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CONTINUOUS EXTENSIONS OF SPECTRAL MEASURES

BY

S. OKADA (HOBART, TASMANIA) AND W. J. R ICKER (SYDNEY, N.S.W.)

One of the most important classes of operator-valued measures is the
class of spectral measures. These are the natural extension to Banach spaces
(and more general locally convex Hausdorff spaces, briefly lcHs) of the no-
tion of the resolution of the identity of normal operators in a Hilbert space.
In many applications, and in the general theory, the underlying lcHs X in
which the spectral measure acts may have very poor completeness proper-
ties. Consequently, the space of integrable functions may be too small for
any reasonable analysis [11].

One natural response to such a situation might be to attempt to extend
the spectral measure into acting in the completion, X, of X. Indeed, cer-
tain problems have been treated quite effectively using this type of approach
[14, 17, 19] by interpretingX as a projective limit of seminormed spaces. For
each continuous seminorm q in X, the spectral measure P acting in X in-
duces a spectral measure Pq in the quotient normed space Xq = X/q−1({0})
which can then be extended to a spectral measure P q in the (Banach space)
completion Xq . This reduces the problem to the more familiar Banach
space setting by considering the family of spectral measures P q acting in
Xq , as q varies through the collection P(X) of all continuous seminorms
in X.

For other types of problems it is more suitable to deal with X directly
and simply attempt to extend P to X. The main difficulties here are, firstly,
that in practical examples of interest the completion X is difficult to identify
and, secondly, from the point of view of analysis and integration theory, the
space X may turn out to be unnecessarily large. It usually suffices to have
P extendable merely to the quasicompletion, X̃ , of X, or even the smaller
sequential completion, X̂, of X [2, 3, 11, 12, 16].

The aim of this note is to make a detailed study of the process of ex-
tending a given spectral measure P , acting in a lcHs X, to the various
“completions” X̂ , X̃ and X. Of particular interest is the determination of
criteria which ensure that the extended P is actually a spectral measure
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again (this is not always automatic) and to identify the integrable functions
for the extended measure in terms of those for the original measure P . It
turns out that the extension process to the sequential completion X̂ is the
most satisfactory. This is somewhat unexpected since X̃ and X often have
desirable topological properties which X̂ may not share (e.g. the balanced,
convex hull of a relatively compact subset of a quasicomplete space is again
compact; this fails for sequentially complete spaces, [13; §2]).

1. Preliminaries. In this section we fix the notation, record some
definitions and establish some basic facts needed later. Throughout, X is
a lcHs and X ′ its continuous dual space. Every subspace of X is equipped
with the induced topology from X.

Let Σ be a σ-algebra of subsets of a non-empty set Γ . Let m : Σ → X be
a vector measure, meaning that the sequence {m(En)}∞n=1 is unconditionally
summable in X with m(

⋃∞
n=1En) =

∑∞
n=1m(En), whenever En ∈ Σ, for

n ∈ N, are pairwise disjoint sets. Given x′ ∈ X ′, let 〈x′,m〉 denote the
complex measure defined by 〈x′,m〉(E) = 〈x′,m(E)〉 for each E ∈ Σ. Its
variation measure is denoted by |〈x′,m〉|. The space of all C-valued, Σ-
simple functions on Γ is denoted by sim(Σ).

A Σ-measurable function f : Γ → C is called m-integrable if it is 〈x′,m〉-
integrable for every x′ ∈ X ′ and if there exists a unique set function fm :
Σ → X such that 〈x′, (fm)(E)〉 =

T
E
f d〈x′,m〉, for x′ ∈ X ′, E ∈ Σ.

The set function fm, which is again a vector measure by the Orlicz–Pettis
theorem [6; I, Theorem 1.3], is called the indefinite integral of f with respect
to m. Given an m-integrable function f , the element (fm)(E) of X is also
denoted by

T
E
f dm, for each E ∈ Σ. The linear space of all m-integrable

functions is denoted by L1(m). Clearly sim(Σ) ⊆ L1(m).

The characteristic function of E ⊆ Γ is denoted by χ
E
. A set E ∈ Σ

is called m-null if χ
E
m is the zero measure. A C-valued, Σ-measurable

function is said to be m-essentially bounded if it is bounded off an m-null
set. The space of all m-essentially bounded functions is denoted by L∞(m).
If X is sequentially complete, then

(1.1) L∞(m) ⊆ L1(m);

see [9; p. 161]. The inclusion (1.1) is not always valid; see [11], for example.

Lemma 1.1. Let mα : Σ → X, α ∈ A, be a net of vector measures

converging setwise to a vector measure m : Σ → X with sup{p(mα(E)) :
α ∈ A, E ∈ Σ} <∞ for each p ∈ P(X). Suppose that a function f : Γ → C

is bounded , Σ-measurable and integrable with respect to m and each mα,
α ∈ A. Then limα

T
Γ
f dmα =

T
Γ
f dm.
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P r o o f. It is clear that
T
Γ
s dmα →

T
Γ
s dm whenever s ∈ sim(Σ).

Suppose now that f is as stated. It is known that

sup
E∈Σ

q
( \

E

f dn
)
≤ 4(esssup

γ∈Γ

|f(γ)|) sup
E∈Σ

q(n(E)),

for every q ∈ P(X) and any vector measure n : Σ → X; see [6; I, Lemmas
1.2 & 2.2]. The desired conclusion follows from this inequality, the fact that
f can be approximated uniformly on Γ by elements from sim(Σ), and the
Nikodym boundedness theorem (apply [1; I, Theorem 3.1] in the seminormed
space (X, q), for each q ∈ P(X)).

We note that if m : Σ → X is a vector measure which takes its values
in a subspace Z ⊆ X and f is an m-integrable function with

T
E
f dm ∈ Z,

for each E ∈ Σ, then f is mZ-integrable, where mZ denotes m considered
as taking its values in Z.

The space of all continuous linear operators of X into itself is denoted
by L(X). When L(X) is equipped with the strong operator topology τs (i.e.
the topology of pointwise convergence in X), we denote it by Ls(X). When
a sequence is convergent in Ls(X) we will simply say that the sequence
strongly converges.

Given a set function P : Σ → L(X) and x ∈ X, let Px : Σ → X denote
the set function Px : E 7→ P (E)x, for E ∈ Σ. A linear subspace Y of X,
not necessarily closed, is called P -invariant if P (E)Y ⊂ Y for each E ∈ Σ.
Let JY : Y → X be the natural injection. The restriction of P to Y is the
set function PY : Σ → L(Y ) such that

(1.2) JY ◦ PY (E) = P (E) ◦ JY , E ∈ Σ.

