CYCLES OF POLYNOMIALS IN ALGEBRAICALLY CLOSED
FIELDS OF POSITIVE CHARACTERISTIC (II)
BY
T. PEZD A (WROCŁAW)

1. Let K be a field and f a polynomial with coefficients in K. A k-tuple $x_{0}, x_{1}, \ldots, x_{k-1}$ of distinct elements of K is called a cycle of f if

$$
f\left(x_{i}\right)=x_{i+1} \quad \text { for } i=0,1, \ldots, k-2 \quad \text { and } \quad f\left(x_{k-1}\right)=x_{0} .
$$

The number k is called the length of that cycle. Two polynomials f and g are called linearly conjugate if $f(a X+b)=a g(X)+b$ for some $a, b \in K$ with $a \neq 0$. For linearly conjugate polynomials the sets of their cycle lengths coincide.

For $n=1,2, \ldots$ denote by f_{n} the nth iterate of f and let $Z(n)$ be the set of all maximal proper divisors of n, i.e. $Z(n)=\{m: m q=n$ for some prime $q\}$. Put also $\mathbb{N}=\{1,2, \ldots\}$, and let $\operatorname{CYCL}(f)$ denote the set of all lengths of cycles for $f \in K[X]$. Define also $E(f)=\mathbb{N} \backslash \operatorname{CYCL}(f)$.

In [3] the following theorem has been proved:
Theorem 0 . Let K be an algebraically closed field of characteristic $p>$ 0 , let $f \in K[X]$ be monic of degree $d \geq 2$ and assume $f(0)=0$.
(i) If $p \nmid d$ then $\mathrm{CYCL}(f)$ contains all positive integers with at most 8 ceptions. At most one of those exceptional integers can exceed $\max \{4 p, 12\}$.
(ii) If $p \mid d$ and f is not of the form $\sum_{i \geq 0} \alpha_{i} X^{p^{i}}$ then $\operatorname{CYCL}(f)=\mathbb{N}$ or $\operatorname{CYCL}(f)=\mathbb{N} \backslash\{2\}$.
(iii) If $f(X)=\alpha X+\sum_{i>0} \alpha_{i} X^{p^{i}}$ then
(a) if α is not a root of unity, then $\operatorname{CYCL}(f)=\mathbb{N}$;
(b) if $\alpha=1$ then $\operatorname{CYCL}(f)=\mathbb{N}$ for $f(X) \neq X+X^{d}$, and $\operatorname{CYCL}(f)$ $=\mathbb{N} \backslash\left\{p, p^{2}, \ldots\right\}$ for $f(X)=X+X^{d}$;
(c) if $\alpha \neq 1$ is a root of unity of order l and l is not a prime power then $\operatorname{CYCL}(f)=\mathbb{N}$;

[^0](d) if α is a root of unity of a prime power order $l=q^{r}$ with prime $q \neq p$ then $\operatorname{CYCL}(f)=\mathbb{N}$ unless
$f_{q^{r-1}(q-1)}(X)+f_{q^{r-1}(q-2)}(X)+\ldots+f_{q^{r-1}}(X)+X=X^{d^{q^{r-1}(q-1)}}$.
In this exceptional case $\operatorname{CYCL}(f)=\mathbb{N} \backslash\left\{q^{r}, q^{r} p, q^{r} p^{2}, \ldots\right\}$.
In this paper we reduce the number of exceptions in part (i) of this theorem, namely we prove the following:

Theorem 1. Let K be an algebraically closed field of characteristic $p>0$ and let $f \in K[X]$ be of degree $d \geq 2$ with $p \nmid d$. If $p=3$ and f is linearly conjugate to X^{2} then $E(f)=\{2,6\}$, and in all other cases $\# E(f) \leq 1$.
2. We begin with some lemmas which will be later used in the proof of Theorem 1.

In this paper K always denotes an algebraically closed field of positive characteristic $p>0$.

Lemma 1. Let $f \in K[X]$ be of degree $d \geq 2$ with $p \nmid d$. Then $f(X)$ is linearly conjugate to a polynomial of the form $X^{d}+a_{d-2} X^{d-2}+\ldots+a_{0}$.

Proof. Let $f(X)=b_{d} X^{d}+b_{d-1} X^{d-1}+\ldots+b_{0}$. For every $\alpha, \beta \in K$ with $\alpha \neq 0$ the polynomial $g(X)=\frac{1}{\alpha}(f(\alpha X+\beta)-\beta)$ is linearly conjugate to f, and since a short computation gives $g(X)=b_{d} \alpha^{d-1} X^{d}+\left(b_{d-1} \alpha^{d-2}+\right.$ $\left.d b_{d} \alpha^{d-2} \beta\right) X^{d-1}+\ldots$, the $g(X)$ will have the needed form provided α, β satisfy the following system of equations:

$$
b_{d} \alpha^{d-1}=1, \quad b_{d-1} \alpha^{d-2}+d b_{d} \alpha^{d-2} \beta=0 .
$$

As K is algebraically closed and $d \geq 2$ and $d \neq 0$ in K, this system has a solution.

For a rational function $\phi \in K(X)$ write $\phi=[\phi]+\{\phi\}$, where $[\phi]$ is a polynomial and $\{\phi\}$ is a rational function for which the degree of the numerator is less than the degree of the denominator. Such choice of $[\phi],\{\phi\}$ is unique.

For $M=1,2, \ldots$ let also $L_{M}=K\left(X^{p^{M}}\right)$.
Lemma 2. (i) A polynomial ϕ lies in L_{M} if and only if $\phi(X)=\sum a_{j} X^{b_{j}}$ with $p^{M} \mid b_{j}$.
(ii) L_{M} coincides with the set of all p^{M}-th powers in $K(X)$.
(iii) If $\phi \in L_{M}$ and $\phi \neq 0$ then $1 / \phi \in L_{M}$.
(iv) $\phi \in L_{M}$ if and only if $[\phi],\{\phi\} \in L_{M}$.

