$;
(8) if X is a finite-dimensional compactum then so is $F(X)$;
(9) if X is separable completely metrizable then so is $F(X)$;
(10) $F(Q) \approx Q$.

Let $\mathfrak{F}(X)$ be the hyperspace of non-empty finite subsets of X with the Vietoris (or finite) topology (cf. [Na]). For a subspace A of X, we can regard $\mathfrak{F}(A)$ as a subspace of $\mathfrak{F}(X)$ by identifying $\mathfrak{F}(A)=\{F \in \mathfrak{F}(X) \mid F \subset A\}$. From the definition of the Vietoris topology, it follows that the topology of $\mathfrak{F}(A)$ is identical with the relative topology inherited from $\mathfrak{F}(X)$. As easily observed, if A is closed in X then $\mathfrak{F}(A)$ is closed in $\mathfrak{F}(X)$.

For each $k \in \mathbb{N}$, let $\mathfrak{F}_{k}(X) \subset \mathfrak{F}(X)$ be the subspace of all subsets of X consisting of at most k points. Then the functor $\mathfrak{F}_{k}: \mathcal{S M} \rightarrow \mathcal{S} \mathcal{M}$ satisfies (1) and (2). By $\left[\mathrm{Fe}_{2}\right.$, Corollary 5], $\mathfrak{F}_{k}(Q) \approx Q$, that is, \mathfrak{F}_{k} satisfies (10). We show that \mathfrak{F}_{k} also satisfies the conditions (3)-(9). Thus the following can be obtained:

Theorem 2. For each $k \in \mathbb{N}$, the following hold:
(a) $\left(\mathfrak{F}_{k}(Q), \mathfrak{F}_{k}(s), \mathfrak{F}_{k}(\Sigma), \mathfrak{F}_{k}(\sigma)\right) \approx(Q, s, \Sigma, \sigma)$,
(b) $\left(\mathfrak{F}_{k}\left(Q^{\omega}\right), \mathfrak{F}_{k}\left(\Sigma^{\omega}\right)\right) \approx\left(Q^{\omega}, \Sigma^{\omega}\right)$, hence $\mathfrak{F}_{k}\left(\left(\ell_{2}^{f}\right)^{\omega}\right) \approx\left(\ell_{2}^{f}\right)^{\omega}$, and
(c) $\left(\mathfrak{F}_{k}\left(\ell_{2} \times Q\right), \mathfrak{F}_{k}\left(\ell_{2} \times \Sigma\right)\right) \approx\left(\ell_{2} \times Q, \ell_{2} \times \Sigma\right)$, hence $\mathfrak{F}_{k}\left(\ell_{2} \times \ell_{2}^{f}\right) \approx \ell_{2} \times \ell_{2}^{f}$.

Let G be a subgroup of the k th symmetric group \mathfrak{S}_{k}. Then G acts on X^{k} as a permutation group of the coordinates. The orbit space of this action is denoted by $\operatorname{SP}_{G}^{k}(X)$ and called the G-symmetric power of X, where $\mathrm{SP}_{G}^{k}(X)$ is the quotient space of X^{k}. We put $\mathrm{SP}^{k}(X)=\mathrm{SP}_{\mathfrak{S}_{k}}^{k}(X)$, which
is called the symmetric power of X. For a subspace A of X, we can regard $\mathrm{SP}_{G}^{k}(A)$ as a subspace of $\mathrm{SP}_{G}^{k}(X)$ by identifying $\mathrm{SP}_{G}^{k}(A)=q\left(A^{k}\right)$, where $q: X^{k} \rightarrow \mathrm{SP}_{G}^{k}(X)$ is the quotient map. In fact, since q is an open map, it is easy to see that the topology of $\mathrm{SP}_{G}^{k}(A)$ is identical with the relative topology inherited from $\operatorname{SP}_{G}^{k}(X)$. Since $\operatorname{SP}_{G}^{k}(X) \backslash \operatorname{SP}_{G}^{k}(A)=q\left(X^{k} \backslash A^{k}\right)$, if A is closed in X then $\operatorname{SP}_{G}^{k}(A)$ is closed in $\operatorname{SP}_{G}^{k}(X)$. Thus the functor $\mathrm{SP}_{G}^{k}: \mathcal{S M} \rightarrow \mathcal{S} \mathcal{M}$ satisfies (1) and (2). By $\left[\mathrm{Fe}_{2}\right.$, Corollary 5], $\mathrm{SP}_{G}^{k}(Q) \approx Q$, that is, SP_{G}^{k} satisfies (10). We show that SP_{G}^{k} also satisfies the conditions (3)-(9). Thus we can obtain the following:

Theorem 3. For any subgroup G of the kth symmetric group, the following hold:
(a) $\left(\operatorname{SP}_{G}^{k}(Q), \operatorname{SP}_{G}^{k}(s), \operatorname{SP}_{G}^{k}(\Sigma), \operatorname{SP}_{G}^{k}(\sigma)\right) \approx(Q, s, \Sigma, \sigma)$,
(b) $\left(\operatorname{SP}_{G}^{k}\left(Q^{\omega}\right), \operatorname{SP}_{G}^{k}\left(\Sigma^{\omega}\right)\right) \approx\left(Q^{\omega}, \Sigma^{\omega}\right)$, hence $\mathrm{SP}_{G}^{k}\left(\left(\ell_{2}^{f}\right)^{\omega}\right) \approx\left(\ell_{2}^{f}\right)^{\omega}$, and
(c) $\left(\mathrm{SP}_{G}^{k}\left(\ell_{2} \times Q\right), \mathrm{SP}_{G}^{k}\left(\ell_{2} \times \Sigma\right)\right) \approx\left(\ell_{2} \times Q, \ell_{2} \times \Sigma\right)$, hence $\mathrm{SP}_{G}^{k}\left(\ell_{2} \times \ell_{2}^{f}\right) \approx$

$$
\ell_{2} \times \ell_{2}^{f}
$$

It should be remarked that Theorems 2(a) and 3(a) refine the results in [Ng_{2}] and $\left[\mathrm{Ng}_{1}\right]$, respectively.

