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ON THE CENTRAL LIMIT THEOREM FOR RANDOM VARIABLES

RELATED TO THE CONTINUED FRACTION EXPANSION

BY

C. FA IVRE (MARSEILLE)

1. Introduction. The continued fraction expansion of an irrational
number x ∈ [0, 1] will be denoted by x = [0; a1(x), . . . , an(x), . . .] and
pn(x)/qn(x) = [0; a1(x), . . . , an(x)] (or pn/qn if there is no confusion) will
be as usual the nth convergent. The continued fraction expansion is re-
lated to the transformation T : [0, 1] → [0, 1] defined by T (0) = 0 and
T (x) = 1/x − [1/x] for x ∈ (0, 1]. It is well known that ([0, 1], T, ν) is an
ergodic system [2], where ν is the Gauss measure on [0,1] defined by the
invariant density

h(x) =
1

log 2

1

1 + x
,

with respect to the Lebesgue measure. Hence for sequences of random vari-
ables X1,X2, . . . with Xn(x) = f(Tn−1(x)) (for an integrable f) the ergodic
theorem can be used to show that for almost all x ∈ [0, 1], as n→ ∞,

1

n
(X1(x) + . . .+Xn(x)) →

1\
0

f dν.

For example, the particular choices f(x) = log a1(x) and f(x) = 1{p}(a1(x))
(where p ≥ 1 is an integer and 1{p} denotes the indicator function of {p})
yield in a simple way the celebrated formulas of Khinchin and Lévy

lim
n→∞

n

√

a1(x) . . . an(x) =

∞
∏

k=1

(

(k + 1)2

k(k + 2)

)log k/ log 2

,

lim
n→∞

1

n
♯{1 ≤ i ≤ n : ai(x) = p} =

1

log 2
log

(p+ 1)2

p(p+ 2)
,

which hold for almost all x. Unfortunately, many interesting sequences
X1,X2, . . . of random variables related to the continued fraction expansion
cannot always be expressed as f(Tn−1x), for some function f .
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For example, the quantity Xn = θn, n ≥ 1, defined by

(1)

∣

∣

∣

∣

x− pn

qn

∣

∣

∣

∣

=
θn

q2n
,

has this property. The reason is that θn(x) involves the whole contin-
ued fraction expansion of x, i.e. θn(x) depends on the whole sequence
a1(x), a2(x), . . . and not only on an(x), an+1(x), . . . as would be the case
if θn(x) = f(Tn−1x). However, the θn can be expressed by means of the
nth iterate of W , the natural extension of T , which is the map defined by

W : [0, 1]′ × [0, 1] → [0, 1]′ × [0, 1],

W (x, y) :=

(

Tx,
1

a1(x) + y

)

,

where [0, 1]′ denotes the set of irrational numbers in [0, 1]. To see this, notice
that x = [0; a1, . . . , an + Tnx] yields that

(2) x =
pn−1T

nx+ pn

qn−1Tnx+ qn
.

Now from (1), (2) and the well known relation pn−1qn − pnqn−1 = (−1)n it
follows that

θn =
Tnx

Tnxqn−1/qn + 1
.

From

Wn(x, y) = (Tnx, [0; an(x), . . . , a1(x) + y])

and qn−1/qn = [0; an, . . . , a1] we find

Wn(x, 0) = (Tnx, qn−1/qn).

Therefore θn(x) = f(Wn(x, 0)) with f(x, y) = x/(xy + 1).

Another example is given by

rn(x) =

∣

∣

∣

∣

x− pn

qn

∣

∣

∣

∣

/
∣

∣

∣

∣

x− pn−1

qn−1

∣

∣

∣

∣

,

which measures the approximation of x by its nth convergent pn/qn com-
pared with the appoximation by the (n−1)th. In this case one can show that
rn(x) = qn−1

qn

Tnx (see [1]). Since Tnx = [0; an+1, an+2, . . .] and qn−1/qn =

[0; an, . . . , a1] we show as for θn that the quantity rn involves also the whole
continued fraction expansion of x and we have rn(x) = f(Wn(x, 0)) with
f(x, y) = xy this time. Other examples can also be given which show that
many quantities may be expressed as functions of Tnx and qn−1/qn, i.e. as
f(Wn(x, 0)) for some f .
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It is known that W preserves the probability measure on [0, 1]′ × [0, 1]
defined by

dµ(x, y) :=
1

log 2

dxdy

(1 + xy)2
,

and that (W,µ) is an ergodic system [5] (and even a K-system). From the
ergodicity of W , Bosma, Jager and Wiedijk [1] have shown that the θn and
the rn satisfy a strong law of large numbers. Their proof can easily be
adapted to show that for a large class of functions f a strong law of large
numbers holds for Xn(x) = f(Wn(x, 0)). Evidently random variables of the
form f(Tn−1x) are special cases of those of the form h(Wn−1(x, 0)).

