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CYCLES OF POLYNOMIALS IN ALGEBRAICALLY CLOSED
FIELDS OF POSITIVE CHARACTERISTIC (II)

BY

T. PEZDA (WROCLAW)

1. Let K be a field and f a polynomial with coefficients in K. A k-tuple
g, 1, ..., Tr—1 of distinct elements of K is called a cycle of f if

f(z;)) =xi41 fori=0,1,...,k—2 and f(zr_1)= 0.

The number k is called the length of that cycle. Two polynomials f and
g are called linearly conjugate if f(aX 4+ b) = ag(X) + b for some a,b € K
with a # 0. For linearly conjugate polynomials the sets of their cycle lengths
coincide.

For n = 1,2,... denote by f, the nth iterate of f and let Z(n) be the
set of all maximal proper divisors of n, i.e. Z(n) = {m : mq = n for some
prime ¢}. Put also N = {1,2,...}, and let CYCL(f) denote the set of all
lengths of cycles for f € K[X]. Define also E(f) = N\ CYCL(f).

In [3] the following theorem has been proved:

THEOREM 0. Let K be an algebraically closed field of characteristic p >
0, let f € K[X] be monic of degree d > 2 and assume f(0) = 0.

(i) If ptd then CYCL(f) contains all positive integers with at most 8
ceptions. At most one of those exceptional integers can exceed max{4p,12}.
(i) If pld and f is not of the form 3, @; XP?" then CYCL(f) =N or
CYCL(f) =N\ {2}.
(il) If f(X)=aX +>,.0X? then
(a) if « is not a root of unity, then CYCL(f) = N;
(b) if @ =1 then CYCL(f) = N for f(X) # X+X¢, and CYCL(f)
=N\ {p,p?,...} for f(X) =X+ X4,
(c) if a# 1 is aroot of unity of order l and [ is not a prime power
then CYCL(f) =N;
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(d) if « is a root of unity of a prime power order | = q" with prime
q # p then CYCL(f) = N unless
For=1(a-1y () F 12y (X)F. . A fyr—1 (X)+X = X4
In this exceptional case CYCL(f) =N\ {q",q¢"p,q"p?,...}.

In this paper we reduce the number of exceptions in part (i) of this
theorem, namely we prove the following:

~lg-1)

THEOREM 1. Let K be an algebraically closed field of characteristic p > 0
and let f € K[X] be of degree d > 2 with ptd. If p =3 and f is linearly
conjugate to X? then E(f) ={2,6}, and in all other cases #E(f) < 1.

2. We begin with some lemmas which will be later used in the proof of
Theorem 1.

In this paper K always denotes an algebraically closed field of positive
characteristic p > 0.

LEMMA 1. Let f € K[X] be of degree d > 2 with ptd. Then f(X) is
linearly conjugate to a polynomial of the form X% 4+ aq_> X972 + ... 4+ ay.

Proof. Let f(X) = bgX%+bg_1X% 1 4+ ... 4+ by. For every a,3 € K
with o # 0 the polynomial g(X) = 1 (f(aX + 8) — 3) is linearly conjugate
to f, and since a short computation gives g(X) = bga® 1 X + (bg_1a?2 +
dbga?=23) X471 + ..., the g(X) will have the needed form provided «, 3
satisfy the following system of equations:

bt = 1, bg_1a%7? + dbdad”ﬁ =0.

As K is algebraically closed and d > 2 and d # 0 in K, this system has a
solution. m

For a rational function ¢ € K(X) write ¢ = [¢] + {¢}, where [¢] is
a polynomial and {¢} is a rational function for which the degree of the
numerator is less than the degree of the denominator. Such choice of [¢], {¢}
is unique.

For M =1,2,... let also Ly = K(XPM).

LEMMA 2. (i) A polynomial ¢ lies in Ly if and only if (X) = a; X5
with p™ | b;.

(ii) Las coincides with the set of all p™ -th powers in K(X).

(i) If ¢ € Lpyr and ¢ # 0 then 1/¢p € Lyy.

(iv) ¢ € Lar if and only if [¢],{¢} € L.

Proof. Every element of K is a p™th power, so ¢ : f pr is an

isomorphism of the field K (X) onto its subfield K (XPM). Of course, the
formula o([f] + {f}) = [¢(f)] + {¢(f)} holds. =
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LEMMA 3. (i) Let j > j'; assume that j = kj' + 1, where 0 < [ < j'.
Assume also that f(X) is a nonlinear polynomial. Then
(X)—X (X)) —X
HEO-X L ()
fir(X) =X fillX) =X
(ii) Let j > j'. Denote by u,v the last two non-zero elements resulting
from the application of the Euclidean algorithm to the pair (j,j'). Then
fi(X) - X fu(X) — X

x) —x v = pEox € b

€ Ly.