1. Preliminaries. Let $X_{1} \subset X_{2} \subset \ldots$ be a tower of closed sets in X. We say that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is expansive (or finitely expansive) $[\mathrm{Cu}]$ if for each $n \in \mathbb{N}$, there is an embedding $h: X_{n} \times Q \rightarrow X_{n+1}\left(\right.$ or $\left.h: X_{n} \times \mathbf{I} \rightarrow X_{n+1}\right)$ such that $h(x, 0)=x$ for every $x \in X_{n}\left({ }^{4}\right)$. It is said that $\left(X_{n}\right)_{n \in \mathbb{N}}$ has the mapping absorption property for compacta in X provided for any compactum $A \subset X$ and for any $\varepsilon>0$ and $n \in \mathbb{N}$ there exists a map $f: A \rightarrow X_{m}$ for some $m \geq n$ such that $f \mid A \cap X_{n}=$ id and f is ε-close to id (cf. [Cu, Definition $4.5]$). It is said that $\left(X_{n}\right)_{n \in \mathbb{N}}$ has the compact absorption property (abbrev. cap) (or the finite-dimensional compact absorption property (abbrev. fdcap)) in X and $M=\bigcup_{n \in \mathbb{N}} X_{n}$ is called a cap set (or an fd-cap set) for X [Ch] if each X_{n} is a (finite-dimensional) compact Z-set in X and for each (finite-dimensional) compact Z-set A in $X, \varepsilon>0$ and $n \in \mathbb{N}$, there is an embedding $g: A \rightarrow X_{m}$ for some $m \geq n$ such that g is ε-close to id and $g \mid A \cap X_{n}=$ id, where a closed set A in X is a Z-set if each map $f: Q \rightarrow X$ can be approximated by maps $g: Q \rightarrow X \backslash A$. In case X is an ANR, a closed set A in X is Z-set if and only if there are maps $f: X \rightarrow X \backslash A$ arbitrarily close to id $\left[\mathrm{vM}_{3}, 7.2 .5\right]$, or, more strongly, there is a deformation $h: X \times \mathbf{I} \rightarrow X$ such that $h_{0}=\mathrm{id}$ and $h_{t}(X) \subset X \backslash A$ if $0<t \leq 1\left[\mathrm{To}_{1}\right.$, Theorem 2.4 with Corollary 3.3].

Lemma 1.1. If $X_{1} \subset X_{2} \subset \ldots$ is an expansive (resp. finitely expansive) tower of compact (resp. finite-dimensional compact) Z-sets in X and

[^2]has the mapping absorption property for compacta (resp. finite-dimensional compacta) in X, then $\left(X_{n}\right)_{n \in \mathbb{N}}$ has the cap (resp. the fd-cap) in X, whence $\bigcup_{n \in \mathbb{N}} X_{n}$ is a cap set (resp. an fd-cap set) for X.

Proof. For each (finite-dimensional) compact Z-set A in $X, \varepsilon>0$ and $n \in \mathbb{N}$, we have a map $f: A \rightarrow X_{m}$ for some $m \geq n$ such that $f \mid A \cap X_{n}=\mathrm{id}$ and f is $\varepsilon / 2$-close to id. On the other hand, we have a map $h: A \rightarrow Q$ $\left(h: A \rightarrow \mathbf{I}^{k}\right.$ for some $\left.k \in \mathbb{N}\right)$ such that $h\left(A \cap X_{n}\right)=\{0\}$ and $h \mid A \backslash X_{n}$ is injective. Since $\left(X_{n}\right)_{n \in \mathbb{N}}$ is (finitely) expansive, there is an embedding $\varphi: X_{m} \times Q \rightarrow X_{m+1}$ (or $\varphi: X_{m} \times \mathbf{I}^{k} \rightarrow X_{m+k}$) such that $\varphi(x, 0)=x$ and $\operatorname{diam} \varphi(\{x\} \times Q)<\varepsilon / 2\left(\right.$ or $\left.\operatorname{diam} \varphi\left(\{x\} \times \mathbf{I}^{k}\right)<\varepsilon / 2\right)$ for every $x \in X_{m}$. Then we have the embedding $g: A \rightarrow X_{m+1}$ (or $g: A \rightarrow X_{m+k}$) defined by $g(x)=\varphi(f(x), h(x))$, which is ε-close to id.

The following is due to Anderson [An] (cf. [Ch, Lemma 4.3]):
Lemma 1.2. If M is a cap set (resp. an fd-cap set) for Q, then $(Q, M) \approx$ $(Q, \Sigma)($ resp. $(Q, M) \approx(Q, \sigma))$. Moreover, if $M \subset s$ in the above, then $(Q, s, M) \approx(Q, s, \Sigma)($ resp. $(Q, s, M) \approx(Q, s, \sigma))$.

As is well-known, the pseudo-boundary $Q \backslash s$ is a cap set for Q. Then $(Q, Q \backslash s) \approx(Q, \Sigma)$, whence $(Q, Q \backslash \Sigma) \approx(Q, s)$.

To prove (a) in the Main Theorem, we apply the following characterization due to Sakai and Wong [SW]:

Theorem 1.3. In order that $(X, M, N) \approx(Q, \Sigma, \sigma)($ or $(X, M, N) \approx$ $\left.\left(\ell_{2}, \ell_{2}^{Q}, \ell_{2}^{f}\right)\right)$, it is necessary and sufficient that $X \approx Q\left(\right.$ or $\left.X \approx \ell_{2}\right)$ and X has a tower $X_{1} \subset X_{2} \subset \ldots$ of compacta such that
(i) $X_{n} \approx Q$ for each $n \in \mathbb{N}$,
(ii) each X_{n} is a Z-set in X_{n+1},
(iii) $M=\bigcup_{n \in \mathbb{N}} X_{n}$ is a cap set for X and
(iv) each $X_{n} \cap N$ is an fd-cap set for X_{n}.

A Z-matrix in X is a double sequence $\left(A_{i}^{n}\right)_{n, i \in \mathbb{N}}$ of Z-sets in X such that $A_{i}^{n+1} \subset A_{i}^{n} \subset A_{i+1}^{n}$ for all $n, i \in \mathbb{N}\left({ }^{5}\right)$, that is,

$$
\begin{array}{ccc}
A_{1}^{1} & \subset A_{2}^{1} \subset A_{3}^{1} \subset \ldots \\
\cup & \cup & \cup \\
A_{1}^{2} \subset A_{2}^{2} \subset A_{3}^{2} \subset \ldots \\
\cup & \cup & \cup \\
A_{1}^{3} \subset A_{2}^{3} \subset A_{3}^{3} \subset \ldots
\end{array}
$$

${ }^{(5)}$ For a technical reason, it is assumed in $\left[\mathrm{vM}_{2}\right]$ that $A_{1}^{n}=\emptyset$ for each $n \in \mathbb{N}$. One can add $A_{0}^{n}=\emptyset$ to the matrix if necessary.