Let P : Σ → L(X) be a spectral measure. In other words, P is a
multiplicative, operator-valued measure satisfying P (Γ ) = I (the identity
operator in X). Of course, the countable additivity of P is with respect
to τs; this is often indicated explicitly by writing P : Σ → Ls(X). By
multiplicativity we mean that P (E ∩F ) = P (E)P (F ) for all E,F ∈ Σ. For
each f ∈ L1(P ), let P (f) = (fP )(Γ ) =

T
Γ
f dP . The multiplicativity of P

implies that E ∈ Σ is P -null iff P (E) = 0. Integrability with respect to P
is determined in a simpler way than for general vector measures, due to the
multiplicativity of P .

Lemma 1.2. Let P : Σ → Ls(X) be a spectral measure. The following

statements for a C-valued , Σ-measurable function f on Γ are equivalent :

(o) The function f is P -integrable.

(i) The function f is 〈x′, Px〉-integrable, for x′ ∈ X ′ and x ∈ X, and

there is T1 ∈ L(X) such that 〈x′, T1x〉 =
T
Γ
f d〈x′, Px〉, for x′ ∈ X ′, x ∈ X.
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(ii) The function f is Px-integrable for each x ∈ X, and there is an

operator T2 ∈ L(X) such that T2x =
T
Γ
f dPx, for x ∈ X.

(iii) There exist functions sn ∈ sim(Σ), for n ∈ N, converging pointwise

to f , such that the sequence {P (sn)}∞n=1 strongly converges to some operator

T3 ∈ L(X).
(iv) There exist functions fn ∈ L1(P ), for n ∈ N, converging pointwise

to f , such that the sequence {P (fn)}∞n=1 strongly converges to some operator

T4 ∈ L(X).

In this case Tj = P (f) for each j = 1, 2, 3, 4, and

(1.3) P (fχ
E
) = P (f)P (E) = P (E)P (f), E ∈ Σ.

P r o o f. For the equivalence of (o) and (i) see [3; Proposition 1.2]. The
definition of integrability ensures the equivalence of (i) and (ii). The equiv-
alence of (o), (iii) and (iv) follows from [9; Lemma 2.3 & Theorem 2.4] and
the equivalence of (o) and (i).

The following result, of interest in its own right, will be needed in Sec-
tion 2.

Lemma 1.3. Let X be a lcHs and Q : Σ → L(X) be a finitely additive set

function defined on a σ-algebra Σ and such that its range Q(Σ) is a bounded

subset of Ls(X). Then sup{q(Q(E)x) : x ∈ B, E ∈ Σ} <∞, for q ∈ P(X)
and each bounded set B ⊂ X.

P r o o f. Fix q ∈ P(X) and a bounded set B in X. Let Xq denote the
(Banach space) completion of the normed space X/q−1({0}) and πq : X →
Xq be the canonical map. For each x ∈ X, let µx = πq◦Qx : Σ → Xq, which
is a finitely additive set function with bounded range. For each E ∈ Σ, the
set Q(E)B is bounded in X (as P (E) ∈ L(X)) and hence (πq ◦ Q(E))B
is bounded in Xq , that is, sup{q(µx(E)) : x ∈ B} < ∞. Here q denotes
the norm in Xq induced from the quotient norm in X/q−1({0}). By the
Nikodym boundedness theorem [1; I, Theorem 3.1],

sup
x∈B
E∈Σ

q(Q(E)x) = sup
E∈Σ

sup
x∈B

q(µx(E)) <∞.

Lemma 1.4. Let P : Σ → Ls(X) be a spectral measure. Then the

restriction PY of P to a P -invariant subspace Y of X is an Ls(Y )-valued

spectral measure on Σ satisfying the following statements:

(i) If f ∈ L1(P )∩L1(PY ) and JY : Y → X denotes the natural injection,
then

(1.4) P (fχ
E
) ◦ JY = JY ◦ PY (fχ

E
), E ∈ Σ.

In particular , P (f)Y ⊂ Y .

(ii) L1(P ) ∩ L1(PY ) = {f ∈ L1(P ) : P (f)Y ⊂ Y }.
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P r o o f. Clearly PY is a spectral measure. It follows from (1.2) that

(JY ◦ PY (f))y =
\
Γ

f d(JY ◦ PY y) = (P (f) ◦ J)y, y ∈ Y.

So (1.4) holds by Lemma 1.2. This establishes (i).

For (ii), let f ∈ L1(P ) and suppose that P (f)Y ⊆ Y . Let T ∈ L(Y )
be the restriction of P (f) to Y , i.e. P (f) ◦ JY = JY ◦ T . Fix y ∈ Y
and y′ ∈ Y ′. By the Hahn–Banach theorem y′ has an extension x′ ∈ X ′

satisfying y′ = x′ ◦ JY . Then, for each E ∈ Σ, we have 〈y′, PY y〉(E) =
〈x′, JY (PY y)〉(E) = 〈x′, P (E)(JY y)〉. So, f ∈ L1(〈y′, PY y〉) and\

Γ

f d〈y′, PY y〉 = 〈x′, P (f)(JY y)〉 = 〈y′, T y〉.

Lemma 1.2 implies that f ∈ L1(PY ).

R e m a r k 1.5. (i) If Y is a P -invariant subspace of X with the property
that it contains the limits of all of its convergent sequences, then L1(P ) ⊆
L1(PY ). For, if f ∈ L1(P ), we can choose a sequence {sn}

∞
n=1 ⊆ sim(Σ)

such that {P (sn)}∞n=1 strongly converges to P (f); see Lemma 1.2. Clearly
P (sn)Y ⊆ Y , for n ∈ N. Since P (sn) → P (f) in Ls(X) it follows that
P (f)Y ⊆ Y and hence f ∈ L1(PY ) by Lemma 1.4(ii).

(ii) The inclusion L1(P ) ⊆ L1(PY ) of (i) does not hold in general. Let
X be the Banach space L1([0, 1]) and, for each E ∈ Σ (the Borel subsets of
Γ = [0, 1]), let P (E) ∈ L(X) be the operator in L1([0, 1]) of multiplication
by χ

E
. Then L1(P ) = L∞([0, 1]) and, for each f ∈ L∞([0, 1]), the element

P (f) ∈ L(X) is the operator in L1([0, 1]) of multiplication by f . Let Y1 =
sim(Σ) considered as a subspace ofX. Then Y1 is P -invariant and L1(PY ) =
sim(Σ). So, if g ∈ L∞([0, 1]) is not a Σ-simple function, then g ∈ L1(P )
but g 6∈ L1(PY1

). We note that Y1 is even dense in X.

