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FIELDS OF POSITIVE CHARACTERISTIC (II)
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1. Let K be a field and f a polynomial with coefficients in K. A k-tuple
x0, x1, . . . , xk−1 of distinct elements of K is called a cycle of f if

f(xi) = xi+1 for i = 0, 1, . . . , k − 2 and f(xk−1) = x0.

The number k is called the length of that cycle. Two polynomials f and
g are called linearly conjugate if f(aX + b) = ag(X) + b for some a, b ∈ K
with a 6= 0. For linearly conjugate polynomials the sets of their cycle lengths
coincide.

For n = 1, 2, . . . denote by fn the nth iterate of f and let Z(n) be the
set of all maximal proper divisors of n, i.e. Z(n) = {m : mq = n for some
prime q}. Put also N = {1, 2, . . .}, and let CYCL(f) denote the set of all
lengths of cycles for f ∈ K[X]. Define also E(f) = N \ CYCL(f).

In [3] the following theorem has been proved:

Theorem 0. Let K be an algebraically closed field of characteristic p >
0, let f ∈ K[X] be monic of degree d ≥ 2 and assume f(0) = 0.

(i) If p - d then CYCL(f) contains all positive integers with at most 8
ceptions. At most one of those exceptional integers can exceed max{4p, 12}.

(ii) If p | d and f is not of the form
∑

i≥0 αiX
pi

then CYCL(f) = N or
CYCL(f) = N \ {2}.

(iii) If f(X) = αX +
∑

i>0 αiX
pi

then

(a) if α is not a root of unity , then CYCL(f) = N;
(b) if α = 1 then CYCL(f) = N for f(X) 6= X+Xd, and CYCL(f)

= N \ {p, p2, . . .} for f(X) = X + Xd;
(c) if α 6= 1 is a root of unity of order l and l is not a prime power

then CYCL(f) = N;
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(d) if α is a root of unity of a prime power order l = qr with prime
q 6= p then CYCL(f) = N unless

fqr−1(q−1)(X)+fqr−1(q−2)(X)+. . .+fqr−1(X)+X = Xdqr−1(q−1)
.

In this exceptional case CYCL(f) = N \ {qr, qrp, qrp2, . . .}.
In this paper we reduce the number of exceptions in part (i) of this

theorem, namely we prove the following:

Theorem 1. Let K be an algebraically closed field of characteristic p > 0
and let f ∈ K[X] be of degree d ≥ 2 with p - d. If p = 3 and f is linearly
conjugate to X2 then E(f) = {2, 6}, and in all other cases #E(f) ≤ 1.

2. We begin with some lemmas which will be later used in the proof of
Theorem 1.

In this paper K always denotes an algebraically closed field of positive
characteristic p > 0.

Lemma 1. Let f ∈ K[X] be of degree d ≥ 2 with p - d. Then f(X) is
linearly conjugate to a polynomial of the form Xd + ad−2X

d−2 + . . . + a0.

P r o o f. Let f(X) = bdX
d + bd−1X

d−1 + . . . + b0. For every α, β ∈ K
with α 6= 0 the polynomial g(X) = 1

α (f(αX + β)− β) is linearly conjugate
to f , and since a short computation gives g(X) = bdα

d−1Xd + (bd−1α
d−2 +

dbdα
d−2β)Xd−1 + . . . , the g(X) will have the needed form provided α, β

satisfy the following system of equations:

bdα
d−1 = 1, bd−1α

d−2 + dbdα
d−2β = 0.

As K is algebraically closed and d ≥ 2 and d 6= 0 in K, this system has a
solution.

For a rational function φ ∈ K(X) write φ = [φ] + {φ}, where [φ] is
a polynomial and {φ} is a rational function for which the degree of the
numerator is less than the degree of the denominator. Such choice of [φ], {φ}
is unique.

For M = 1, 2, . . . let also LM = K(XpM

).

Lemma 2. (i) A polynomial φ lies in LM if and only if φ(X) =
∑

ajX
bj

with pM | bj.
(ii) LM coincides with the set of all pM -th powers in K(X).
(iii) If φ ∈ LM and φ 6= 0 then 1/φ ∈ LM .
(iv) φ ∈ LM if and only if [φ], {φ} ∈ LM .