To prove (b) in the Main Theorem, we apply the following theorem due to van Mill, which is a combination of Theorem 3.6 and Corollaries 2.3 and 4.2 of $\left[\mathrm{vM}_{2}\right]$:

Theorem 1.4. Suppose that $X \approx Q$. Let $\left(A_{i}^{n}\right)_{n, i \in \mathbb{N}}$ be a Z-matrix in X which has the following properties $\left({ }^{6}\right)$:
(i) each $\left(A_{i}^{n}\right)_{i \in \mathbb{N}}$ has the cap for $X\left({ }^{7}\right)$,
(ii) $\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}} \approx Q$ for each $n_{1}<\ldots<n_{m}$ and $i_{1}, \ldots, i_{m} \in \mathbb{N}$,
(iii) for each $n_{1}<\ldots<n_{m}$ and $i_{1}, \ldots, i_{m}, p \in \mathbb{N},\left(A_{i}^{n_{m}+p} \cap \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right)_{i \in \mathbb{N}}$ has the cap in $\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}$ and
(iv) for each $n_{1}<\ldots<n_{m}$ and $i_{1}, \ldots, i_{m}, n, i \in \mathbb{N}, \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}} \not \subset A_{i}^{n}$ implies that $A_{i}^{n} \cap \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}$ is a Z-set in $\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}$.
Then $\left(X, \bigcap_{n \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} A_{i}^{n}\right) \approx\left(Q^{\omega}, \Sigma^{\omega}\right)$, hence $\bigcap_{n \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} A_{i}^{n} \approx\left(\ell_{2}^{f}\right)^{\omega}$.
For any collection \mathcal{U} of open sets in X, two maps $f, g: A \rightarrow X$ are \mathcal{U}-close if for each $x \in A, f(x)=g(x)$ or $\{f(x), g(x)\}$ is contained in some $U \in \mathcal{U}$. Let M be a Z_{σ}-set in X, that is, a countable union of Z-sets. We call M a Z-absorber for $X[\mathrm{DM}]$ (cf. [We]) if for any Z-set A in X and any collection \mathcal{U} of open sets in X, there exists a homeomorphism $h: X \rightarrow X$ such that h is \mathcal{U}-close to id and $h(A \cap \bigcup \mathcal{U}) \subset M$. The following is due to West [We] (cf. [Dij, 1.2.11]):

Theorem 1.5. Suppose that X is completely metrizable. If M and N are Z-absorbers for X, then for any collection \mathcal{U} of open sets in X, there exists a homeomorphism $h: X \rightarrow X \mathcal{U}$-close to id with $h(M \cap \bigcup \mathcal{U})=N \cap \bigcup \mathcal{U}$. In particular, $(X, M) \approx(X, N)$.

It is known that $\ell_{2} \times \Sigma$ and $\ell_{2} \times \sigma$ are Z-absorbers for $\ell_{2} \times Q$. Since $\ell_{2} \times Q \approx \ell_{2}$, we have the following:

Corollary 1.6. In order that $(X, M) \approx\left(\ell_{2} \times Q, \ell_{2} \times \Sigma\right)$, it is necessary and sufficient that $X \approx \ell_{2}$ and M is a Z-absorber for X.

We apply this to prove (c) in the Main Theorem, but it is a little hard to check the condition in the definition of Z-absorbers, where the existence of homeomorphisms of X onto itself is required. So we give here a characterization of Z-absorbers for ℓ_{2}-manifolds which can be easily applied. An embedding $f: A \rightarrow X$ is called a Z-embedding if $f(A)$ is a Z-set in X.

Theorem 1.7. Let X be an ℓ_{2}-manifold and $M \subset X$. Then the following are equivalent:

[^3](a) M is a Z-absorber for X;
(b) M is a Z_{σ}-set in X and for each open set W in X and each Z-set A in W and each map $\alpha: W \rightarrow(0,1)$, there exists a Z-embedding $f: A \rightarrow M \cap W$ such that $d(f(x), x)<\alpha(x)$ for each $x \in W$, where d is an admissible metric for X;
(c) there exist a deformation $h: X \times \mathbf{I} \rightarrow X$ and a tower $X_{1} \subset X_{2} \subset \ldots$ of Z-sets in X such that $h_{0}=\mathrm{id}, h_{t}(X) \subset X_{n}$ for $t \geq 2^{-n}$, each X_{n} is an ℓ_{2}-manifold and $M=\bigcup_{n \in \mathbb{N}} X_{n}$.

Proof. $(\mathrm{b}) \Rightarrow(\mathrm{a})$: Let A be a Z-set in X and \mathcal{U} a collection of open sets in X. Then $W=\bigcup \mathcal{U}$ is an ℓ_{2}-manifold and $A \cap W$ is a Z-set in W. By [We, Lemma 2], W has an open cover \mathcal{U}_{0} such that \mathcal{U}_{0} refines \mathcal{U} and if a homeomorphism $h: W \rightarrow W$ is \mathcal{U}_{0}-close to id then h extends to the homeomorphism $\widetilde{h}: X \rightarrow X$ with $\widetilde{h} \mid X \backslash W=$ id. Let \mathcal{U}_{1} be an open starrefinement of \mathcal{U}_{0}. Since W is an ANR, \mathcal{U}_{1} has an open refinement \mathcal{U}_{2} such that any two \mathcal{U}_{2}-close maps of an arbitrary space to W are \mathcal{U}_{1}-homotopic (cf. $\left.\left[\mathrm{vM}_{3}, 5.1 .1\right]\right)$. Choose a map $\alpha: W \rightarrow(0,1)$ so that the $\alpha(x)$-neighborhood of x in X is contained in some member of \mathcal{U}_{2}. By (b), there exists a Z embedding $f: A \cap W \rightarrow M \cap W$ such that $d(f(x), x)<\alpha(x)$ for each $x \in W$. Then f is \mathcal{U}_{1}-homotopic to id. By the Z-set Unknotting Theorem for ℓ_{2} manifolds (cf. [Sa, §3]), f extends to a homeomorphism $h: W \rightarrow W$ which is \mathcal{U}_{0}-isotopic to id. Then h extends to the homeomorphism $\widetilde{h}: X \rightarrow X$ by $\widetilde{h} \mid X \backslash W=$ id, whence \widetilde{h} is \mathcal{U}-close to id and $\widetilde{h}(A \cap \bigcup \mathcal{U}) \subset M$. Hence M is a Z-absorber for X.
(c) \Rightarrow (b): Let d be an admissible metric for X, let A be a Z-set in an open set W in X and $\alpha: W \rightarrow(0,1)$ a map. Then we have a map $\beta: W \rightarrow(0,1)$ such that $\beta(x)<2^{-1} \alpha(x)$ and
$(\sharp) \quad d(h(x, \beta(x)), x)<\min \left\{2^{-1} \alpha(x), d(x, X \backslash W)\right\} \quad$ for each $x \in W$.
By (\sharp), we can define a map $f_{0}: A \rightarrow W \cap M$ by $f_{0}(x)=h(x, \beta(x))$. Then $d\left(f_{0}(x), x\right)<2^{-1} \alpha(x)$ for each $x \in W$. For each $n \in \mathbb{N}$, let

$$
W_{n}=W \cap X_{n} \quad \text { and } \quad A_{n}=\left\{x \in A \mid \beta(x) \geq 2^{-n}\right\}
$$

Then each W_{n} is a Z-submanifold of an ℓ_{2}-manifold W and each A_{n} is a closed set in A such that $f_{0}\left(A_{n}\right) \subset W_{n}$. Moreover, it follows that

$$
W \cap M=\bigcup_{n \in \mathbb{N}} W_{n} \quad \text { and } \quad A=\bigcup_{n \in \mathbb{N}} A_{n}=\bigcup_{n \in \mathbb{N}} \operatorname{int} A_{n} .
$$