Proof. (i) We have

00 =X (N sl (X)) = fyaX) ) | A0 =X
fj'(X)X_<; f(X) =X >+fjf(X)X'
Since G(X) — H(X) | F(G(X)) — F(H(X)) for all polynomials F, G, H, we
obtain
(LX) _ a00-x
fiX)-XJ  fir(X)-X
It remains to apply Lemma 2(i), (ii).

(ii) This follows by repeated application of (i). m

LEMMA 4. Let f(X) = X%+ a, X"+ ..., where r <d —2, a, # 0, ptd
and d > 2. Then fn(X) = X" +adm 1 X4 —d4r 1

Proof. Easy induction. m

LEMMA 5. Let F(X) = XP +agX® + ... where R < D —2, ag # 0,
ptD, D>2 and T > 2. Assume also that

Fr(X)-X

———— € Ly.

F(X)—x - M

Then

(i) p™ | D — 1, hence D > 3 for M > 0.
(i) If R #0,1 then pM | D — R.

Proof. It suffices to consider M > 0.
(i) The function (Fp(X) — X)/(F(X) — X) is a polynomial. Put

F(X)-X
Observe that
Fr(X)—X  Proa(F(X)) = Fr1(X)
(1) F(X)-X F(X)-X +A3(X)
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and
(2) deg A3 = DT=1 — D.
Lemma 4 gives Fr_1(X) = XD 4 qpDT2x DT -DHR 4 ., SO we
can write
Pl == — 400 + (),
where

A(X)=F(X)P" L 4 p(x)PT T 2y
+R(X)PT T B x2  x DT
As(X) = apDT2(F(X)P" ' ~DHR-1 4 4 xDTTISDER-Ly 4

As the polynomial (Fr(X)— X)/(F(X)— X) is of degree DT — D,
Lemma 2(i) immediately gives pM | DT — D, and in view of pt D we get

(3) pMDTT -1,

This implies F(X)P" =1 € Ly;. Since Ly is a field, we have

C Fr(X)-X
F(X)-X

= A2(X) + A3(X) + F(X)P" ' 2X
FRX)PTIBX2 4 XD e Iy,

(4) C1(X) ~F(x)P"

The equality

(5) deg Ay(X)=D(DT"' —D4+R-1)
and D(DT=1 —2) +1 > max{D(DT~! — D+ R —1),DT~! — D} give
(6) degC1(X) = D(DT7! —2) + 1.

Hence Lemma 2(i) and the formulas (4) and (6) give p™ | D(DT=! —2) 41,
and using (3) we get the assertion.

(ii) As XP@P" =241 ¢ [/ using (4) we obtain
(7) Co(X) = Cy(X) — XPOT =2+ c

Let us consider more carefully the term

FX)P" 72X = (XD 4 apX®+.. )P ' 2x
= X PO (DT ) X DIPTSRy 4

appearing in (4).

As R#0,1, R< D —2and D > 3 we have the inequalities
(8) D(DT™'—3)+R+1>DD" ' -3)+2,
(9) D(DT' —-3)+R+1>DMD" ' -D+R-1),
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(10) D(DT™'—-3)+ R+ 1> D(DT 2 -1).
Using D71 —2=—-1#0in K we get degCo(X) = D(DT-! -3) + R+ 1.
Applying Lemma 2(i) and (7) we obtain
(1) pM [ D(DT1 = 3) + R+ 1,
which in view of (i) gives the assertion (ii). m
LEMMA 6. Let f(X) = X%+ a,. X" + ..., where ptd, d > 2, a, # 0,
r<d-—2,v|uandv <u. Then
fU(X) - X
Proof. Lemma 4 gives f,(X) = X% 4 q,d""' X4 =447 + . We use
Lemma 5 for F(X) = f,(X), T =u/v, D =d" and R =d" —d+r. Its
assumptions are satisfied as D — R =d" — (d" —d+1r) =d —r > 2, hence
we obtain
1°Ifd" —d+r#0,1then pM|d* — (d* —d+71)=d—r.
2°If d¥ —d+7r € {0,1} then v = 1 and p™ | d—1 (as in this case D = d).

Hence p™ < max{d — r,d — 1}. In view of p{d the lemma follows. =

eLly = pMSd—l.

3. Proof of Theorem 1. Owing to Lemma 1 it suffices to consider
two kinds of polynomials, namely:

1) f(X)=X%4+a,X"+..., where a, # 0,7 <d—2,pfd and d > 2, and

2) f(X) = X1 for ptd and d > 2.

3.1. Let f(X) = X4+ a, X" +..., where a,, # 0, r < d — 2, ptd and
d> 2.

Suppose that #FE(f) > 2 and assume that f(X) has no cycles of lengths
n and k, n > k. Notice that £ > 1 as K is algebraically closed. In [3] the

formula
" — d"* SpM( dod+ > - 1)
1€Z(n) JEZ(k)
has been established, where M > 0 is the largest number satisfying
fn (X) -X
Jo—w(X) =X
Lemmas 3 and 6 give pM < d - 1. Hence

(12) 4" — 4" < (d — 1)( Soodw S a 1).

leZ(n) JEZ(k)

€ L.