P r o o f. Every element of K is a pM th power, so ϕ : f 7→ fpM

is an
isomorphism of the field K(X) onto its subfield K(XpM

). Of course, the
formula ϕ([f ] + {f}) = [ϕ(f)] + {ϕ(f)} holds.
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Lemma 3. (i) Let j > j′; assume that j = kj′ + l, where 0 < l < j′.
Assume also that f(X) is a nonlinear polynomial. Then

fj(X)−X

fj′(X)−X
∈ LM ⇒ fj′(X)−X

fl(X)−X
∈ LM .

(ii) Let j > j′. Denote by u, v the last two non-zero elements resulting
from the application of the Euclidean algorithm to the pair (j, j′). Then

fj(X)−X

fj′(X)−X
∈ LM ⇒ fu(X)−X

fv(X)−X
∈ LM .

P r o o f. (i) We have

fj(X)−X

fj′(X)−X
=

( k−1∑
t=0

ftj′+l(fj′(X))− ftj′+l(X)
fj′(X)−X

)
+

fl(X)−X

fj′(X)−X
.

Since G(X)−H(X) |F (G(X))−F (H(X)) for all polynomials F , G, H, we
obtain {

fj(X)−X

fj′(X)−X

}
=

fl(X)−X

fj′(X)−X
.

It remains to apply Lemma 2(i), (ii).
(ii) This follows by repeated application of (i).

Lemma 4. Let f(X) = Xd + arX
r + . . . , where r ≤ d− 2, ar 6= 0, p - d

and d ≥ 2. Then fm(X) = Xdm

+ ard
m−1Xdm−d+r + . . .

P r o o f. Easy induction.

Lemma 5. Let F (X) = XD + aRXR + . . . where R ≤ D − 2, aR 6= 0,
p - D, D ≥ 2 and T ≥ 2. Assume also that

FT (X)−X

F (X)−X
∈ LM .

Then

(i) pM |D − 1, hence D ≥ 3 for M > 0.
(ii) If R 6= 0, 1 then pM |D −R.

P r o o f. It suffices to consider M > 0.
(i) The function (FT (X)−X)/(F (X)−X) is a polynomial. Put

A3(X) =
FT−2(F (X))−X

F (X)−X
.

Observe that

(1)
FT (X)−X

F (X)−X
=

FT−1(F (X))− FT−1(X)
F (X)−X

+ A3(X)
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and

(2) deg A3 = DT−1 −D.

Lemma 4 gives FT−1(X) = XDT−1
+ aRDT−2XDT−1−D+R + . . . , so we

can write
FT−1(F (X))− FT−1(X)

F (X)−X
= A1(X) + A2(X),

where

A1(X) = F (X)DT−1−1 + F (X)DT−1−2X

+ F (X)DT−1−3X2 + . . . + XDT−1−1,

A2(X) = aRDT−2(F (X)DT−1−D+R−1 + . . . + XDT−1−D+R−1) + . . .

As the polynomial (FT (X)−X)/(F (X)−X) is of degree DT − D,
Lemma 2(i) immediately gives pM |DT −D, and in view of p - D we get

(3) pM |DT−1 − 1.

This implies F (X)DT−1−1 ∈ LM . Since LM is a field, we have

C1(X) =
FT (X)−X

F (X)−X
− F (X)DT−1−1(4)

= A2(X) + A3(X) + F (X)DT−1−2X

+ F (X)DT−1−3X2 + . . . + XDT−1−1 ∈ LM .

The equality

(5) deg A2(X) = D(DT−1 −D + R− 1)

and D(DT−1 − 2) + 1 > max{D(DT−1 −D + R− 1), DT−1 −D} give

(6) deg C1(X) = D(DT−1 − 2) + 1.

Hence Lemma 2(i) and the formulas (4) and (6) give pM |D(DT−1− 2) + 1,
and using (3) we get the assertion.

(ii) As XD(DT−1−2)+1 ∈ LM , using (4) we obtain

(7) C2(X) = C1(X)−XD(DT−1−2)+1 ∈ LM .

