COLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 71</td>
<td style="text-align: right; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1996</td>
<td style="text-align: right; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 1</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 71 | 1996 | NO. 1 |
| :--- | ---: | ---: |</table-markdown></div>

ON STRONGLY SUM-FREE SUBSETS
 OF ABELIAN GROUPS

BY
TOMASZ LUCZAK and TOMASZ SCHOEN (POZNAŃ‘)
In his book on unsolved problems in number theory [1] R. K. Guy asks whether for every natural l there exists $n_{0}=n_{0}(l)$ with the following property: for every $n \geq n_{0}$ and any n elements a_{1}, \ldots, a_{n} of a group such that the product of any two of them is different from the unit element of the group, there exist l of the a_{i} such that $a_{i_{j}} a_{i_{k}} \neq a_{m}$ for $1 \leq j<k \leq l$ and $1 \leq m \leq n$. In this note we answer this question in the affirmative in the first non-trivial case when $l=3$ and the group is abelian, proving the following result.

Theorem. Any finite subset S of an abelian group G with card $S \geq 48$ and the property that st $\neq 1$ for every $s, t \in S$ contains three different elements a, b, c such that $a b, a c, b c \notin S$.

Let us remark that without the assumption that S is finite the statement is no longer valid: it is enough to consider the set of natural numbers viewed as a subset of \mathbb{Z}.

In the proof of the Theorem we use some notions from graph theory. Let G be an abelian group and let S be a finite subset of G with card $S=n$. If for some $x, y, z \in S$ we have $x z=y$ we connect elements x, y by an arc $\overrightarrow{x y}$ coloured with colour z. We denote the coloured digraph with vertex set S obtained in this way by $\vec{H}=\vec{H}(G, S)$. (Thus, $\vec{H}(G, S)$ is the subgraph induced by S in the Cayley digraph of G based on S.) We denote by $N_{-}(x)$ and $N_{+}(x)$ the in- and out-neighbourhoods of a vertex x, i.e.

$$
\begin{aligned}
& N_{-}(x)=\{y \in S: \overrightarrow{y x} \text { is an arc of } \vec{H}\}, \\
& N_{+}(x)=\{y \in S: \overrightarrow{x y} \text { is an arc of } \vec{H}\},
\end{aligned}
$$

and set $d_{-}(x)=\left|N_{-}(x)\right|, d_{+}(x)=\left|N_{+}(x)\right|$ and $\delta_{+}=\min _{x} d_{+}(x)$.

[^0]If for every $s, t \in S$ we have $s t \neq 1$, then \vec{H} contains no directed cycles of length two, i.e. for no pair $x, y \in S$ both arcs $\overrightarrow{x y}$ and $\overrightarrow{y x}$ belong to \vec{H}. We call a directed graph with this property a proper directed graph. Note that, in particular, each proper directed graph on n vertices contains at most $\binom{n}{2}$ arcs.

We deduce the Theorem from the following two facts, corresponding to the cases when \vec{H} is sparse and dense respectively.

Claim 1. If S is such that $\vec{H}=\vec{H}(G, S)$ is a proper directed graph on n vertices with $\delta_{+}<(n-\sqrt{n}-2) / 2$, then S contains three different elements a, b, c such that $a b, a c, b c \notin S$.

Proof. Choose $a \in A$ in such a way that $d_{+}(a)=\delta_{+}$and let X denote the set of all colours of arcs $\overrightarrow{a x}$ which belong to \vec{H}. Consider the set $Y=S \backslash(\{a\} \cup X)$. Since for every $y \in Y$ we have $a y \notin S$, it is enough to find $b, c \in Y$ such that $b c \notin S$.

Suppose that such a pair b, c does not exist. Then, for every $b, c \in Y$, \vec{H} must contain an arc $\overrightarrow{b x}$ coloured with c, in particular, $d_{+}(b) \geq|Y|-1$. Hence \vec{H} contains δ_{+}arcs starting at a, δ_{+}^{2} arcs with tails in X and at least $|Y|(|Y|-1)=\left(n-\delta_{+}-1\right)\left(n-\delta_{+}-2\right)$ starting at vertices from Y. But elementary calculations show that if $\delta_{+}<(n-\sqrt{n}-2) / 2$ then

$$
\delta_{+}+\delta_{+}^{2}+\left(n-\delta_{+}-1\right)\left(n-\delta_{+}-2\right)>\binom{n}{2}
$$

which contradicts the assumption that \vec{H} is proper.
Claim 2. If S is such that $\vec{H}=\vec{H}(G, S)$ is a proper directed graph on $n \geq 48$ vertices with $\delta_{+} \geq(n-\sqrt{n}-2) / 2$, then S contains three different elements a, b, c such that $a b c=1$.