The aim of this note is to derive a central limit theorem for the random
variables Xn(x) = f(Wn(x, t)), where t is a fixed number in the interval
[0,1]. This generalizes the case Xn(x) = f(Tn−1x). Classically the central
limit theorem for the f ◦ Tn−1 is investigated using general results about
the central limit theorem for dependent variables (see [6] and [3]), since
the sequence a1, a2, . . . of partial quotients is known to be ψ-mixing ([2],
p. 50). For another approach based on the spectral properties of the Perron–
Frobenius operator associated with T , see [4].

2. The results. From the definition of T it follows immediately that

T [0;α1, α2, . . .] = [0;α2, α3, . . .],

that is, T corresponds to the one-sided shift. Now if we denote by [. . . , α−1,
α0;α1, . . .] (where the αi are integers ≥1) the pair (x, y) with

x = [0;α1, α2, . . .] and y = [0;α0, α−1, . . .],

then

W ([. . . , α−1, α0;α1, . . .]) = [. . . , α0, α1;α2, . . .],

in other words, W is the bilateral shift. Obviously W is a bijection on
R = [0, 1]′ × [0, 1]′. For n ∈ Z we define random variables An(z) on R by

An(z) =

{

an(x) if n ≥ 1,
a−n+1(y) if n ≤ 0,

for z = (x, y). Thus

z = [. . . , A−1(z), A0(z);A1(z), . . .],

and An = A0◦Wn for all n ∈ Z. Therefore the process . . . , A−1, A0, A1, . . . is
stationary (of course we put on R the probability measure µ). The Ai can be
seen as the partial quotients of the “two-sided continued fraction expansion
of z”. In the following we will denote by C1(α1, . . . , αp)q (where q ≥ 1) the
set of irrational numbers x ∈ [0, 1] such that aq(x) = α1, . . . , aq+p−1(x) =
αp, and similarly C2(α1, . . . , αp)q (with q ∈ Z this time) will denote the set
of z ∈ R such that Aq(z) = α1, . . . , Aq+p−1(z) = αp. Lastly, for all k ∈ Z
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we set Fk
−∞ = σ(. . . , Ak) (i.e. the sigma-field generated by the random

variables . . . , Ak−1, Ak) and F∞
k = σ(Ak, . . .).

The following proposition shows that the process (An)n∈Z is ψ-mixing.

Proposition 1. There exist constants C, q with C > 0 and 0 < q < 1
such that for all k ∈ Z and n ≥ 1,

|µ(A ∩B) − µ(A)µ(B)| ≤ Cqnµ(A)µ(B)

for any A ∈ Fk
−∞ and B ∈ F∞

k+n.

P r o o f. We shall use in the proof the well known result already stated
in the introduction that the process a1, a2, . . . is ψ-mixing relative to the
Gauss measure [2]. More precisely, there exist constants C, q with C > 0
and 0 < q < 1 such that

|ν(C ∩D) − ν(C)ν(D)| ≤ Cqnν(C)ν(D)

for all C ∈ σ(a1, . . . , ak) and D ∈ σ(ak+n, . . .). It is enough to prove the
proposition when A and B are of the form A = C2(α1, . . . , αi)p with p +
i − 1 = k and B = C2(β1, . . . , βj)k+n. Let A′ = W p−1A = C2(α1, . . . , αi)1
and also B′ = W p−1B = C2(β1, . . . , βj)i+n. Since W is bijective and pre-
serves µ we have

|µ(A ∩B) − µ(A)µ(B)| = |µ(A′ ∩B′) − µ(A′)µ(B′)|.
But

A′ = C1(α1, . . . , αi)1 × [0, 1]′, B′ = C1(β1, . . . , βj)i+n × [0, 1]′.

Thus if C = C1(α1, . . . , αi)1 and D = C1(β1, . . . , βj)i+n we have the equal-
ities

µ(A′ ∩B′) = ν(C ∩D), µ(A′) = ν(C), µ(B′) = ν(D),

since
T1
0
(1+xy)−2 dy = 1/(x+1). As |ν(C∩D)−ν(C)ν(D)| ≤ Cqnν(C)ν(D),

the result follows.

From the previous proposition we are now in a position to apply a general
result of Ibragimov on the central limit theorem for processes which are
functions of a ψ-mixing process ([3], Theorem 2.1). Thus we can now state
the following theorem where ‖ ‖2 denotes the L2(µ) norm, N(0, σ2) the
normal law with mean 0 and variance σ2 (when σ2 = 0, N(0, σ2) should be
interpreted as the Dirac measure at 0) and finally ⇒ will denote the weak
convergence of probability measures.