Let us consider more carefully the term

F (X)DT−1−2X = (XD + aRXR + . . .)DT−1−2X

= XD(DT−1−2)+1 + (DT−1 − 2)XD(DT−1−3)aRXRX + . . .

appearing in (4).
As R 6= 0, 1, R ≤ D − 2 and D ≥ 3 we have the inequalities

(8) D(DT−1 − 3) + R + 1 > D(DT−1 − 3) + 2,

(9) D(DT−1 − 3) + R + 1 > D(DT−1 −D + R− 1),
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(10) D(DT−1 − 3) + R + 1 > D(DT−2 − 1).

Using DT−1 − 2 = −1 6= 0 in K we get deg C2(X) = D(DT−1 − 3) + R + 1.
Applying Lemma 2(i) and (7) we obtain

(11) pM |D(DT−1 − 3) + R + 1,

which in view of (i) gives the assertion (ii).

Lemma 6. Let f(X) = Xd + arX
r + . . . , where p - d, d ≥ 2, ar 6= 0,

r ≤ d− 2, v |u and v < u. Then

fu(X)−X

fv(X)−X
∈ LM ⇒ pM ≤ d− 1.

P r o o f. Lemma 4 gives fv(X) = Xdv

+ ard
v−1Xdv−d+r + . . . We use

Lemma 5 for F (X) = fv(X), T = u/v, D = dv and R = dv − d + r. Its
assumptions are satisfied as D − R = dv − (dv − d + r) = d− r ≥ 2, hence
we obtain

1o If dv − d + r 6= 0, 1 then pM | dv − (dv − d + r) = d− r.
2o If dv−d+r ∈ {0, 1} then v = 1 and pM | d−1 (as in this case D = d).

Hence pM ≤ max{d− r, d− 1}. In view of p - d the lemma follows.

3. Proof of Theorem 1. Owing to Lemma 1 it suffices to consider
two kinds of polynomials, namely:

1) f(X) = Xd +arX
r + . . . , where ar 6= 0, r ≤ d−2, p - d and d ≥ 2, and

2) f(X) = Xd for p - d and d ≥ 2.

3.1. Let f(X) = Xd + arX
r + . . . , where ar 6= 0, r ≤ d − 2, p - d and

d ≥ 2.
Suppose that #E(f) ≥ 2 and assume that f(X) has no cycles of lengths

n and k, n > k. Notice that k > 1 as K is algebraically closed. In [3] the
formula

dn − dn−k ≤ pM
( ∑

l∈Z(n)

dl +
∑

j∈Z(k)

dn−k+j − 1
)

has been established, where M ≥ 0 is the largest number satisfying

fn(X)−X

fn−k(X)−X
∈ LM .

Lemmas 3 and 6 give pM ≤ d− 1. Hence

(12) dn − dn−k ≤ (d− 1)
( ∑

l∈Z(n)

dl +
∑

j∈Z(k)

dn−k+j − 1
)
.

We are going to show that this inequality leads to a contradiction.
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Let k′ and n′ be the largest elements of Z(k) and Z(n) respectively. As∑
l∈Z(n)

dl < 1 + d + . . . + dn′ <
d

d− 1
dn′

and ∑
j∈Z(k)

dn−k+j <
d

d− 1
dn−k+k′ ,

(12) leads to

dn < dn−k + dn′+1 + dn−k+k′+1.

In view of the last inequality we have three possibilities:

• n− n′ = 1,
• n− n′ − 1 = 1 and k − k′ − 1 = 1,
• k − k′ = 1.

The equality n− n′ = 1 gives n = 2, contradicting n > k > 1.
The equations n− n′ − 1 = 1 and k − k′ − 1 = 1 give n = 4 and k = 3.

But for these particular values (12) gives d4−d ≤ (d−1)(d2 +d2−1), which
is clearly impossible.

The equality k − k′ = 1 gives k = 2. In this case, (12) after a simple
transformation leads to

(13) dn−2 ≤
∑

l∈Z(n)

dl − 1.