Let Y2 = L∞([0, 1]), considered as a (dense) subspace of X, in which
case L1(PY2

) = L∞([0, 1]). So, it can happen that L1(PY ) = L1(P ) for a
proper subspace Y of X.

(iii) If Y is a dense subspace of X, then the P -null sets coincide with
the PY -null sets. This is not so in general. In the notation of (ii), let Y
denote the closed subspace P ([0, 1/2])X, in which case Y is P -invariant.
Then every E ∈ Σ which is a subset of [1/2, 1] is PY -null. If E has positive
Lebesgue measure, then E is not P -null.

Let Λ be a topological Hausdorff space and Z ⊆ Λ. Then [Z] denotes
the set of all elements in Λ which are the limit of some sequence of points
from Z. A set Z ⊆ Λ is called sequentially closed if Z = [Z]. The sequen-

tial closure of a set Z ⊆ Λ is the smallest sequentially closed subset of Λ
which contains Z. Alternatively, let Z0 = Z. Let Ω1 be the smallest un-
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countable ordinal. Suppose that 0 < α < Ω1 and that Zβ has been defined
for all ordinals β satisfying 0 ≤ β < α. Define Zα = [

⋃
0≤β<α Zβ ]. Then⋃

0≤α<Ω1
Zα is the sequential closure of Z in Λ; it is equipped with the

relative topology.

Let X be a lcHs. The sequential completion, X̂, of X is defined to be the
sequential closure of X in its completion X. Of course, X̂ is the intersection
in X of all sequentially complete subspaces of X which contain X. It is
classical that typically the inclusions Xα ⊆ Xβ ⊆ X̂ are proper whenever
0 ≤ α < β < Ω1. Indeed, let X be the space of continuous, C-valued
functions on [0, 1] equipped with the topology of pointwise convergence.
Then X = C

[0,1] is the lcHs of all C-valued functions on [0, 1] equipped with
the “same topology”. For 1 ≤ α < Ω1, the space Xα consists of the Baire
functions of class α and X̂ is the space of all Borel measurable functions
on [0, 1]. This example shows that X need not be sequentially dense in X̂ ,

although it is always dense in X̂ (being dense in X). If X is metrizable, then

X̂ = [X] = X1 and X is sequentially dense in X̂. This can also occur in
non-metrizable spaces. Let X denote the Banach space c0 equipped with its
weak topology σ(c0, ℓ

1). Then X̂ is ℓ∞ equipped with its weak-star topology

σ(ℓ∞, ℓ1) and X is sequentially dense in X̂ , even thoughX is not metrizable.

Recall that a lcHs X is called quasicomplete if all closed and bounded
subsets are complete for the relative topology. The quasicompletion X̃ of
a lcHs X is defined to be the quasiclosure of X taken in its completion X;
see [7; §23.1]. Since convergent sequences are bounded it follows easily that

X̂ ⊆ X̃ ⊆ X and X is dense in each of X̂ , X̃ and X.

Lemma 1.6. Let X be a lcHs and T ∈ L(X). Then T has unique exten-

sions T̂ ∈ L(X̂), T̃ ∈ L(X̃) and T ∈ L(X).

P r o o f. For the existence and uniqueness of T̃ and T we refer to [7;

(4) in §23.1]. To establish the uniqueness and existence of T̂ it suffices to

show that X̂ is an invariant subspace of T as then T̂ is the restriction of
T to X̂. But, if x ∈ X1 then there is a sequence {xn}

∞
n=1 from X which

converges (in X) to x. The continuity of T implies that Txn = Txn → Tx
in X. Since Txn ∈ X, for n ∈ N, it follows that Tx ∈ X1, i.e. TX1 ⊆ X1.
This argument can be repeated via transfinite induction to establish that
TX̂α ⊆ X̂α, for each 0 ≤ α < Ω1, and hence TX̂ ⊆ X̂ .

R e m a r k 1.7. It follows from the uniqueness part of Lemma 1.6 that
if T, S ∈ L(X), then the continuous extension of TS to X̂, X̃ and X is the

operator T̂ Ŝ, T̃ S̃ and T S, respectively.

Lemma 1.8. Let Z be a lcHs and Y be a dense subspace of Z. Let

H ⊆ L(Y ) be equicontinuous. Suppose that each T ∈ L(Y ) has a (unique)
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extension TZ ∈ L(Z). Then HZ = {TZ : T ∈ H} is an equicontinuous

subset of L(Z).

P r o o f. Let V be a closed neighbourhood of 0 in Z. Since H is equicon-
tinuous at 0 in Y , there is an open neighbourhood U of 0 in Z such that
H(U ∩ Y ) ⊆ V ∩ Y . Now

HZ(U) = HZ(U ∩ Cl(Y )) ⊆ HZ(Cl(U ∩ Y ))

⊆ Cl(HZ(U ∩ Y )) ⊆ Cl(V ) = V,

where Cl denotes closure. Hence, HZ is equicontinuous.

2. σ-additive extensions. Throughout this section let X be a lcHs
and P : Σ → Ls(X) be a spectral measure defined on a σ-algebra Σ of

subsets of a set Γ . For each E ∈ Σ, let P̂ (E), P̃ (E) and P (E) denote

the continuous extension of P (E) from X to X̂ , X̃ and X, respectively;

see Lemma 1.6. It follows from Remark 1.7 that the set functions P̂ : Σ →
L(X̂), P̃ : Σ → L(X̃) and P : Σ → L(X) so defined are finitely additive and

multiplicative and assign the identity operator (in X̂, X̃ andX, respectively)
to Γ . This section is concerned with the following question: When are the
extended set functions P̂ , P̃ and P again spectral measures, i.e. when are
they σ-additive?

Proposition 2.1. Let X be a lcHs and P : Σ → Ls(X) be a spectral

measure. Then P̂ : Σ → Ls(X̂) is also a spectral measure.

P r o o f. For each x ∈ X0 = X, the set function P̂ x = Px : Σ → X̂ is
σ-additive. Suppose that α ∈ (0, Ω1) is an ordinal number such that P̂ x is

σ-additive in X̂ for every x ∈
⋃

0≤β<αXβ . Let x ∈ Xα. Choose a sequence

{xn}
∞
n=1 from

⋃
0≤β<α Xβ which converges to x in X̂ . For each E ∈ Σ we

have P̂ (E)xn → P̂ (E)x (by continuity of P̂ (E) ∈ L(X̂)), i.e. P̂ xn → P̂

setwise in X̂. Then the Vitali–Hahn–Saks theorem [4; IV, Theorem 10.6]

implies the σ-additivity of P̂ x. Hence, P̂ x is σ-additive in X̂ for each x ∈
Xα. Transfinite induction implies the σ-additivity of P̂ for each x ∈ X̂.

