COLLOQUIUM MATHEMATICUM

VOL. 71

1996

NO. 1

ON STRONGLY SUM-FREE SUBSETS OF ABELIAN GROUPS

BY

TOMASZ ŁUCZAK AND TOMASZ SCHOEN (POZNAŃ')

In his book on unsolved problems in number theory [1] R. K. Guy asks whether for every natural l there exists $n_0 = n_0(l)$ with the following property: for every $n \ge n_0$ and any n elements a_1, \ldots, a_n of a group such that the product of any two of them is different from the unit element of the group, there exist l of the a_i such that $a_{i_j}a_{i_k} \ne a_m$ for $1 \le j < k \le l$ and $1 \le m \le n$. In this note we answer this question in the affirmative in the first non-trivial case when l = 3 and the group is abelian, proving the following result.

THEOREM. Any finite subset S of an abelian group G with card $S \ge 48$ and the property that $st \ne 1$ for every $s, t \in S$ contains three different elements a, b, c such that $ab, ac, bc \notin S$.

Let us remark that without the assumption that S is finite the statement is no longer valid: it is enough to consider the set of natural numbers viewed as a subset of \mathbb{Z} .

In the proof of the Theorem we use some notions from graph theory. Let G be an abelian group and let S be a finite subset of G with card S = n. If for some $x, y, z \in S$ we have xz = y we connect elements x, y by an arc \overline{xy} coloured with colour z. We denote the coloured digraph with vertex set S obtained in this way by $\vec{H} = \vec{H}(G, S)$. (Thus, $\vec{H}(G, S)$ is the subgraph induced by S in the Cayley digraph of G based on S.) We denote by $N_{-}(x)$ and $N_{+}(x)$ the in- and out-neighbourhoods of a vertex x, i.e.

 $N_{-}(x) = \{ y \in S : \overline{yx} \text{ is an arc of } \vec{H} \},\$ $N_{+}(x) = \{ y \in S : \overline{xy} \text{ is an arc of } \vec{H} \},\$

and set $d_{-}(x) = |N_{-}(x)|, d_{+}(x) = |N_{+}(x)|$ and $\delta_{+} = \min_{x} d_{+}(x)$.

Both authors were partially supported by US-Polish Research Grant #93113003 and KBN grant 2 P03A 023 09.

¹⁹⁹¹ Mathematics Subject Classification: 05E15, 05B10, 20K99.

If for every $s, t \in S$ we have $st \neq 1$, then \vec{H} contains no directed cycles of length two, i.e. for no pair $x, y \in S$ both arcs \overline{xy} and \overline{yx} belong to \vec{H} . We call a directed graph with this property a *proper* directed graph. Note that, in particular, each proper directed graph on *n* vertices contains at most $\binom{n}{2}$ arcs.

We deduce the Theorem from the following two facts, corresponding to the cases when \vec{H} is sparse and dense respectively.

CLAIM 1. If S is such that $\vec{H} = \vec{H}(G,S)$ is a proper directed graph on n vertices with $\delta_+ < (n - \sqrt{n} - 2)/2$, then S contains three different elements a, b, c such that $ab, ac, bc \notin S$.

Proof. Choose $a \in A$ in such a way that $d_+(a) = \delta_+$ and let X denote the set of all colours of arcs \overline{ax} which belong to \vec{H} . Consider the set $Y = S \setminus (\{a\} \cup X)$. Since for every $y \in Y$ we have $ay \notin S$, it is enough to find $b, c \in Y$ such that $bc \notin S$.

Suppose that such a pair b, c does not exist. Then, for every $b, c \in Y$, \vec{H} must contain an arc \vec{bx} coloured with c, in particular, $d_+(b) \ge |Y| - 1$. Hence \vec{H} contains δ_+ arcs starting at a, δ_+^2 arcs with tails in X and at least $|Y|(|Y|-1) = (n - \delta_+ - 1)(n - \delta_+ - 2)$ starting at vertices from Y. But elementary calculations show that if $\delta_+ < (n - \sqrt{n} - 2)/2$ then

$$\delta_+ + \delta_+^2 + (n - \delta_+ - 1)(n - \delta_+ - 2) > \binom{n}{2},$$

which contradicts the assumption that \vec{H} is proper.