But the sum occurring here is less than dn′+1, and we have n− 2 < n′ + 1.
Hence n ∈ {3, 4}. It is easy to check that for these values of n, (13) does
not hold. So in our case #E(f) ≤ 1.

3.2. Let f(X) = Xd, where p - d and d ≥ 2.

Lemma 7. Assume that the polynomial f(X) = Xd has no cycle of
length j. Let q be a prime divisor of dj − 1. Then either q = p or q | dj′ − 1
for some j′ < j.

P r o o f. We may assume that q 6= p. Let ξ be a primitive qth root of
unity. So ξdj

= ξ and fj(ξ) = ξ follows. But f has no cycles of length j.

Thus there is j′ < j such that fj′(ξ) = ξ, which means ξdj′

= ξ and

ξdj′−1 = 1 (as ξ 6= 0).

Now let us recall that a prime divisor of an − bn is called primitive
provided it does not divide ak − bk for any positive k < n.

We have the following result of A. S. Bang [1] (for the proof see e.g. [2]).
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Theorem. If d > 1 then for every j there is at least one prime primitive
divisor of dj − 1 except in the following cases:

(a) j = 1, d = 2,
(b) j = 2, d = 2t − 1,
(c) j = 6, d = 2.

Suppose that f(X) has no cycles of lengths n, k with n > k.
If both dn−1 and dk−1 have prime primitive divisors q1, q2 respectively

then Lemma 7 gives q1 = q2 = p, and we obtain a contradiction as q2 | dk−1
and q1 is a prime primitive divisor of dn − 1.

Hence one of the numbers dn − 1, dk − 1 has no prime primitive divisor.
By Bang’s theorem we obtain the following posibilities:

1st possibility : (d, k) = (2t − 1, 2);
2nd possibility : (d, k) = (2, 6);
3rd possibility : (d, n) = (2, 6).

Lemma 8. (i) If for d = 2t− 1 the polynomial Xd has no cycle of length
2 then p | d2 − 1.

(ii) If X2 has no cycles of length 6 then p = 3.

P r o o f. (i) Every root of Xd2 −X is a root of Xd −X. In particular,
every root of Xd2−1 − 1 is a root of Xd−1 − 1. This in turn implies that
Xd2−1 − 1 has multiple roots. Hence the polynomial Xd2−1 − 1 and its
derivative (d2 − 1)Xd2−2 have a common root. So d2 − 1 = 0 in K and
p | d2 − 1 follows.

(ii) Every root of X26 − X is a root of X23 − X or of X22 − X. In
particular, every root of X63 − 1 is a root of X7 − 1 or of X3 − 1. This in
turn implies that X63 − 1 has multiple roots. In the same manner as in the
proof of (i) we get p | 63, i.e. p ∈ {3, 7}.

If p = 7 then X7−1 = (X−1)7. The polynomial X9−1 divides X63−1,
hence each of its roots is a root of X3− 1, thus it must have multiple roots,
so 7 = p | 9, a contradiction.

Hence p = 3.

Let us finally consider the three possibilities mentioned above:
1st possibility , (d, k) = (2t − 1, 2). Bang’s theorem and Lemma 7 show

that p is a primitive prime divisor of dn − 1, so p - d2 − 1, contrary to
Lemma 8(i).

2nd possibility , (d, k) = (2, 6). As k = 6, Lemma 8(ii) gives p = 3. Since
d = 2 and n > 6, Bang’s theorem and Lemma 7 show that 3 is a primitive
prime divisor of 2n − 1, but this is not possible in view of 3 | 26 − 1.

3rd possibility , (d, n) = (2, 6). Also Lemma 8(ii) gives p = 3. Since
X26 −X = X(X7 − 1)9 and X22 −X = X(X − 1)3 the polynomial X2 has
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no cycles of lengths 2 and 6. As we obtained n = 6 for every n, k ∈ E(X2)
with n > k, in this case #E(f) = 2.

The proof of Theorem 1 is now complete.

4. Some examples

a) Xpn−1 has no cycles of length 2.
b) X2 has no cycles of length q if p = 2q − 1 is a Mersenne prime.
c) X2 −X has no cycles of length 2 in any characteristic.
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