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1. Introduction. The continued fraction expansion of an irrational
number z € [0,1] will be denoted by = = [0;a1(x),...,an(x),...] and
Pn(2)/qn(z) = [0;a1(x),...,an(x)] (or p,/q, if there is no confusion) will
be as usual the nth convergent. The continued fraction expansion is re-
lated to the transformation 7' : [0,1] — [0,1] defined by 7'(0) = 0 and
T(x) = 1/x — [1/z] for x € (0,1]. It is well known that ([0,1],T,v) is an
ergodic system [2], where v is the Gauss measure on [0,1] defined by the
invariant density

1 1
M) = log2 1+’
with respect to the Lebesgue measure. Hence for sequences of random vari-
ables X1, Xo, ... with X,,(z) = f(T" !(z)) (for an integrable f) the ergodic
theorem can be used to show that for almost all z € [0,1], as n — oo,

1

E(Xl(:n) +... .+ Xu(z) =\ fdv.

/—\ O ey =

For example, the particular choices f(z) = logai(z) and f(x) = 1,y (a1(x))
(where p > 1 is an integer and 1y, denotes the indicator function of {p})
yield in a simple way the celebrated formulas of Khinchin and Lévy

k 1 log k/log 2
lim {/aq(z)... H( k;++)2> ,

1 (p+1)°
lim ~#{1 <i<n:a(x) =p} = :
ngngonﬁ{ isniar) =ph=als om0

which hold for almost all . Unfortunately, many interesting sequences
X1, Xo, ... of random variables related to the continued fraction expansion
cannot always be expressed as f(T"'z), for some function f.
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For example, the quantity X,, = 6,,, n > 1, defined by
On

1) 19:—@ -5,

an

has this property. The reason is that 6,(z) involves the whole contin-
ued fraction expansion of x, i.e. #,(x) depends on the whole sequence
ay(z),az(z),... and not only on a,(z),an+1(x),... as would be the case
if 0,,(x) = f(T™ 'z). However, the 6, can be expressed by means of the
nth iterate of W, the natural extension of 7', which is the map defined by

W [0,1] x [0,1] — [0,1]" x [0, 1],

W (z,y) = (T””’ m>

where [0, 1] denotes the set of irrational numbers in [0, 1]. To see this, notice
that x = [0;ay,...,a, + T™x] yields that

anlTnx + qn ‘

Now from (1), (2) and the well known relation p,_1¢, — Ppgn—1 = (—1)" it
follows that

Tz

0, = .
Tnxanl/Qn + 1

From
W™(x,y) = (T"xz,[0;an(x),...,a1(x) + y])
and ¢,—1/qn = [0;an,...,a1] we find
Wn(x70) = (Tn$>Qn—1/Qn)

Therefore 6, (z) = f(W"™(x,0)) with f(z,y) = /(zy + 1).
Another example is given by
/‘ Pn—1
"E J—
dn—1

which measures the approximation of = by its nth convergent p,, /g, com-
pared with the appoximation by the (n—1)th. In this case one can show that
rn(x) = q;—;lT”:E (see [1]). Since T"x = [0;an+1, Ant2,--.) and gn_1/q¢n =
[0; ap, . ..,a1] we show as for 6,, that the quantity r,, involves also the whole
continued fraction expansion of x and we have r,(z) = f(W"(z,0)) with
f(x,y) = zy this time. Other examples can also be given which show that
many quantities may be expressed as functions of 7"z and ¢,,—1/¢n, i.e. as
fW™(z,0)) for some f.

)

ro(z) = 'm— z—:
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It is known that W preserves the probability measure on [0, 1] x [0,1]

defined by

1 dzxdy

and that (W, p) is an ergodic system [5] (and even a K-system). From the
ergodicity of W, Bosma, Jager and Wiedijk [1] have shown that the 6,, and
the 7, satisfy a strong law of large numbers. Their proof can easily be
adapted to show that for a large class of functions f a strong law of large
numbers holds for X,,(x) = f(W"(z,0)). Evidently random variables of the
form f(T"~'x) are special cases of those of the form h(W"~!(x,0)).