It turns out that the analogue of Proposition 2.1 fails for P̃ and P in
general.

Example 2.2. Let Σ = 2N and X be the space c00 of all functions
x : N → C which are finitely supported. Equip X with the weak topology
σ(c00, ℓ

∞) induced by the natural duality (of pointwise summation) between

c00 and ℓ∞. Then X̃ is the dual space (ℓ∞)′ of the (Banach) space ℓ∞,
equipped with the weak-star topology σ((ℓ∞)′, ℓ∞). Let P : Σ → Ls(X) be
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the spectral measure defined by

(2.1) P (E)x = xχ
E
, x ∈ X, E ∈ Σ.

For each E ∈ Σ, let Q(E) ∈ L(ℓ∞) be the projection given by Q(E) :

ϕ 7→ χ
E
ϕ, for ϕ ∈ ℓ∞. Then P̃ (E) ∈ L(X̃) is precisely the dual opera-

tor Q(E)′ : (ℓ∞)′ → (ℓ∞)′. There exists x0 ∈ X̃ such that the complex
measure E 7→ 〈x0, χE

〉, for E ∈ Σ, is not σ-additive [7; §31.1]. Since

the function 1 (constantly equal to 1 on N) belongs to ℓ∞ = (X̃)′ and

〈1, P̃ (E)x0〉 = 〈1, Q(E)′x0〉 = 〈x0,1χE
〉 = 〈x0, χE

〉, for E ∈ Σ, it follows

from the Orlicz–Pettis theorem that the set function P̃ x0 is not σ-additive
and, hence, neither is P̃ : Σ → Ls(X̃). Since X̃ ⊆ X it follows that
P : Σ → Ls(X) is also not σ-additive.

An operator-valued measure Q : Σ → Ls(X) is called equicontinuous if
its range Q(Σ) = {Q(E) : E ∈ Σ} is an equicontinuous subset of L(X).

The following result provides a sufficient condition for the σ-additivity of P̃
and P .

Proposition 2.3. Let P : Σ → Ls(X) be an equicontinuous spectral

measure. Then both P̃ : Σ → Ls(X̃) and P : Σ → Ls(X) are also spectral

measures (i.e. σ-additive).

P r o o f. On the equicontinuous subset P̃ (Σ) of L(X̃) (cf. Lemma 1.8),

the pointwise convergence topologies over X and X̃ coincide [8; (1) in §39.4].

Since X is dense in X̃ , the set function P̃ is σ-additive in Ls(X̃) because

the X̃-valued measure P̃ x = Px is σ-additive for each x ∈ X. A similar
proof applies to P in X.

R e m a r k 2.4. The equicontinuity in Proposition 2.3 is not necessary.
Let X = (c0, σ(c0, ℓ

1)), in which case X̃ = (ℓ∞, σ(ℓ∞, ℓ1)). For E ∈ 2N,
define a projection P (E) ∈ L(X) by P (E)x = xχ

E
, for x ∈ X. Then

P : 2N → Ls(X) so defined is a spectral measure. For each E ∈ 2N, the

projection P̃ (E) ∈ L(X̃) is given by P̃ (E)ϕ = χ
E
ϕ, for ϕ ∈ X̃ , and it

is routine to verify that P̃ : 2N → Ls(X̃) is σ-additive. Since P̃ is not
equicontinuous [10; Proposition 4(i)] neither is P (by Lemma 1.8).

Since a subset of a lcHs X is bounded iff it is weakly bounded the
Orlicz–Pettis theorem, together with the fact that every complex measure
has bounded range, implies that the range of any measure Q : Σ → Ls(X) is
a bounded subset of the lcHs Ls(X). If X is barrelled, then every bounded
subset of Ls(X) is equicontinuous [8; (2) in §39.3], and hence every mea-
sure with values in Ls(X) is necessarily equicontinuous. So, the hypothesis
of Proposition 2.3 holds in all barrelled spaces. Unfortunately, the class of
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barrelled spaces which are not complete or quasicomplete is rather restric-
tive. A more extensive class of spaces is the quasibarrelled spaces [7; Ch.6];
it includes all bornological lcH-spaces, and hence all metrizable lcH-spaces
[7; §28.1]. For further examples of the non-metrizable quasibarrelled spaces
we refer to [7], for example. Accordingly, the following result shows that
Proposition 2.3 has some generality.

Proposition 2.5. Let X be a quasibarrelled lcHs and P : Σ → Ls(X)
be a spectral measure. Then P is necessarily equicontinuous.

P r o o f. This follows from Lemma 1.3 and [8; (3) p. 137].

Proposition 2.3 provides a sufficient condition on a spectral measure
P : Σ → Ls(X) which ensures that P̃ : Σ → Ls(X̃) is also σ-additive. We
end this section with another sufficient condition of a different kind which is
simple but quite effective in some cases. A subspace Y of a lcHs Z is called
sequentially dense if [Y ] = Z.

Proposition 2.6. Let X be a lcHs such that X is sequentially dense in

X̃ (resp. X). Then, for every spectral measure P in X, the set function P̃

(resp. P ) is a spectral measure in X̃ (resp. X).

P r o o f. The sequential denseness of X in X̃ means that [X] = X̃, and

hence X̃ ⊆ X̂ as [X] ⊆ X̂ . Since always X̂ ⊆ X̃ we have X̂ = X̃ and the
result follows from Proposition 2.1. The proof for X is similar.

If X is a metrizable lcHs, then X is sequentially dense in X̃ = X̂ = X.
It is a consequence of Goldstein’s theorem that if X denotes a Banach space
Y equipped with its weak topology σ(Y, Y ′), then X is non-metrizable (if

dim(Y ) = ∞) and X̃ is precisely Y ′′ equipped with its weak-star topol-
ogy σ(Y ′′, Y ′). Non-trivial spectral measures in such spaces X are never
equicontinuous [10; Proposition 4], and so Proposition 2.3 is not applicable

to P̃ . But, if Y ′ is norm separable, then X is sequentially dense in X̃ and
so Proposition 2.6 is applicable to any spectral measure in X. However,
with Y = ℓ1 (so Y ′ is not separable) we see that X = X̂ is sequentially

complete and so X is not sequentially dense in X̃ = ((ℓ∞)′, σ((ℓ∞)′, ℓ∞));
this is the point on which Example 2.2 is based. Fortunately, this example
is not a paradigm, i.e. the sequential denseness of X in X̃ is not a necessary
condition for P̃ to be σ-additive.