CLAIM 2. If S is such that $\vec{H} = \vec{H}(G,S)$ is a proper directed graph on $n \ge 48$ vertices with $\delta_+ \ge (n - \sqrt{n} - 2)/2$, then S contains three different elements a, b, c such that abc = 1.

Proof. Assume that $\vec{H} = \vec{H}(G, S)$ is proper and $\delta_+ \ge (n - \sqrt{n} - 2)/2$. We show that \vec{H} contains a directed cycle of length three with all arcs coloured with different colours.

Let $x \in S$ be chosen in such a way that $d_{-}(x) \geq \delta_{+}$ and let \overline{A} be the set of all edges leading from $N_{+}(x)$ to $N_{-}(x)$. Then, clearly,

$$|\vec{A}| \ge |N_{+}(x)|\delta_{+} - {|N_{+}(x)| \choose 2} - |N_{+}(x)|(n - |N_{+}(x)| - |N_{-}(x)| - 1).$$

Now remove from \vec{A} all arcs $\vec{y}\vec{z}$ which are such that either $\vec{x}\vec{y}$ and $\vec{y}\vec{z}$, or $\vec{y}\vec{z}$ and $\vec{z}\vec{x}$ are of the same colour. Clearly the set \vec{A}' obtained in this way contains at least $|\vec{A}| - |N_+(x)| + |N_-(x)|$ arcs. We claim that for n large enough the size of \vec{A}' is greater than $(|N_+(x)| + |N_-(x)|)/2$. Indeed, from the fact that $\delta_+ \leq |N_+(v)| \leq n - \delta_+$ and $\delta_+ \geq (n - \sqrt{n} - 2)/2$, it follows that $|\vec{A}'| \geq |\vec{A}| - O(n) \geq n^2/8 - O(n\sqrt{n})$ and so it is larger than n/2 if

 $n \ge n_0$ for some sufficiently large n_0 (an elementary but somewhat tedious computation show that it is enough to take $n_0 = 48$).

Thus, $|\vec{A'}| > (|N_+(x)| + |N_-(x)|)/2$ and either two arcs from $\vec{A'}$ have a common tail or two of them have a common head. Consider the former case; the latter can be dealt with in an analogous way. Then there exist $y, z_1, z_2 \in S$ such that the arcs $\vec{xy}, \vec{yz_1}, \vec{yz_2}, \vec{z_1x}, \vec{z_2x}$ belong to \vec{H} and moreover, for i = 1, 2, the arc $\vec{yz_i}$ is coloured with a colour different from that of \vec{xy} and $\vec{z_ix}$. Note that no vertex of \vec{H} is the head of two arcs coloured with the same colour and so at least one of the arcs $\vec{z_1x}$ and $\vec{z_2x}$, say $\vec{z_1x}$, has colour different from that of \vec{xy} . But then all arcs of a directed cycle xyz_1 are coloured with different colours, say, a, b and c, and abc = 1.

Proof of Theorem. Note that if for some $x_1x_2x_3 \in S$ we have $x_1x_2x_3 = 1$, then none of the products x_1x_2 , x_1x_3 and x_2x_3 belongs to S since otherwise we would have $x_i^{-1} \in S$ for some i = 1, 2, 3, contradicting the assumption on S. Thus, the assertion follows immediately from Claims 1 and 2.

REFERENCES

 R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1994, Problem C14.

Department of Discrete Mathematics Adam Mickiewicz University 60-769 Poznań, Poland E-mail: tomasz@math.amu.edu.pl schoen@math.amu.edu.pl

> Received 3 November 1995; revised 9 January 1996