Theorem 1. Let f : [0, 1]′× [0, 1] → R in L2(µ). If
∑∞

k=0 vk <∞ where

vk = ‖f − Eµ(f |A−k, . . . , Ak)‖2,
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then the series σ2 =
TT
Y 2

0 dµ + 2
∑∞

k=1

TT
Y0Yk dµ, where Yk = f ◦W k −TT

f dµ, is absolutely convergent and

f + f ◦W + . . .+ f ◦Wn−1 − n
TT
f dµ√

n
⇒ N(0, σ2),

for all probability measures P on [0, 1]′ × [0, 1] absolutely continuous with

respect to µ.

We now state the main theorem. The notations are those of Theorem 1.

Theorem 2. Let f : [0, 1]′ × [0, 1] → R in L2(µ) and let t ∈ [0, 1].
Assume that :

(i)
∑∞

k=0 vk <∞,

(ii)
∑n−1

k=0 |f(W k(x, y)) − f(W k(x, t))| = o(
√
n) for all x ∈ [0, 1]′ and

y ∈ [0, 1].

Then for any probability measure P on [0, 1], absolutely continuous with

respect to the Lebesgue measure m, the sequence of random variables Xn(x)
= f ◦Wn(x, t) defined on [0, 1]′ satisfies

X1 + . . .+Xn − na√
n

⇒ N(0, σ2),

where a =
TT
f dµ and σ2 =

TT
Y 2

0 dµ + 2
∑∞

k=1

TT
Y0Yk dµ. The series is

absolutely convergent.

P r o o f. By Theorem 1, the central limit theorem holds for the random
variables f ◦Wn−1 which are defined on the unit square [0, 1]′× [0, 1] relative
to the probability measure ν2 = P ⊗m. Without loss of generality we may
suppose that

TT
f dµ = 0. Let

Zn(x, y) =
f(x, y) + . . . + f ◦Wn−1(x, y)√

n
− X1(x) + . . . +Xn(x)√

n
.

Then\\
eit(f+...+f◦W n−1)/

√
n dν2 =

1\
0

eit(X1(x)+...+Xn(x))/
√

nFn(x) dP (x),

where Fn(x) is given by

Fn(x) =

1\
0

eitZn(x,y) dm(y).

By (ii), Zn(x, y) → 0 as n→ ∞; then by the dominated convergence theorem
we have Fn(x) → 1 and it follows that

1\
0

eit(X1(x)+...+Xn(x))/
√

n dP (x) → 1√
2π
e−σ2t2/2

as n→ ∞, which proves the result.
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We now show that for suitable functions f conditions (i) and (ii) of the
above theorem are satisfied. We denote by d the Euclidean distance on R

2.

Theorem 3. If f is Hölder on R, i.e. if there exist constants K, θ > 0
such that for all z, z′ in R, |f(z) − f(z′)| ≤ Kd(z, z′)θ, then the conclusion

of Theorem 2 holds.

P r o o f. Let z = (x, y) ∈ R. For all k ≥ 0, z belongs to a unique
cylinder C = C2(α−k, . . . , α0, . . . , αk). From the formula (where c1, . . . , cn
are integers ≥ 1 and x ∈ [0, 1])

[0; c1, . . . , cn + x] =
xpn−1(c1, . . . , cn−1) + pn(c1, . . . , cn)

xqn−1(c1, . . . , cn−1) + qn(c1, . . . , cn)
,

and from pn−1qn − pnqn−1 = (−1)n, we deduce the following inequality for
all y ∈ [0, 1]:

(3) |[0; c1, . . . , cn + x] − [0; c1, . . . , cn + y]| ≤ |y − x|
q2n

≤ 1

2n−1
.

Thus |x−x′| ≤ 2−(k−1) and |y− y′| ≤ 2−k if z′ = (x′, y′) is another element
of C. Hence d(z, z′) ≤

√
5/2k. But on the cylinder C, E(f |A−k, . . . , Ak) is

constant and equal to µ(C)−1
TT

C
f dµ. Therefore

|f(z) − E(f |A−k, . . . , Ak)(z)| ≤ K

(
√

5

2k

)θ

.

Thus vk ≤ K(
√

5/2k)θ and
∑∞

k=0 vk <∞. For (ii) we have, using again (3)
and the formula for the iterates of W ,

1√
n

n−1
∑

k=0

|f(W k(x, y)) − f(W k(x, t))| ≤ K√
n

[

1 +

n−1
∑

k=1

(

1

2k−1

)θ]

,

which shows that (ii) is also satisfied.

R e m a r k. From Theorem 3 we deduce for example that the conclusion
of Theorem 2 holds for the θn and the rn.
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