To see this, let Y = C
[0,1] be the complete lcHs of all C-valued functions

on Γ = [0, 1], equipped with the topology of pointwise convergence on Γ ,
and Σ be the Borel subsets of Γ . Let X be the space of those ϕ ∈ Y for
which {w ∈ Γ : ϕ(w) 6= 0} is a countable set. Then X is sequentially

complete. Moreover, X̃ = Y since each ϕ ∈ Y is the limit of the bounded

net {ϕχ
F
}F∈F ⊆ X, where F is the family of finite subsets of Γ directed



124 S. OKADA AND W. J. RICKER

by inclusion. Since X̂ = X is a proper subspace of Y it is clear that X
is not sequentially dense in X̃ = Y . However, for the spectral measure
P : Σ → Ls(X) given by P (E)ϕ = χ

E
ϕ, for E ∈ Σ and ϕ ∈ X, it is clear

that P̃ : Σ → Ls(X̃) is σ-additive.

It can be argued that the above example is already a consequence of
Proposition 2.3 since P is equicontinuous. To produce an example where
neither Proposition 2.3 nor 2.6 apply we proceed as follows; the notation
is still from the previous paragraph. Let ℓ2σ denote the (non-separable)
Hilbert space ℓ2(Γ ) equipped with its weak topology. Then the product
space Z = ℓ2σ × X is sequentially complete (as ℓ2σ is quasicomplete and

X is sequentially complete) and its quasicompletion is Z̃ = ℓ2σ × Y (as

X̃ = Y ). Since X is not sequentially dense in Y it follows that Z is not

sequentially dense in Z̃ and so Proposition 2.6 is not applicable. Define a
spectral measure R : Σ → Ls(ℓ

2
σ) by R(E)ϕ = χ

E
ϕ, for E ∈ Σ and ϕ ∈ ℓ2σ,

in which case R is not equicontinuous [10; Proposition 4]. Accordingly, the
spectral measure Q : Σ → Ls(Z) given by Q(E)(ϕ,ψ) = (R(E)ϕ,P (E)ψ),
for E ∈ Σ and (ϕ,ψ) ∈ Z, also fails to be equicontinuous. So, Proposition

2.3 is also not applicable. However, the set function Q̃ : Σ → Ls(Z̃), which

is given by Q̃(E)(ϕ,ψ) = (R(E)ϕ, P̃ (E)ψ) for E ∈ Σ and (ϕ,ψ) ∈ Z̃, is
clearly σ-additive.

In conclusion, we remark that Propositions 2.1, 2.3, 2.5 and 2.6 actually
hold for arbitrary operator-valued measures (same proof), not just spectral
measures.

3. The L1-space of extended measures. Let X be a lcHs and
P : Σ → Ls(X) be a spectral measure defined on a σ-algebra Σ of subsets
of a set Γ . The main aim of this section is to identify the relationship
between L1(P ) and the various spaces of integrable functions L1(P̂ ), L1(P̃ )

and L1(P ), which satisfy the inclusions L1(P ) ⊆ L1(P̃ ) ⊆ L1(P̂ ) whenever

P̃ and P are σ-additive (cf. Lemma 1.2).

Let X be a lcHs and T ∈ L(X). Recall that T̂Xα ⊆ Xα for every
ordinal number α ∈ [0, Ω1); see the proof of Lemma 1.6. Let T (α) ∈ L(Xα)

denote the restriction of T̂ to Xα, for each α ∈ [0, Ω1). Given a spectral
measure P : Σ → Ls(X) and α ∈ [0, Ω1), let P (α) : Σ → L(Xα) be

defined by P (α)(E) = P (E)(α), for each E ∈ Σ. Since Xα is P̂ -invariant it
follows from Lemma 1.4 and Proposition 2.1 that P (α) is a spectral measure.
Moreover, Remark 1.5(iii) and the density of X in both Xα and X̂ imply

that L∞(P ) = L∞(P̂ ) = L∞(P (α)), for every α ∈ [0, Ω1).

Lemma 3.1. If P is a spectral measure in X, then L1(P ) ∩ L∞(P ) ⊆
L1(P (1)).



CONTINUOUS EXTENSIONS OF SPECTRAL MEASURES 125

P r o o f. Fix x ∈ X1. Let f ∈ L1(P )∩L∞(P ). We show that f is P (1)x-
integrable. Choose vectors xn ∈ X, for n ∈ N, converging to x in X1. Since
f ∈ L∞(P̂ ) it is clear that f ∈ L∞(P̂ x), and hence f ∈ L1(P̂ x) by sequential

completeness of X̂ [6; II, Lemma 3.1]. Choose functions sk ∈ sim(Σ) which
satisfy |sk| ≤ |f |, for k ∈ N, and converge uniformly to f on Γ . By the

dominated convergence theorem applied to P̂ x in the sequentially complete
space X̂ [6; II, Theorem 4.2], it follows that

T
E
sk dP̂x→

T
E
f dP̂ x in X̂ , as

k → ∞, for each E ∈ Σ. Since P̂ (F )x = limn→∞ P (F )xn, for F ∈ Σ, it is

clear that
T
E
sk dP̂x ∈ X1, for k ∈ N, and that P̂ x takes its values in X1

and coincides with P (1)x. Accordingly,
T
E
f dP̂x ∈ X2 for each E ∈ Σ. It

follows by the remark after Lemma 1.1 that f is actually P (2)x-integrable
and

T
E
f dP̂ x =

T
E
f dP (2)x, for E ∈ Σ. But the measures Pxn for n ∈ N

(considered as being X2-valued) converge setwise to P (2)x as n → ∞. It
follows from Lemma 1.1, applied in X2, that

(2.2) lim
n→∞

\
E

f dPxn =
\
E

f dP (2)x, E ∈ Σ.

But {
T
E
f dPxn}

∞
n=1 ⊆ X (as f ∈ L1(P )) and we see from (2.2) that actuallyT

E
f dP (2)x ∈ X1, for E ∈ Σ. Since P (2)x = P (1)x (as x ∈ X1) it follows

again by the remark after Lemma 1.1 that f ∈ L1(P (1)x). Hence, the
right-hand side of (2.2) is equal to

T
E
f dP (1)x, for E ∈ Σ. Since P (f)(1) is

continuous and
T
Γ
f dPxn = P (f)xn, for n ∈ N, it follows that the left-hand

side of (2.2) equals P (f)(1)x. Since x ∈ X1 is arbitrary Lemma 1.2 implies
that f ∈ L1(P (1)).