Since each W_{n} is a Z-set in $W, W \cap M$ is a Z_{σ}-set in W.
Since W_{1} is an ℓ_{2}-manifold, $f_{0} \mid A_{1}$ is 2^{-3}-homotopic to a Z-embedding $g_{1}: A_{1} \rightarrow W_{1}$ (cf. [Sa, §3]). By the Homotopy Extension Theorem (cf. $\left.\left[\mathrm{vM}_{3}, 5.1 .3\right]\right), f_{0}$ is 2^{-3}-homotopic to a map $f_{1}: A \rightarrow W \cap M$ such that $f_{1} \mid A_{1}=g_{1}, f_{1}\left(A_{2}\right) \subset W_{2}$ and $f_{1}\left|A \backslash A_{2}=f_{0}\right| A \backslash A_{2}$. Since W_{2} is an
ℓ_{2}-manifold, $f_{1} \mid A_{2}$ is 2^{-4}-homotopic to a Z-embedding $g_{2}: A_{2} \rightarrow W_{2}$ such that $g_{2}\left|A_{1}=g_{1}=f_{1}\right| A_{1}$. Again by the Homotopy Extension Theorem, f_{1} is 2^{-4}-homotopic to a map $f_{2}: A \rightarrow W \cap M$ such that $f_{2} \mid A_{2}=g_{2}$, $f_{2}\left(A_{3}\right) \subset W_{3}$ and $f_{2}\left|A \backslash A_{3}=f_{0}\right| A \backslash A_{3}$. Thus we inductively construct maps $f_{n}: A \rightarrow W \cap M$ such that f_{n} is 2^{-n-2}-homotopic to $f_{n-1}, f_{n} \mid A_{n}$ is a Z-embedding into W_{n}, and $f_{n}\left|A \backslash A_{n+1}=f_{0}\right| A \backslash A_{n+1}$.

We define $f: A \rightarrow W \cap M$ by $f\left|A_{n}=f_{n}\right| A_{n}$ for each $n \in \mathbb{N}$. Since $\left(f_{n}\right)_{n \in \mathbb{N}}$ is uniformly Cauchy, f is the uniform limit of $\left(f_{n}\right)_{n \in \mathbb{N}}$, whence f is continuous. Since each pair of points of A are contained in some A_{n} and $f_{n} \mid A_{n}$ is injective, it follows that f is injective. For each $x \in A_{n} \backslash A_{n-1}$, $f(x)=f_{n}(x)$ and $f_{n-2}(x)=f_{0}(x)$, whence

$$
\begin{aligned}
d(f(x), x) & \leq d\left(f_{n}(x), f_{n-1}(x)\right)+d\left(f_{n-1}(x), f_{n-2}(x)\right)+d\left(f_{0}(x), x\right) \\
& <2^{-n-2}+2^{-n-1}+2^{-1} \alpha(x)<2^{-n}+2^{-1} \alpha(x) \\
& \leq \beta(x)+2^{-1} \alpha(x)<\alpha(x)
\end{aligned}
$$

To see that f is closed, let $\left(x_{i}\right)_{i \in \mathbb{N}}$ be a sequence in A such that $f\left(x_{i}\right)$ converges to y in W. Assume that $\lim \inf \alpha\left(x_{i}\right)=0$. Then $\left(x_{i}\right)_{i \in \mathbb{N}}$ has a subsequence $\left(x_{n_{i}}\right)_{i \in \mathbb{N}}$ such that $\lim \alpha\left(x_{n_{i}}\right)=0$, whence $x_{n_{i}}$ converges to y because

$$
d\left(x_{n_{i}}, y\right) \leq d\left(x_{n_{i}}, f\left(x_{n_{i}}\right)\right)+d\left(f\left(x_{n_{i}}\right), y\right)<\alpha\left(x_{n_{i}}\right)+d\left(f\left(x_{n_{i}}\right), y\right) .
$$

This contradicts $\alpha(y) \neq 0$. Therefore $\liminf \alpha\left(x_{i}\right)>2^{-n}$ for some $n \in \mathbb{N}$, which means that $\alpha\left(x_{i}\right) \geq 2^{-n}$ for sufficiently large $i \in \mathbb{N}$, whence $f\left(x_{i}\right)=$ $f_{n}\left(x_{i}\right)$ because $x_{i} \in A_{n}$. Since $f_{n} \mid A_{n}$ is a closed embedding, x_{i} converges to some x in A_{n}. This means that f is closed. Since $f(A)$ is a closed set in W and $f(A) \subset W \cap M, f(A)$ is a Z-set in $W\left(\left[\mathrm{vM}_{3}, 6.2 .2(3)\right]\right)$, hence f is a Z-embedding.
(a) $\Rightarrow(\mathrm{c})$: For each $n \in \mathbb{N}$, let $Q_{n}=\left[-1+2^{-n}, 1-2^{-n}\right]^{\omega} \subset Q$. Note that $X \approx X \times \ell_{2} \approx X \times \ell_{2} \times Q \approx X \times Q$ by the Stability Theorem for ℓ_{2}-manifolds (cf. [Sa, §2]), $X \times \Sigma=\bigcup_{n \in \mathbb{N}} X \times Q_{n}$ and each $X \times Q_{n}$ is a Z-set in $X \times Q$, which in turn is an ℓ_{2}-manifold. We have the deformation $h: X \times Q \times \mathbf{I} \rightarrow X \times Q$ defined by $h_{t}(x, y)=(x,(1-t) y)$. Then $h_{0}=\mathrm{id}$ and $h_{t}(X \times Q) \subset X \times Q_{n}$ for $t \geq 2^{-n}$. Thus $X \times \Sigma$ satisfies the condition (c) for $X \times Q$. The implication (c) \Rightarrow (a) has already been proved. Hence $X \times \Sigma$ is a Z-absorber for $X \times Q$. Since $(X, M) \approx(X \times Q, X \times \Sigma)$ by Theorem 1.5, M also satisfies the condition (c).
2. Proofs of Theorems. Let $h: A \times \mathbf{I} \rightarrow X$ be a deformation of $A \subset X$. We define a deformation $h^{*}: P_{\mathfrak{F}}(A) \times \mathbf{I} \rightarrow P_{\mathfrak{F}}(X)$ as follows:

$$
h_{t}^{*}(\mu)=\sum_{i=1}^{k} s_{i} \delta_{h_{t}\left(x_{i}\right)} \quad \text { for each } \mu=\sum_{i=1}^{k} s_{i} \delta_{x_{i}} \in P_{\mathfrak{F}}(A) .
$$

In other words,

$$
\int_{X} f d h_{t}^{*}(\mu)=\int_{X} f h_{t} d \mu=\sum f\left(h_{t}(x)\right) \mu(x) \quad \text { for each } f \in C_{\mathrm{b}}(X) .
$$

Then the continuity of h^{*} is obvious. Note that $h_{t}^{*}\left(P_{k}(A)\right) \subset P_{k}\left(h_{t}(A)\right) \subset$ $P_{k}(X)$ for every $t \in \mathbf{I}$ and $k \in \mathbb{N}$. If $h_{0}=\mathrm{id}$ then $h_{0}^{*}=\mathrm{id}$.