Proof. Assume that $\vec{H}=\vec{H}(G, S)$ is proper and $\delta_{+} \geq(n-\sqrt{n}-2) / 2$. We show that \vec{H} contains a directed cycle of length three with all arcs coloured with different colours.

Let $x \in S$ be chosen in such a way that $d_{-}(x) \geq \delta_{+}$and let \vec{A} be the set of all edges leading from $N_{+}(x)$ to $N_{-}(x)$. Then, clearly,

$$
|\vec{A}| \geq\left|N_{+}(x)\right| \delta_{+}-\binom{\left|N_{+}(x)\right|}{2}-\left|N_{+}(x)\right|\left(n-\left|N_{+}(x)\right|-\left|N_{-}(x)\right|-1\right) .
$$

Now remove from \vec{A} all arcs $\overrightarrow{y z}$ which are such that either $\overrightarrow{x y}$ and $\overrightarrow{y z}$, or $\overrightarrow{y z}$ and $\overrightarrow{z x}$ are of the same colour. Clearly the set $\overrightarrow{A^{\prime}}$ obtained in this way contains at least $|\vec{A}|-\left|N_{+}(x)\right|+\left|N_{-}(x)\right|$ arcs. We claim that for n large enough the size of $\overrightarrow{A^{\prime}}$ is greater than $\left(\left|N_{+}(x)\right|+\left|N_{-}(x)\right|\right) / 2$. Indeed, from the fact that $\delta_{+} \leq\left|N_{+}(v)\right| \leq n-\delta_{+}$and $\delta_{+} \geq(n-\sqrt{n}-2) / 2$, it follows that $\left|\overrightarrow{A^{\prime}}\right| \geq|\vec{A}|-O(n) \geq n^{2} / 8-O(n \sqrt{n})$ and so it is larger than $n / 2$ if
$n \geq n_{0}$ for some sufficiently large n_{0} (an elementary but somewhat tedious computation show that it is enough to take $n_{0}=48$).

Thus, $\left|\overrightarrow{A^{\prime}}\right|>\left(\left|N_{+}(x)\right|+\left|N_{-}(x)\right|\right) / 2$ and either two arcs from $\overrightarrow{A^{\prime}}$ have a common tail or two of them have a common head. Consider the former case; the latter can be dealt with in an analogous way. Then there exist $y, z_{1}, z_{2} \in S$ such that the arcs $\overrightarrow{x y}, \overrightarrow{y z_{1}}, \overrightarrow{y z_{2}}, \overrightarrow{z_{1} x}, \overrightarrow{z_{2} x}$ belong to \vec{H} and moreover, for $i=1,2$, the arc $\overrightarrow{y z_{i}}$ is coloured with a colour different from that of $\overrightarrow{x y}$ and $\overrightarrow{z_{i} \vec{x}}$. Note that no vertex of \vec{H} is the head of two arcs coloured with the same colour and so at least one of the $\operatorname{arcs} \overrightarrow{z_{1} \vec{x}}$ and $\overrightarrow{z_{2} x}$, say $\overrightarrow{z_{1} \vec{x}}$, has colour different from that of $\overrightarrow{x y}$. But then all arcs of a directed cycle $x y z_{1}$ are coloured with different colours, say, a, b and c, and $a b c=1$.

Proof of Theorem. Note that if for some $x_{1} x_{2} x_{3} \in S$ we have $x_{1} x_{2} x_{3}=1$, then none of the products $x_{1} x_{2}, x_{1} x_{3}$ and $x_{2} x_{3}$ belongs to S since otherwise we would have $x_{i}^{-1} \in S$ for some $i=1,2,3$, contradicting the assumption on S. Thus, the assertion follows immediately from Claims 1 and 2 .

REFERENCES
[1] R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1994, Problem C14.

Department of Discrete Mathematics
Adam Mickiewicz University
60-769 Poznań, Poland
E-mail: tomasz@math.amu.edu.pl
schoen@math.amu.edu.pl

[^0]: 1991 Mathematics Subject Classification: 05E15, 05B10, 20K99.
 Both authors were partially supported by US-Polish Research Grant \#93113003 and KBN grant 2 P03A 02309.