It may be interesting to note that, in general, L∞(P ) need not be con-
tained in L1(P ); consider the spectral measure PY1

acting in Y1 of Remark
1.5(ii).

We come to one of the main results of this section.

Proposition 3.2. If P : Σ → Ls(X) is a spectral measure, then L1(P ) ⊆

L1(P̂ ) and

(2.3) L1(P ) = {f ∈ L1(P̂ ) : P̂ (f)X ⊆ X}.

Moreover , if f ∈ L1(P ), then

(2.4) P̂ (fχ
E
) = (P (fχ

E
))̂ , E ∈ Σ.

P r o o f. To establish the inclusion L1(P ) ⊆ L1(P̂ ), let f ∈ L1(P ).
Suppose that α ∈ (0, Ω1) is an ordinal number such that f ∈ L1(P (β)) and
P (β)(fχ

E
) = P (fχ

E
)(β) for every E ∈ Σ, whenever 0 ≤ β < α. Let Y

be the P̂ -invariant subspace
⋃

0≤β<αXβ of X̂. The restriction of P̂ to Y
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is denoted by P̂Y . Then the spectral measure P̂Y : Σ → Ls(Y ) satisfies

(P̂Y )(1) = P (α) because Y1 = [Y ] = Xα.

The claim is that f ∈ L1(P̂Y ). In fact, let T ∈ L(Y ) denote the unique
extension of P (f) to Y . Fix y ∈ Y and choose β ∈ [0, α) such that y ∈

Xβ . Since P̂Y y = P (β)y (as Y -valued measures) and f ∈ L1(P (β)) by the

inductive hypothesis, it follows that f is P̂Y y-integrable. Moreover, since
P (β)(f)y = Ty as elements of Y we have Ty = P (β)(f)y =

T
Γ
f dP (β)y =T

Γ
f dP̂Y y. Lemma 1.2 implies that f ∈ L1(P̂Y ).

For each n ∈ N, let A(n) = {γ ∈ Γ : |f(γ)| ≤ n}. Since f ∈ L1(P̂Y ) it

follows that fn = fχ
A(n)

belongs to L1(P̂Y )∩L∞(P̂Y ), for n ∈ N. Lemma 3.1

ensures that fn is (P̂Y )(1)-integrable, i.e. fn ∈ L1(P (α)), for n ∈ N. Fix
x ∈ Xα. We claim that

(2.5) lim
n→∞

\
Γ

fn dP
(α)x = P (f)(α)x.

Let yk ∈ Y , for k ∈ N, be a sequence converging to x in Xα = [Y ]. If J :
Y → Xα is the natural injection, then the sequence of Xα-valued measures
J ◦P̂Y yk, for k ∈ N, is setwise convergent to P (α)x. Since P (α)yk = J ◦P̂Y yk

as Xα-valued measures, for k ∈ N, it follows from fn ∈ L1(P (α)) that

fn is J ◦ P̂Y yk-integrable and P (α)x-integrable, for k ∈ N, and hence, by
Lemma 1.1,

(2.6) lim
k→∞

\
Γ

fn d(J ◦ P̂Y yk) =
\
Γ

fn dP
(α)x, n ∈ N.

Since f ∈ L1(P̂Y ) we have f ∈ L1(J ◦ P̂Y yk), for each k ∈ N, and so the

dominated convergence theorem applied to J ◦ P̂Y yk, considered as taking
its values in the sequentially complete space X̂, implies that

(2.7) lim
n→∞

\
Γ

fn d(J ◦ P̂Y yk) =
\
Γ

f d(J ◦ P̂Y yk) = J ◦ P̂Y (f)yk, k ∈ N.

Of course, the value of the limit (2.7) lies in the subspace Y of X̂. Conse-
quently,

(2.8) lim
k→∞

lim
n→∞

\
Γ

fn d(J ◦ P̂Y yk) = lim
k→∞

J ◦ P̂Y (f)yk = P (f)(α)x.

Once we show that the limit in (2.7) is uniform with respect to k ∈ N, we
can exchange the order of limits in (2.8), by applying [4; I, Lemma 7.6] in
the completion of the normed space X/p−1({0}), for each p ∈ P(X), so
that (2.5) will follow from (2.6). But the sequence of indefinite integrals

f(J ◦ P̂Y yk) : Σ → Xα, for k ∈ N, is setwise convergent, and hence they
are uniformly σ-additive with respect to k ∈ N by the Vitali–Hahn–Saks
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theorem. Accordingly,

lim
n→∞

(\
Γ

fn d(J ◦ P̂Y yk)−
\
Γ

f d(J ◦ P̂Y yk)
)

= lim
n→∞

\
Γ\A(n)

f d(J ◦ P̂Y )yk = 0

uniformly in k ∈ N, which establishes (2.5).

Since fn → f pointwise as n → ∞, and (2.5) holds, Lemma 1.2 implies
that f ∈ L1(P (α)). So, transfinite induction establishes that f ∈ L1(P (α))

for every α ∈ [0, Ω1). Since X̂ =
⋃

0≤α<Ω1
Xα it follows by an argument

similar to that where we established f ∈ L1(P̂Y ) that f ∈ L1(P̂ ).

Finally, (2.3) and (2.4) follow from Lemma 1.4 as P is the restriction of

P̂ to X.

Corollary 3.3. Let X be a normed space and P : Σ → Ls(X) be a

spectral measure. Then L1(P ) ⊆ L∞(P ).

P r o o f. The sequential completion X̂ of X is a Banach space, and
hence L1(P̂ ) = L∞(P̂ ); see [5; XVIII, Theorem 2.11(c)] or [18; (1), p. 436],

for example. Since L∞(P ) = L∞(P̂ ) the conclusion follows from Proposi-
tion 3.2.

Whether or not the inclusion L1(P ) ⊆ L1(P̂ ) is strict depends on P .

Indeed, for the spectral measure PY1
in Remark 1.5(ii) we see that P̂Y1

is

the spectral measure P given there, and hence L1(PY1
) ⊆ L1(P̂Y1

) is a strict
inclusion. However, for the spectral measure PY2

in Remark 1.5(ii) we see

that P̂Y2
is also the spectral measure P given there (note that Ŷ1 = Ŷ2), and

hence L1(PY2
) = L1(P̂Y2

).

Lemma 3.4. Let P : Σ → Ls(X) be an equicontinuous spectral mea-

sure. Then, for f ∈ L1(P ), the set {P (g) : |g| ≤ |f |, g ∈ L1(P )} is an

equicontinuous part of L(X).