The aim of this note is to derive a central limit theorem for the random
variables X,,(z) = f(W"(x,t)), where t is a fixed number in the interval
[0,1]. This generalizes the case X, (z) = f(T" 'z). Classically the central
limit theorem for the f o 7"~ ! is investigated using general results about
the central limit theorem for dependent variables (see [6] and [3]), since
the sequence aj,asq, ... of partial quotients is known to be i-mixing ([2],
p. 50). For another approach based on the spectral properties of the Perron—
Frobenius operator associated with 7', see [4].

2. The results. From the definition of T it follows immediately that

T[0; a1, a,...] = [0;a0, as, .. ],
that is, T' corresponds to the one-sided shift. Now if we denote by [...,a_1,
ap; a1, ...] (where the «; are integers >1) the pair (x,y) with
r=[0;a1,09,...] and y=[0;ap,a_1,...],
then
W(...,a_1,a0;01,...]) = .., a0, a1;00,...],

in other words, W is the bilateral shift. Obviously W is a bijection on
R =10,1) x [0,1])". For n € Z we define random variables A, (z) on R by

| an(x) ifn>1,
An(2) = { a_nt+1(y) ifn <0,

for z = (x,y). Thus
z=1[..,A_1(2),A0(2); A1(2),...],

and A,, = AgoW™ for all n € Z. Therefore the process ..., A_1, Ag, Aq,...1s
stationary (of course we put on R the probability measure i). The A; can be
seen as the partial quotients of the “two-sided continued fraction expansion
of 2. In the following we will denote by Ci(ay,...,ap), (where ¢ > 1) the
set of irrational numbers = € [0, 1] such that a,(z) = o, ..., a¢4p—1(z) =
a,, and similarly Cy(ay, ..., o), (wWith ¢ € Z this time) will denote the set
of z € R such that A,(z) = ai,...,Ag4p-1(2) = . Lastly, for all k € Z
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we set F*¥ = o(...,A;) (i.e. the sigma-field generated by the random
variables ..., Ay_1, Ag) and F° = o(Ay, .. .).
The following proposition shows that the process (A, )nez is ¥-mixing.

PROPOSITION 1. There exist constants C, q with C >0 and 0 < g < 1
such that for all k € Z and n > 1,

(AN B) = p(A)pu(B)| < Cq"u(A)pu(B)

for any A€ FF__ and B € en:

Proof. We shall use in the proof the well known result already stated
in the introduction that the process ai,as,... is ¥-mixing relative to the
Gauss measure [2]. More precisely, there exist constants C,q with C' > 0
and 0 < ¢ < 1 such that

lv(CND)—v(C)w(D) <Cq"v(C)v(D)

for all C' € o(ay,...,ar) and D € o(agin,...). It is enough to prove the
proposition when A and B are of the form A = Cs(ay,...,q;), with p +
i—1=kand B = Cg(ﬁl, C aﬁj)k—i—n- Let A’ = WP~ 1A = CQ(Oél, o ,Oéi)l
and also B’ = WP™!B = Cy(bh,...,0;)i+n. Since W is bijective and pre-
serves 1 we have

(AN B) — p(A)pu(B)| = |u(A' N B') — pu(A")u(B")].
But
A, = Cl(al, e ,Oéi)l X [0, 1]/, B, = Cl(ﬁly e 75j)i+n X [O, 1],
Thus if C = Cy(ou,...,a;)1 and D = C1(B1,. .., B;)i+n We have the equal-
ities
wA' NB)=v(CNnD), wA)=v(C), wB)=vD),

since Sé(l—kxy)_z dy =1/(z+1). As [v(CND)—v(C)v(D)| < Cq"v(C)v(D),
the result follows. m

From the previous proposition we are now in a position to apply a general
result of Ibragimov on the central limit theorem for processes which are
functions of a ¢-mixing process ([3], Theorem 2.1). Thus we can now state
the following theorem where || ||z denotes the L?(x) norm, N(0,0?) the
normal law with mean 0 and variance o? (when o2 = 0, N(0,0?) should be
interpreted as the Dirac measure at 0) and finally = will denote the weak
convergence of probability measures.