Here we observe that P_{k} satisfies the conditions (1)-(10) in Remark 3. Indeed, as mentioned in the Introduction, P_{k} satisfies (1) and (10). Using the open base in [Va ${ }_{2}$, Part II, Remark 3 to Theorem 2] (or [NT, Proposition 2.1]), it can be shown that $P_{k}(A)$ is closed in $P_{k}(X)$ if A is closed in X, that is, P_{k} satisfies (2). And as seen in the above, P_{k} satisfies (3). Obviously P_{k} satisfies (4)-(7). We have the continuous surjection $\pi: X^{k} \times \Delta^{k-1} \rightarrow P_{k}(X)$ defined by

$$
\pi\left(x_{1}, \ldots, x_{k} ; s_{1}, \ldots, s_{k}\right)=\sum_{i=1}^{k} s_{i} \delta_{x_{i}}
$$

where Δ^{k-1} is the standard $(k-1)$-simplex. Observe that $\pi^{-1}(\mu)$ is finite for each $\mu \in P_{k}(X)$. If X is a finite-dimensional compactum, then so is $P_{k}(X)$, that is, P_{k} satisfies (8). It has been shown in $\left[\mathrm{Va}_{1}\right]$ that if X is separable completely metrizable then so is $P(X)$, hence $P_{k}(X)$, which means that P_{k} satisfies (9).

In the following, we use only these properties (1)-(10).
Lemma 2.1. If A is a Z-set in an $A N R X$, then each $P_{k}(A)$ is a Z-set in $P_{k}(X)$.

Proof. First note that $P(A)$ is a closed set in $P(X)$. Since A is a Z-set in an ANR X, there is a deformation $h: X \times \mathbf{I} \rightarrow X$ such that $h_{0}=\mathrm{id}$ and $h_{t}(X) \subset X \backslash A$ if $0<t \leq 1\left[\mathrm{To}_{1}\right.$, Theorem 2.4 with Corollary 3.3]. Then h induces the deformation $h^{*}: P_{k}(X) \times \mathbf{I} \rightarrow P_{k}(X)$ such that $h_{0}^{*}=\mathrm{id}$ and $h_{t}^{*}(P(X)) \subset P_{k}(X \backslash A) \subset P_{k}(X) \backslash P_{k}(A)$ for $0<t \leq 1$. Therefore $P_{k}(A)$ is a Z-set in $P_{k}(X)$.

For each $n \in \mathbb{N}, P_{k}\left(Q_{n}\right) \approx Q\left[\mathrm{Fe}_{1}\right]$, where $Q_{n}=\left[-1+2^{-n}, 1-2^{-n}\right]^{\omega} \subset Q$. Since $Q_{n} \subset\left(-1+2^{-n-1}, 1-2^{-n-1}\right)^{\omega}, Q_{n}$ is a Z-set in $Q_{n+1}\left[\mathrm{vM}_{3}, 6.2 .4\right]$. Then each $P_{k}\left(Q_{n}\right)$ is a Z-set in $P_{k}\left(Q_{n+1}\right)$ by Lemma 2.1. Thus we have a tower $P_{k}\left(Q_{1}\right) \subset P_{k}\left(Q_{2}\right) \subset \ldots$ which satisfies the conditions (i) and (ii) in Theorem 1.3. To prove (a), it remains to show that $P_{k}(\Sigma)=\bigcup_{n \in \mathbb{N}} P_{k}\left(Q_{n}\right)$ is a cap set for $P_{k}(Q)$ and each $P_{k}\left(Q_{n}\right) \cap P_{k}(\sigma)$ is an fd-cap set for $P_{k}\left(Q_{n}\right)$.

Lemma 2.2. For each $k \in \mathbb{N},\left(P_{k}\left(Q_{n}\right)\right)_{n \in \mathbb{N}}$ has the cap in both $P_{k}(Q)$ and $P_{k}(s)$, whence $P_{k}(\Sigma)=\bigcup_{n \in \mathbb{N}} P_{k}\left(Q_{n}\right)$ is a cap set for both $P_{k}(Q)$ and $P_{k}(s)$.

Proof. First note that $P_{k}(\Sigma)=\bigcup_{n \in \mathbb{N}} P_{k}\left(Q_{n}\right)$ and $P_{k}\left(Q_{n}\right) \approx Q$ for each $n \in \mathbb{N}$. By Lemma 2.1, each $P_{k}\left(Q_{n}\right)$ is a Z-set for $P_{k}\left(Q_{n+1}\right)$. By the Z-set Unknotting Theorem $\left[\mathrm{vM}_{3}, 6.4 .6\right]$, we have

$$
\left(P_{k}\left(Q_{n+1}\right), P_{k}\left(Q_{n}\right)\right) \approx(Q \times Q, Q \times\{0\}) \approx\left(P_{k}\left(Q_{n}\right) \times Q, P_{k}\left(Q_{n}\right) \times\{0\}\right)
$$

hence the tower $\left(P_{k}\left(Q_{n}\right)\right)_{n \in \mathbb{N}}$ is expansive. Let $\theta:[-1,1] \times \mathbf{I} \rightarrow[-1,1]$ be the deformation defined by

$$
\theta_{t}(s)= \begin{cases}s & \text { if } s \leq 1-t \\ 1-t & \text { if } s \geq 1-t\end{cases}
$$

We define a deformation $h: Q \times \mathbf{I} \rightarrow Q$ by $h_{t}\left(x_{1}, x_{2}, \ldots\right)=\left(\theta_{t}\left(x_{1}\right)\right.$, $\left.\theta_{t}\left(x_{2}\right), \ldots\right)$. Then h induces the deformation $h^{*}: P_{k}(Q) \times \mathbf{I} \rightarrow P_{k}(Q)$ such that $h^{*}\left(P_{k}(s) \times \mathbf{I}\right) \subset P_{k}(s), h_{0}^{*}=\mathrm{id}$ and each h_{2-n}^{*} is a retraction onto $P_{k}\left(Q_{n}\right)$. Hence $\left(P_{k}\left(Q_{n}\right)\right)_{n \in \mathbb{N}}$ has the mapping absorption property in both $P_{k}(Q)$ and $P_{k}(s)$. By Lemma 1.1, we have the result.

Lemma 2.3. For each $k, n \in \mathbb{N}, P_{k}\left(Q_{n}\right) \cap P_{k}(\sigma)=P_{k}\left(Q_{n} \cap \sigma\right)$ is an fd-cap set for $P_{k}\left(Q_{n}\right)$.