P r o o f. Let r ∈ P(X). By the equicontinuity of P there is q ∈ P(X)
such that r(P (E)x) ≤ q(x), for x ∈ X and E ∈ Σ. Since P (f) ∈ L(X)
there is p ∈ P(X) such that q(P (f)x) ≤ p(x), for x ∈ X. It follows, for
x ∈ X and E ∈ Σ, that

(2.9) r(P (E)P (f)x) ≤ q(P (f)x) ≤ p(x).

Let g ∈ L1(P ) satisfy |g| ≤ |f |. Then

(2.10) r(P (g)x) = r
(\

Γ

g d(Px)
)
≤ sup

x′∈U0
r

\
Γ

|g| d|〈x′, Px〉|,

where U0
r is the polar of the closed r-unit ball [6; II, Lemmas 1.2 & 2.2].



128 S. OKADA AND W. J. RICKER

But the right-hand side of (2.10) does not exceed

sup
x′∈U0

r

\
Γ

|f | d|〈x′, Px〉 ≤ 4 sup
E∈Σ

r
( \

E

f d(Px)
)

(2.11)

= 4 sup
E∈Σ

r(P (E)P (f)x);

see [6; II, Lemmas 1.2 & 2.2] for the inequality in (2.11). Combining (2.9),
(2.10) and (2.11) gives r(P (g)x) ≤ 4p(x), for x ∈ X. Since g ∈ L1(P )
satisfying |g| ≤ |f | is arbitrary the result follows.

The next result is concerned with the quasicompletion and completion;
in view of Propositions 2.3 and 2.5 it has some generality.

Proposition 3.5. Let P : Σ → Ls(X) be an equicontinuous spectral

measure. Then the equicontinuous spectral measure P̃ : Σ → Ls(X̃) satisfies

L1(P ) ⊆ L1(P̃ ) and

(2.12) L1(P ) = {f ∈ L1(P̃ ) : P̃ (f)X ⊆ X}.

A similar result holds for P : Σ → Ls(X).

P r o o f. To establish L1(P ) ⊆ L1(P̃ ), let f ∈ L1(P ). By Lemma 1.2, it
is possible to choose functions sn ∈ sim(Σ), for n ∈ N, converging pointwise
to f , such that {P (sn)}∞n=1 strongly converges to P (f). Moreover, it is
possible to choose sn such that |sn| ≤ |f |, for n ∈ N [11; Proposition 1.2].
By Lemma 3.4 the set H = {P (sn) : n ∈ N} ∪ {P (f)} is an equicontinuous

part of L(X). Then H̃ = {T̃ : T ∈ H} is an equicontinuous subset of

L(X̃) by Lemma 1.8. Since X is dense in X̃, the sequence {P̃ (sn)}∞n=1

strongly converges to (P (f))̃ in Ls(X̃) because P̃ (sn) is the continuous

extension of P (sn) to X̃ , for n ∈ N, and because on the equicontinuous set

H̃ the pointwise convergence topologies over X and X̃ coincide. Lemma 1.2
implies that f ∈ L1(P̃ ). The identity (2.12) is a consequence of Lemma 1.3

as P is the restriction of P̃ .

A similar proof applies to P : Σ → Ls(X).

Proposition 3.6. Let X be a lcHs such that X is sequentially dense in

X̃. Then, for every spectral measure P in X, we have L1(P ) ⊆ L1(P̃ ) and

(2.12) holds. A similar result holds for P if X is sequentially dense in X.

P r o o f. As in the proof of Proposition 2.6 it follows that X̃ = X̂ and so
Proposition 3.2 implies the conclusion.

We now present a result related to Proposition 3.5 (cf. Proposition
3.8) without the equicontinuity requirement. First we need an alternative
description of the quasicompletion. Given a lcHs X let X[0] = X and X[1]
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denote the linear space of all elements in X which are the limit of some
bounded net of elements from X. Suppose that α > 0 is an ordinal number
and X[β] has been defined for all ordinals β satisfying 0 ≤ β < α. Define
X[α] = (

⋃
0≤β<αX[β])[1]. By considering the cardinality of X it follows that

there must exist an ordinal number Ω such that X[Ω] =
⋃

0≤β<Ω X[β]. If

Ω(X) is the smallest such ordinal number, then X̃ =
⋃

0≤α<Ω(X)X[α]. It

turns out that T̃X[α] ⊆ X[α] for every ordinal number α ∈ [0, Ω(X)). Let

T [α] ∈ L(X[α]) be the restriction of T̃ to X[α], for each α ∈ [0, Ω(X)).

Given a spectral measure P : Σ → Ls(X) and α ∈ [0, Ω(X)), let P [α] :
Σ → L(X[α]) be defined by P [α](E) = P (E)[α], for E ∈ Σ. Since X[α] is

P̃ -invariant, Lemma 1.4 implies that if P̃ : Σ → Ls(X̃) happens to be σ-
additive, then P [α] is a spectral measure. Moreover, Remark 1.5(iii) and the

density of X in both X[α] and X̃ imply that L∞(P ) = L∞(P̃ ) = L∞(P [α]),
for every α ∈ [0, Ω(X)).

Lemma 3.7. Let P : Σ → Ls(X) be a spectral measure. If P̃ : Σ → Ls(X̃)

is also a spectral measure (i.e. P̃ is σ-additive), then L1(P ) ∩ L∞(P ) ⊆
L1(P [1]).

P r o o f. Fix x ∈ X[1]. Let f ∈ L1(P ) ∩ L∞(P ). Choose a bounded
Cauchy net {xα}α∈A ⊆ X converging to x in X[1]. The measures Pxα

for α ∈ A (considered as being X[2]-valued) converge setwise to P [2]x.
Since B = {xα}α∈A is a bounded subset of X ⊆ X[2] it follows from
Lemma 1.3 that sup{p(P (E)xα) : E ∈ Σ, α ∈ A} < ∞, for each p ∈
P(X[2]). An argument as in the proof of Lemma 3.1 (via Lemma 1.1)

shows that limα

T
E
f dPxα =

T
E
f dP [2]x, for E ∈ Σ. By noting thatT

E
f dPxα = P (E)P (f)xα, α ∈ A, is a bounded net in X it follows that

actually
T
E
f dP [2]x ∈ X[1], for E ∈ Σ, and the proof can be completed as

for Lemma 3.1.

Proposition 3.8. Let P : Σ → Ls(X) be a spectral measure such that

P̃ : Σ → Ls(X̃) is also a spectral measure. Then L1(P ) ∩ L∞(P ) ⊆ L1(P̃ ).