THEOREM 1. Let f:[0,1]' x [0,1] — R in L?(n). If > po vk < co where
Vi = Hf - E#(f|A—]€7 s 7A/€)||27
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then the series 0 = \\Y@du + 2> 1o, §\ YoYi du, where Yy = fo Wk —
\§ fdu, is absolutely convergent and
fHfoW+. ..+ foWnt—n({fdu
N

for all probability measures P on [0,1]" x [0,1] absolutely continuous with
respect to [i.

= N(0,07),

We now state the main theorem. The notations are those of Theorem 1.

THEOREM 2. Let f : [0,1) x [0,1] — R in L*(u) and let t € [0,1].
Assume that:

(i) Xopeq vk < 00,

(i) Sopto lFWE(2,y)) — FVE(2,1)| = o(y/n) for all x € [0,1] and
y € [0,1].

Then for any probability measure P on [0,1], absolutely continuous with
respect to the Lebesque measure m, the sequence of random variables X, (x)
= foW™(x,t) defined on [0,1] satisfies

Xi+...+X, —na
D
where a = \\ fdp and o = \\YFdu+23 70, §\YoYidu. The series is
absolutely convergent.

= N(0,07),

Proof. By Theorem 1, the central limit theorem holds for the random
variables foW™~! which are defined on the unit square [0, 1]’ x [0, 1] relative
to the probability measure v, = P ® m. Without loss of generality we may
suppose that {{ fdu = 0. Let
fle,y)+...+ foWnl(ay) Xi(z)+...+ X, (2)

vn vn ’

1
Sseit(f+...+foW”_l)/\/ﬁ dvy = Seit(Xl(x)+...+Xn(z))/\/ﬁFn(x) dP(z),

0

Zn(x,y) =
Then

where F),(x) is given by
1
Fu(@) = | 2209 dim(y).
0
By (ii), Z,(z,y) — 0 as n — oo; then by the dominated convergence theorem
we have F, (x) — 1 and it follows that

1
Seit(Xl(m)+---+Xn(x))/\/ﬁdP($)_} 1 ot /2

0 2

as n — oo, which proves the result. m
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We now show that for suitable functions f conditions (i) and (ii) of the
above theorem are satisfied. We denote by d the Euclidean distance on R2.

THEOREM 3. If f is Holder on R, i.e. if there exist constants K,0 > 0
such that for all z,2' in R, |f(2) — f(2')| < Kd(z,2")?, then the conclusion
of Theorem 2 holds.

Proof. Let z = (z,y) € R. For all £k > 0, z belongs to a unique
cylinder C' = Co(a_g,...,q0,...,ax). From the formula (where cy,...,c,
are integers > 1 and x € [0,1])

Tpp-1(c1y. . yen_1) +pnlcr, ... cn)
Tqn_1(c1y. . en1) + qu(ci, . yen)’

and from p,_1¢, — pngn—1 = (—1)", we deduce the following inequality for
all y € [0,1]:

[0;617"'7cn+x]:

ly—= _ 1
2 é gn—1

Thus |z — /| < 2=* =D and |y —¢/| < 2% if 2/ = (2/,%) is another element

of C. Hence d(z,2') < +/5/2*. But on the cylinder C, E(f|A_y, ..., Ag) is

constant and equal to u(C)~*{{, f du. Therefore

3) [05cr, . sen 2] = [05er, . sen ]l <

n

\/g 0
1)~ Bk A0 () < 5 (52 )
Thus vy < K(v/5/2)? and Y37 v < oo. For (ii) we have, using again (3)
and the formula for the iterates of W,

1 n—1 K n—1
7 2 ) — SV < T[S (e a
which shows that (ii) is also satisfied. m

Remark. From Theorem 3 we deduce for example that the conclusion
of Theorem 2 holds for the 6,, and the r,,.
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