Proof. For each $i \in \mathbb{N}$, let $X_{n}^{i}=\left[-1+2^{-n}, 1-2^{-n}\right]^{i} \times\{0\} \subset Q_{n}$. Then $Q_{n} \cap \sigma=\bigcup_{i \in \mathbb{N}} X_{n}^{i}$. Each $P_{k}\left(X_{n}^{i}\right)$ is a finite-dimensional compactum, which is a Z-set in $P_{k}\left(Q_{n}\right)$ by Lemma 2.1. We define a deformation $\varphi: X_{n}^{i} \times \mathbf{I} \rightarrow$ X_{n}^{i+1} by

$$
\varphi_{t}\left(x_{1}, \ldots, x_{i}, 0,0, \ldots\right)=\left(x_{1}, \ldots, x_{i}, t / 2,0, \ldots\right)
$$

Note that φ is an embedding. Let $\varphi^{*}: P_{k}\left(X_{n}^{i}\right) \times \mathbf{I} \rightarrow P_{k}\left(X_{n}^{i+1}\right)$ be the deformation induced by φ. Then $\varphi_{0}^{*}=\operatorname{id}$ and φ^{*} is obviously injective by the definition, that is, φ^{*} is an embedding. Hence the tower $\left(P_{k}\left(X_{n}^{i}\right)\right)_{i \in \mathbb{N}}$ is finitely expansive. We define a deformation $h: Q_{n} \times \mathbf{I} \rightarrow Q_{n}$ as follows: $h_{0}=\mathrm{id}$ and

$$
h_{t}\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, x_{i},\left(2-2^{i} t\right) x_{i+1}, 0,0, \ldots\right) \quad \text { if } 2^{-i}<t \leq 2^{-i+1}
$$

Then h induces the deformation $h^{*}: P_{k}\left(Q_{n}\right) \times \mathbf{I} \rightarrow P_{k}\left(Q_{n}\right)$ such that $h_{0}^{*}=\mathrm{id}$ and each $h_{2^{-i}}^{*}$ is a retraction onto $P_{k}\left(X_{n}^{i}\right)$. Hence $\left(P_{k}\left(X_{n}^{i}\right)\right)_{i \in \mathbb{N}}$ has the mapping absorption property. By Lemma 1.1, $P_{k}\left(Q_{n}\right) \cap P(\sigma)=$ $P_{k}\left(Q_{n} \cap \sigma\right)=\bigcup_{i \in \mathbb{N}} P_{k}\left(X_{n}^{i}\right)$ is an fd-cap set for $P_{k}\left(Q_{n}\right)$.

It is known that $P_{k}\left(\ell_{2}\right) \approx \ell_{2}[\mathrm{NT}]$. But we will give a short proof.
Lemma 2.4. For each $k \in \mathbb{N},\left(P_{k}(Q), P_{k}(s)\right) \approx(Q, s)$, hence $P_{k}\left(\ell_{2}\right) \approx \ell_{2}$.
Proof. We show that $P_{k}(Q) \backslash P_{k}(s)$ is a cap set for $P_{k}(Q)$. Then the result will follow from Lemma 1.2 because $P_{k}(Q) \approx Q$. It has been shown in [Va_{1}] that $P(X)$ is separable completely metrizable if so is X. Then $P_{k}(s)$ is completely metrizable, so $P_{k}(Q) \backslash P_{k}(s)$ is F_{σ} in $P_{k}(Q)$. Let $h: Q \times \mathbf{I} \rightarrow Q$ be the deformation defined by $h_{t}(x)=(1-t) x$. Then h induces the deformation
$h^{*}: P_{k}(Q) \times \mathbf{I} \rightarrow P_{k}(Q)$ such that $h_{0}^{*}=\mathrm{id}$ and $h_{t}^{*}\left(P_{k}(Q)\right) \subset P_{k}(s)$ for $0<t \leq 1$. Therefore $P_{k}(Q) \backslash P_{k}(s)$ is a Z_{σ}-set in $P_{k}(Q)$. Observe that

$$
P_{k}(Q) \backslash P_{k}(s)=\left\{\mu \in P_{k}(Q) \mid \operatorname{supp} \mu \not \subset s\right\} \supset P_{k}(Q \backslash s)
$$

Since $(Q, Q \backslash s) \approx(Q, \Sigma)$, we have $\left(P_{k}(Q), P_{k}(Q \backslash s)\right) \approx\left(P_{k}(Q), P_{k}(\Sigma)\right)$, whence $P_{k}(Q \backslash s)$ is a cap set for $P_{k}(Q)$ by Lemma 2.2. Since any Z_{σ}-set containing a cap set is itself a cap set [Ch, Lemma 4.2 or Theorem 6.6], $P_{k}(Q) \backslash P_{k}(s)$ is a cap set for $P_{k}(Q)$.

Remark 4. As for the above lemmas, 2.1 follows from (1)-(3); 2.2 from (1)-(4) and (10); 2.3 from (1)-(5) and (8); 2.4 from (1)-(4), (6), (9) and (10).

Proof of the Main Theorem. First we show (a). Since $P_{k}(Q) \approx$ Q, we can apply Theorem 1.3 with Lemmas $2.1-2.3$ to obtain $\left(P_{k}(Q), P_{k}(\Sigma)\right.$, $\left.P_{k}(\sigma)\right) \approx(Q, \Sigma, \sigma)$. In particular, $\left(P_{k}(\Sigma), P_{k}(\sigma)\right) \approx(\Sigma, \sigma)$. On the other hand, $\left(P_{k}(Q), P_{k}(s)\right) \approx(Q, s)$ by Lemma 2.4. By Lemmas 1.2 and 2.2, $\left(P_{k}(Q), P_{k}(s), P_{k}(\Sigma)\right) \approx(Q, s, \Sigma)$. Applying Theorem 2.4 of [CDM], we have

$$
\left(P_{k}(Q), P_{k}(s), P_{k}(\Sigma), P_{k}(\sigma)\right) \approx(Q, s, \Sigma, \sigma)
$$

Next we prove (b) by applying Theorem 1.4. For each $n, i \in \mathbb{N}$, let

$$
A_{i}^{n}=\underbrace{Q_{i} \times \ldots \times Q_{i}}_{n \text { times }} \times Q \times Q \times \ldots \subset Q^{\omega} .
$$

Then observe that for each $n_{1}<\ldots<n_{m}$ and $i_{1}, \ldots, i_{m} \in \mathbb{N}$,

$$
\begin{align*}
\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}= & \underbrace{Q_{p_{1}} \times \ldots \times Q_{p_{1}}}_{n_{1} \text { times }} \times \underbrace{Q_{p_{2}} \times \ldots \times Q_{p_{2}}}_{n_{2}-n_{1} \text { times }} \times \ldots \tag{*}\\
& \times \underbrace{Q_{p_{m}} \times \ldots \times Q_{p_{m}}}_{n_{m}-n_{m-1} \text { times }} \times Q \times Q \times \ldots,
\end{align*}
$$

where $p_{k}=\min \left\{i_{k}, \ldots, i_{m}\right\}$. It is proved in $\left[\mathrm{vM}_{2}\right.$, Thm. 4.1] that $\left(A_{i}^{n}\right)_{n, i \in \mathbb{N}}$ is a Z-matrix in Q^{ω} which has all the properties of Theorem 1.4. Therefore $\bigcap_{n \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} A_{i}^{n} \approx\left(\ell_{2}^{f}\right)^{\omega}$. Then it follows that

$$
P_{k}\left(\left(\ell_{2}^{f}\right)^{\omega}\right) \approx P_{k}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} A_{i}^{n}\right)=\bigcap_{n \in \mathbb{N} i \in \mathbb{N}} \bigcup_{k} P_{k}\left(A_{i}^{n}\right)
$$

Since $P_{k}\left(Q^{\omega}\right) \approx Q$ and $\left(P_{k}\left(A_{i}^{n}\right)\right)_{n, i \in \mathbb{N}}$ is a Z-matrix in $P_{k}\left(Q^{\omega}\right)$ by Lemma 2.1, it suffices to show that $\left(P_{k}\left(A_{i}^{n}\right)\right)_{n, i \in \mathbb{N}}$ has all the properties of Theorem 1.4.