We are going to show that this inequality leads to a contradiction.
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Let k' and n’ be the largest elements of Z (k) and Z(n) respectively. As

’ d /
Y d<il4dt... +d" < "
leZ(n)
and
. d ’
dn—k-i—] n—k+k
2 R ESL
Jj€Z(k)
(12) leads to
d" < dnfk: + dn/Jrl + dn7k+k’+1.
In view of the last inequality we have three possibilities:
en—n' =1,
en—n'—1=landk—-kK —-1=1,
o k—k' =1.
The equality n —n’ = 1 gives n = 2, contradicting n > k > 1.
The equations n —n' —1=1and k— k' —1=1give n =4 and k = 3.
But for these particular values (12) gives d* —d < (d—1)(d? +d? — 1), which
is clearly impossible.

The equality k — k' = 1 gives k = 2. In this case, (12) after a simple
transformation leads to

(13) < > d -1

leZ(n)

But the sum occurring here is less than d"IH, and we have n — 2 < n’ + 1.
Hence n € {3,4}. It is easy to check that for these values of n, (13) does
not hold. So in our case #E(f) < 1.

3.2. Let f(X) = X%, where pfd and d > 2.

LEMMA 7. Assume that the polynomial f(X) = X9 has no cycle of
length j. Let q be a prime divisor of d¥ — 1. Then either ¢ =1p or q|d’ —1
for some j' < j.

Proof. We may assume that g # p. Let £ be a primitive gth root of
unity. So ¢4 = ¢ and f;(¢) = ¢ follows. But f has no cycles of length j.

Thus there is j° < j such that f;({) = &, which means §dj/ = ¢ and

{djlfl =1(as€#0). m

Now let us recall that a prime divisor of a™ — b™ is called primitive
provided it does not divide a® — b¥ for any positive k < n.

We have the following result of A. S. Bang [1] (for the proof see e.g. [2]).
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THEOREM. If d > 1 then for every j there is at least one prime primitive
divisor of d/ — 1 except in the following cases:

(a) j=1,d=2,
(b) j=2,d=2t—1,
(c) j=6,d=2.

Suppose that f(X) has no cycles of lengths n, k with n > k.

If both d” —1 and d¥ — 1 have prime primitive divisors ¢, ¢» respectively
then Lemma 7 gives ¢; = g2 = p, and we obtain a contradiction as go | d* — 1
and ¢ is a prime primitive divisor of d™ — 1.

Hence one of the numbers d” — 1, d* — 1 has no prime primitive divisor.
By Bang’s theorem we obtain the following posibilities:

st possibility: (d, k) = (2* — 1,2);
2nd possibility: (d, k) = (2,6);
3rd possibility: (d,n) = (2,6).

LEMMA 8. (i) If for d = 2! — 1 the polynomial X® has no cycle of length
2 then p|d? — 1.

(ii) If X? has no cycles of length 6 then p = 3.

Proof. (i) Every root of X4 — X is a root of X¢ — X. In particular,
every root of X4=1 _ 1 is a root of X4~ — 1. This in turn implies that
X4*~1 _ 1 has multiple roots. Hence the polynomial X1 — 1 and its
derivative (d? — l)XUlQ*2 have a common root. So d> —1 = 0 in K and
p|d* — 1 follows.

(ii) Every root of X2° — X is a root of X2° — X or of X2° — X. In
particular, every root of X% — 1 is a root of X7 — 1 or of X3 — 1. This in
turn implies that X% — 1 has multiple roots. In the same manner as in the
proof of (i) we get p|63, i.e. p € {3,7}.

If p=7then X" —1= (X —1)". The polynomial X°—1 divides X% —1,
hence each of its roots is a root of X3 — 1, thus it must have multiple roots,
so 7=p]|9, a contradiction.

Hence p=3. n

Let us finally consider the three possibilities mentioned above:

st possibility, (d,k) = (2 — 1,2). Bang’s theorem and Lemma 7 show
that p is a primitive prime divisor of d® — 1, so p{d? — 1, contrary to
Lemma 8(i).

2nd possibility, (d, k) = (2,6). As k = 6, Lemma 8(ii) gives p = 3. Since
d =2 and n > 6, Bang’s theorem and Lemma 7 show that 3 is a primitive
prime divisor of 2" — 1, but this is not possible in view of 3|26 — 1.

3rd possibility, (d,n) = (2,6). Also Lemma 8(ii) gives p = 3. Since
X2 - X = X(X"—1)? and X2 — X = X(X — 1)3 the polynomial X2 has
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no cycles of lengths 2 and 6. As we obtained n = 6 for every n,k € E(X?)
with n > k, in this case #E(f) = 2.
The proof of Theorem 1 is now complete. =

4. Some examples

a) X"~ has no cycles of length 2.
b) X2 has no cycles of length ¢ if p = 29 — 1 is a Mersenne prime.
c) X2 — X has no cycles of length 2 in any characteristic.
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