P r o o f. Let f ∈ L1(P ) ∩ L∞(P ). Suppose that α ∈ (0, Ω(X)) is an
ordinal number such that f ∈ L1(P [β]) whenever 0 ≤ β < α. An argument

as in the proof of Proposition 3.2 (first 2 paragraphs) shows that f is P̃Y -

integrable in Ls(Y ), where Y is the P̃ -invariant subspace
⋃

0≤β<α X[β] of X̃ .

Since Y[1] = X[α] and (P̃Y )[1] = P [α] with f ∈ L∞(P̃Y ) ∩ L1(P̃Y ), it follows

from Lemma 3.7 applied to P̃Y that f is P [α]-integrable. Accordingly, it
follows by transfinite induction that f ∈ L1(P̃ ).

We give a non-trivial application of Proposition 3.8.
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Example 3.9. Let W be a normed space and X = Wσ denote W
equipped with its weak topology. SinceW has its Mackey topology [7; §21.5],
it follows that L(W ) = L(X) as vector spaces [7; (6) in §21.4]. Moreover,
Ls(W ) and Ls(X) have the same continuous dual space. Hence, a multiplica-
tive set function P : Σ → Ls(X) is a spectral measure iff P‖·‖ : Σ → Ls(W )
is a spectral measure, where P‖·‖ denotes P interpreted as taking its values
in Ls(W ). Moreover, Lemma 1.2 implies that L1(P ) = L1(P‖·‖) as vector
spaces. By Corollary 3.3 we have L1(P‖·‖) ⊆ L∞(P‖·‖) = L∞(P ), showing
that L1(P ) ⊆ L∞(P ). Then Proposition 3.8 implies the following

Fact. Let W be a normed space, X = Wσ and P : Σ → Ls(X) be a

spectral measure. If P̃ : Σ → Ls(X̃) is σ-additive, then L1(P ) ⊆ L1(P̃ ).

Note that P̃ may not be σ-additive in general; see Example 2.2. The
point of the above Fact is that P : Σ → Ls(X) is equicontinuous only
in trivial cases. Indeed, if P (Σ) is an infinite subset of Ls(X), then P is
not equicontinuous. To see this, note that the extended spectral measure
(P‖·‖)̂ acting in the Banach space Ŵ also has the property that its range

is an infinite subset of L(Ŵ ). So, if (P‖·‖)σ̂ denotes (P‖·‖ )̂ considered as

taking its values in Ls((Ŵ )σ), then (P‖·‖)σ̂ fails to be equicontinuous [10;

Proposition 4(ii)]. Since X is norm dense in Ŵ it is also dense in (Ŵ )σ .

So, if P is equicontinuous, then Lemma 1.8 (with Y = X, Z = (Ŵ )σ and
H = P (Σ)) implies that (P‖·‖)σ̂ is equicontinuous, which is not the case.
Hence P is not equicontinuous.

It is relevant, perhaps, to make some comments concerning a related
point. For the spectral measure PY1

mentioned in the comments after
Corollary 3.3 we note that its L1-space is precisely sim(Σ), which is rather

poor from the point of view of analysis. However, the L1-space of P̂Y1
is

L∞([0, 1]), which is significantly larger; the difference is that Ŷ1 is sequen-
tially complete whereas Y1 is not. For a general vector measure m : Σ → Z
it was noted that L∞(m) ⊆ L1(m) whenever Z is a sequentially complete
lcHs; see (1.1). To apply this to spectral measures P : Σ → Ls(X) requires
the sequential completeness of the lcHs Ls(X).

So, the question is: How are the completeness properties of a lcHs X
reflected in those of Ls(X)? This is particularly relevant to this note since

the spaces X̂, X̃ and X are sequentially complete, quasicomplete and com-
plete, respectively. It is relatively straightforward to exhibit examples of
sequentially complete and quasicomplete spaces X for which Ls(X) fails to
be sequentially complete [15]. However, we have been unable to find an
explicit example in the literature of a complete lcHs X for which Ls(X) is
not sequentially complete. We conclude this note with such an example.
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Example 3.10. Given a lcHs Y let τf be the finest topology on Y ′ which
agrees with the weak-star topology σ(Y ′, Y ) on equicontinuous subsets of
Y ′. In general, τf is not a lc-topology.

Fact 1 ([7; §21.9 & §21.10]). If Y is a Fréchet lcHs, then τf is the

topology of uniform convergence on the compact subsets of Y . In particular ,
Y = (Y ′

τf
)′ and τf is a lcH-topology , where Y ′

τf
denotes Y ′ equipped with the

topology τf .

So, let Y be a Fréchet lcHs. By Krein’s theorem the family S of all
compact sets in Y is saturated (i.e. the closed convex hull of a compact
set is again compact). So, Fact 1 implies that τf is the topology of uniform
convergence on members of S. Let ϕ : Y → C be any linear functional which
is continuous on each E ∈ S, where E has the relative (metric) topology
from Y . Since Y is metrizable, to show that ϕ ∈ Y ′ it suffices to show
that ϕ(yn) → 0 in C whenever yn → 0 in Y . But E = {0} ∪ {yn}

∞
n=1 is

then a member of S and so ϕ(yn) → 0 by the assumption on ϕ. Applying
Grothendieck’s completeness theorem [7; §21.9] establishes the following

Fact 2. If Y is a Fréchet lcHs, then Y ′
τf

is a complete lcHs.

Now, let Y be the Banach space c0. By Facts 1 & 2 the lcHs X = Y ′
τf

is
complete. Let en denote the standard nth basis vector in c0, for n ∈ N. Fix
any non-zero vector ξ ∈ ℓ1 = X and define linear operators Tn : X → X
by Tnx = 〈en, x〉ξ, for x ∈ X. Since en ∈ X ′, for each n ∈ N, it follows
that {Tn}

∞
n=1 ⊆ L(X). By using the fact that the seminorms generating

the topology in Ls(X) have the form T 7→ supy∈B |〈y, Tx〉|, for some x ∈ X
and norm compact set B ⊆ c0 = Y , it is routine to verify that {Tn}

∞
n=1

is a Cauchy sequence in Ls(X). For each x ∈ X, we have Tnx → Tx in
X, where T : X → X is the linear operator given by Tx = 〈1, x〉ξ, for
x ∈ X. Since the constant function 1 (on N) belongs to ℓ∞\c0 we see that
T 6∈ L(X), i.e. {Tn}

∞
n=1 has no limit in Ls(X). This establishes that Ls(X)

is not sequentially complete.
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