Let $n_{1}<\ldots<n_{m}$ and $i_{1}, \ldots, i_{m} \in \mathbb{N}$. Since $\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}} \approx Q$, we have $\bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right)=P_{k}\left(\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right) \approx Q$, that is, 1.4(ii). For each $p, i \in \mathbb{N}$, we also have $P_{k}\left(A_{i}^{n_{m}+p}\right) \cap \bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right) \approx Q$. Since Q_{i} is a Z-set in Q_{i+1}, $A_{i}^{n_{m}+p} \cap \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}$ is a Z-set in $A_{i+1}^{n_{m}+p} \cap \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}$ (see $\left.(*)\right)$. Then by

Lemma 2.1,

$$
P_{k}\left(A_{i}^{n_{m}+p}\right) \cap \bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right)=P_{k}\left(A_{i}^{n_{m}+p} \cap \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right)
$$

is a Z-set in $P_{k}\left(A_{i+1}^{n_{m}+p} \cap \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right)=P_{k}\left(A_{i+1}^{n_{m}+p}\right) \cap \bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right)$. By the same proof as for Lemma 2.2, it follows that $\left(P_{k}\left(A_{i}^{n_{m}+p}\right) \cap \bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right)\right)_{i \in \mathbb{N}}$ has the cap for $P_{k}\left(\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right)$, that is, 1.4(iii) holds. Similarly, 1.4(i) holds, that is, $\left(P_{k}\left(A_{i}^{n}\right)\right)_{i \in \mathbb{N}}$ has the cap for $P_{k}\left(Q^{\omega}\right)$. To see 1.4(iv), suppose

$$
\bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right)=P_{k}\left(\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right) \not \subset P_{k}\left(A_{i}^{n}\right) .
$$

Then $\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}} \not \subset A_{i}^{n}$, which implies that $A_{i}^{n} \cap \bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}$ is a Z-set in $\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}$. By Lemma 2.1, it follows that $P_{k}\left(A_{i}^{n}\right) \cap \bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right)=P_{k}\left(A_{i}^{n} \cap\right.$ $\left.\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right)$ is a Z-set in $P_{k}\left(\bigcap_{j=1}^{m} A_{i_{j}}^{n_{j}}\right)=\bigcap_{j=1}^{m} P_{k}\left(A_{i_{j}}^{n_{j}}\right)$, that is, we have 1.4(iv).

To see (c), notice that each $P_{k}\left(\ell_{2} \times Q_{n}\right)$ is a Z-set in $P_{k}\left(\ell_{2} \times Q\right)$ by Lemma 2.1, $P_{k}\left(\ell_{2} \times Q_{n}\right) \approx \ell_{2}$ by Lemma 2.4 and $P_{k}\left(\ell_{2} \times \Sigma\right)=\bigcup_{n \in \mathbb{N}} P_{k}\left(\ell_{2} \times\right.$ $\left.Q_{n}\right)$. We have the deformation $h: \ell_{2} \times Q \times \mathbf{I} \rightarrow \ell_{2} \times Q$ defined by $h_{t}(x, y)=$ $(x,(1-t) y)$. Let $h^{*}: P_{k}\left(\ell_{2} \times Q\right) \times \mathbf{I} \rightarrow P_{k}\left(\ell_{2} \times Q\right)$ be the deformation induced by h. Then $h_{0}^{*}=\mathrm{id}$ and $h_{t}^{*}\left(P_{k}\left(\ell_{2} \times Q\right)\right) \subset P_{k}\left(\ell_{2} \times Q_{n}\right)$ for $t \geq$ 2^{-n}. By Theorem 1.7, $P_{k}\left(\ell_{2} \times \Sigma\right)$ is a Z-absorber for $P_{k}\left(\ell_{2} \times Q\right)$. Since $P_{k}\left(\ell_{2} \times Q\right) \approx \ell_{2}$, (c) follows from Corollary 1.6.

Remark 5. In the above, (a) follows from (1)-(6) and (8)-(10); (b) from (1)-(5), (7) and (10); (c) from (1)-(6), (9) and (10) (cf. Remark 4). Thus our Main Theorem holds if P_{k} is replaced by a functor $F: \mathcal{S M} \rightarrow \mathcal{S M}$ with the conditions (1)-(10).

Proof of Theorems 2 and 3. As seen in Remark 5, it suffices to see that \mathfrak{F}_{k} and SP_{G}^{k} satisfy the conditions (1)-(10). The conditions (1), (2) and (10) have been seen in Remark 3 and the conditions (4)-(7) are obvious.

For a deformation $h: A \times \mathbf{I} \rightarrow X$ of $A \subset X$, the induced deformation h^{*} : $\mathfrak{F}_{k}(A) \times \mathbf{I} \rightarrow \mathfrak{F}_{k}(X)$ is defined by $h^{*}(F, t)=h(F \times\{t\})$, whence the continuity of h^{*} is easy to see. Thus \mathfrak{F}_{k} satisfies (3). We have the natural continuous surjection $p: X^{k} \rightarrow \mathfrak{F}_{k}(X)$ defined by $p\left(x_{1}, \ldots, x_{k}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$. Since p has finite fibers, if X is a finite-dimensional compactum then so is $\mathfrak{F}_{k}(X)$, that is, \mathfrak{F}_{k} satisfies (8). Obviously, $\mathfrak{F}_{k}(U)$ is open in $\mathfrak{F}_{k}(X)$ for any open set U in X. If X is separable completely metrizable, then X is a G_{δ}-set in a metrizable compactification \widetilde{X}, which implies that $\mathfrak{F}_{k}(X)$ is a G_{δ}-set in the compact metrizable space $\mathfrak{F}_{k}(\widetilde{X})=\widetilde{p}\left(\widetilde{X}^{k}\right)$, where $\widetilde{p}: \widetilde{X}^{k} \rightarrow \mathfrak{F}_{k}(\widetilde{X})$ is the
natural surjection. Hence $\mathfrak{F}_{k}(X)$ is separable completely metrizable, that is, \mathfrak{F}_{k} satisfies (9).

Since the quotient map $q: X^{k} \rightarrow \operatorname{SP}_{G}^{k}(X)$ is open, $\mathrm{SP}_{G}^{k}(U)$ is open in $\mathrm{SP}_{G}^{k}(X)$ for any open set U in X. If X is separable completely metrizable, then X is a G_{δ}-set in a metrizable compactification \widetilde{X}, which implies that $\mathrm{SP}_{G}^{k}(X)$ is a G_{δ}-set in the compact metrizable space $\mathrm{SP}_{G}^{k}(\widetilde{X})=\widetilde{q}\left(\widetilde{X}^{k}\right)$, where $\widetilde{q}: \widetilde{X}^{k} \rightarrow \mathrm{SP}_{G}^{k}(\widetilde{X})$ is the quotient map. Hence $\operatorname{SP}_{G}^{k}(X)$ is separable completely metrizable, that is, SP_{G}^{k} satisfies (9). Since q has finite fibers, if X is a finite-dimensional compactum then so is $\operatorname{SP}_{G}^{k}(X)$, that is, SP_{G}^{k} satisfies (8). For a deformation $h: A \times \mathbf{I} \rightarrow X$ of $A \subset X$, the induced deformation $h^{*}: \operatorname{SP}_{G}^{k}(A) \times \mathbf{I} \rightarrow \mathrm{SP}_{G}^{k}(X)$ is defined by $h_{t}^{*}\left(q\left(x_{1}, \ldots, x_{k}\right)\right)=$ $q\left(h_{t}\left(x_{1}\right), \ldots, h_{t}\left(x_{k}\right)\right)$, whence the continuity of h^{*} is clear. Thus SP_{G}^{k} satisfies (3).

REFERENCES

[An] R. D. Anderson, On sigma-compact subsets of infinite-dimensional spaces, unpublished.
[Ch] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-426.
[Cu] D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), 201-221.
[CDM] R. Cauty, T. Dobrowolski and W. Marciszewski, A contribution to the topological classification of the spaces $C_{\mathrm{p}}(X)$, Fund. Math. 142 (1993), 269-301.
[Dij] J. J. Dijkstra, Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility, CWI Tract 2, Math. Centrum, Amsterdam, 1984.
[DM] J. J. Dijkstra and J. Mogilski, The topological product structure of systems of Lebesgue spaces, Math. Ann. 290 (1991), 527-543.
[DS] T. Dobrowolski and K. Sakai, Spaces of measures on metrizable spaces, preprint.
[Fe 1$]$ V.V.Fedorchuk, Probability measures and absolute retracts, Dokl. Akad. Nauk SSSR 255 (1980), 1329-1333 (in Russian); English transl.: Soviet Math. Dokl. 22 (1980), 849-853.
$\left[\mathrm{Fe}_{2}\right]$-, Covariant functors in the category of compacta, absolute retracts, and Q manifolds, Uspekhi Mat. Nauk 36 (3) (1981), 177-195 (in Russian); English transl.: Russian Math. Surveys 36 (3) (1981), 211-233.
$\left[\mathrm{Fe}_{3}\right]$-, Probability measures in topology, Uspekhi Mat. Nauk 46 (1) (1991), 41-80 (in Russian); English transl.: Russian Math. Surveys 46 (1) (1991), 45-93.
[He] D. W. Henderson, Corrections and extensions of two papers about infinitedimensional manifolds, Gen. Topology Appl. 1 (1971), 321-327.
[HS] D. W. Henderson and R. M. Schori, Topological classification of infinitedimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121-124.
[vM_{1}] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180.
[$\left.\mathrm{vM}_{2}\right]$ J. van Mill, Topological equivalence of certain function spaces, Compositio Math. 63 (1987), 159-188.
$\left[\mathrm{vM}_{3}\right]$-, Infinite-Dimensional Topology-Prerequisites and Introduction, North-Holland Math. Library 43, North-Holland, Amsterdam, 1989.
[Na] S. B. Nadler Jr., Hyperspaces of Sets, Monographs Textbooks Pure Appl. Math. 49, Marcel Dekker, New York, 1978.
[Ng_{1}] Nguyen To Nhu, Orbit spaces of finite groups acting linearly on normed spaces, Bull. Polish Acad. Sci. Math. 32 (1984), 417-424.
$\left[\mathrm{Ng}_{2}\right]-$, Hyperspaces of compact sets in metric linear spaces, Topology Appl. 22 (1986), 109-122.
[NT] Nguyen To Nhu and Ta Khac Cu, Probability measure functors preserving the ANR-property of metric spaces, Proc. Amer. Math. Soc. 106 (1989), 493-501.
[Sa1] K. Sakai, Embeddings of infinite-dimensional manifold pairs and remarks on stability and deficiency, J. Math. Soc. Japan 29 (1977), 261-280.
[SW] K. Sakai and R. Wong, On infinite-dimensional manifold triples, Trans. Amer. Math. Soc. 318 (1990), 545-555.
[$\left.\mathrm{To}_{1}\right]$ H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l_{2}-manifolds, Fund. Math. 101 (1978), 93-110.
$\left[\mathrm{To}_{2}\right]$-, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
[Va ${ }_{1}$] V.S. Varadarajan, Weak convergence of measures on separable metric spaces, Sankhyā 19 (1958), 15-22.
$\left[\mathrm{Va}_{2}\right]$-, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35-100 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.
[We] J. E. West, The ambient homeomorphy of an incomplete subspace of infinitedimensional Hilbert spaces, Pacific J. Math. 34 (1970), 257-267.

Institute of Mathematics at Hanoi
P.O. Box 631

Bo Ho, Hanoi
Vietnam
Department of Mathematics
Indiana University at Bloomington
Bloomington, Indiana 47405-5701
U.S.A.

E-mail: nhnguyen@juliet.ucs.indiana.edu

[^0]: 1991 Mathematics Subject Classification: 28A33, 46E27, 57N20, 60B05.
 Key words and phrases: probability measure functor, support, the Hilbert cube, pseudo-interior, radial-interior, $\sigma, \ell_{2}, \ell_{2}^{f},\left(\ell_{2}^{f}\right)^{\omega}, \ell_{2} \times \ell_{2}^{f}$, hyperspace, G-symmetric power.
 ${ }^{1}$) A non-negative Borel measure μ on X with $\mu(X)=1$ is called a probability measure.

[^1]: ${ }^{(2}$) It is known that $\left(\ell_{2}^{f}\right)^{\omega} \approx \Sigma^{\omega}$ (cf. the proof of $\left[\mathrm{vM}_{2}\right.$, Corollary 4.2]).
 $\left.{ }^{3}\right)$ It is known that $\left(\ell_{2} \times Q, \ell_{2} \times \Sigma\right) \approx\left(\ell_{2} \times Q, \ell_{2} \times \sigma\right)$, hence $\ell_{2} \times \Sigma \approx \ell_{2} \times \ell_{2}^{f}$.

[^2]: $\left({ }^{4}\right)$ We mean $0=(0,0, \ldots) \in Q$.

[^3]: $\left({ }^{6}\right)$ A Z-matrix with these properties is called a Q-matrix in $\left[\mathrm{vM}_{2}\right]$.
 ${ }^{7}$) In case $X \approx Q$ (or X is a Q-manifold), a tower of compact Z-sets in X with the cap is called a skeleton in $\left[\mathrm{vM}_{2}\right]$.