Proof. Every element of K is a p^{M} th power, so $\varphi: f \mapsto f^{p^{M}}$ is an isomorphism of the field $K(X)$ onto its subfield $K\left(X^{p^{M}}\right)$. Of course, the formula $\varphi([f]+\{f\})=[\varphi(f)]+\{\varphi(f)\}$ holds.

Lemma 3. (i) Let $j>j^{\prime}$; assume that $j=k j^{\prime}+l$, where $0<l<j^{\prime}$. Assume also that $f(X)$ is a nonlinear polynomial. Then

$$
\frac{f_{j}(X)-X}{f_{j^{\prime}}(X)-X} \in L_{M} \quad \Rightarrow \quad \frac{f_{j^{\prime}}(X)-X}{f_{l}(X)-X} \in L_{M}
$$

(ii) Let $j>j^{\prime}$. Denote by u, v the last two non-zero elements resulting from the application of the Euclidean algorithm to the pair $\left(j, j^{\prime}\right)$. Then

$$
\frac{f_{j}(X)-X}{f_{j^{\prime}}(X)-X} \in L_{M} \quad \Rightarrow \quad \frac{f_{u}(X)-X}{f_{v}(X)-X} \in L_{M}
$$

Proof. (i) We have

$$
\frac{f_{j}(X)-X}{f_{j^{\prime}}(X)-X}=\left(\sum_{t=0}^{k-1} \frac{f_{t j^{\prime}+l}\left(f_{j^{\prime}}(X)\right)-f_{t j^{\prime}+l}(X)}{f_{j^{\prime}}(X)-X}\right)+\frac{f_{l}(X)-X}{f_{j^{\prime}}(X)-X}
$$

Since $G(X)-H(X) \mid F(G(X))-F(H(X))$ for all polynomials F, G, H, we obtain

$$
\left\{\frac{f_{j}(X)-X}{f_{j^{\prime}}(X)-X}\right\}=\frac{f_{l}(X)-X}{f_{j^{\prime}}(X)-X}
$$

It remains to apply Lemma 2(i), (ii).
(ii) This follows by repeated application of (i).

Lemma 4. Let $f(X)=X^{d}+a_{r} X^{r}+\ldots$, where $r \leq d-2, a_{r} \neq 0, p \nmid d$ and $d \geq 2$. Then $f_{m}(X)=X^{d^{m}}+a_{r} d^{m-1} X^{d^{m}-d+r}+\ldots$

Proof. Easy induction.
Lemma 5. Let $F(X)=X^{D}+a_{R} X^{R}+\ldots$ where $R \leq D-2, a_{R} \neq 0$, $p \nmid D, D \geq 2$ and $T \geq 2$. Assume also that

$$
\frac{F_{T}(X)-X}{F(X)-X} \in L_{M}
$$

Then
(i) $p^{M} \mid D-1$, hence $D \geq 3$ for $M>0$.
(ii) If $R \neq 0,1$ then $p^{M} \mid D-R$.

Proof. It suffices to consider $M>0$.
(i) The function $\left(F_{T}(X)-X\right) /(F(X)-X)$ is a polynomial. Put

$$
A_{3}(X)=\frac{F_{T-2}(F(X))-X}{F(X)-X}
$$

Observe that

$$
\begin{equation*}
\frac{F_{T}(X)-X}{F(X)-X}=\frac{F_{T-1}(F(X))-F_{T-1}(X)}{F(X)-X}+A_{3}(X) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg} A_{3}=D^{T-1}-D \tag{2}
\end{equation*}
$$

Lemma 4 gives $F_{T-1}(X)=X^{D^{T-1}}+a_{R} D^{T-2} X^{D^{T-1}-D+R}+\ldots$, so we can write

$$
\frac{F_{T-1}(F(X))-F_{T-1}(X)}{F(X)-X}=A_{1}(X)+A_{2}(X)
$$

where

$$
\begin{aligned}
A_{1}(X)= & F(X)^{D^{T-1}-1}+F(X)^{D^{T-1}-2} X \\
& +F(X)^{D^{T-1}-3} X^{2}+\ldots+X^{D^{T-1}-1} \\
A_{2}(X)= & a_{R} D^{T-2}\left(F(X)^{D^{T-1}-D+R-1}+\ldots+X^{D^{T-1}-D+R-1}\right)+\ldots
\end{aligned}
$$

As the polynomial $\left(F_{T}(X)-X\right) /(F(X)-X)$ is of degree $D^{T}-D$, Lemma 2(i) immediately gives $p^{M} \mid D^{T}-D$, and in view of $p \nmid D$ we get

$$
\begin{equation*}
p^{M} \mid D^{T-1}-1 \tag{3}
\end{equation*}
$$

This implies $F(X)^{D^{T-1}-1} \in L_{M}$. Since L_{M} is a field, we have

$$
\begin{align*}
C_{1}(X)= & \frac{F_{T}(X)-X}{F(X)-X}-F(X)^{D^{T-1}-1} \tag{4}\\
= & A_{2}(X)+A_{3}(X)+F(X)^{D^{T-1}-2} X \\
& +F(X)^{D^{T-1}-3} X^{2}+\ldots+X^{D^{T-1}-1} \in L_{M}
\end{align*}
$$

The equality

$$
\begin{equation*}
\operatorname{deg} A_{2}(X)=D\left(D^{T-1}-D+R-1\right) \tag{5}
\end{equation*}
$$

and $D\left(D^{T-1}-2\right)+1>\max \left\{D\left(D^{T-1}-D+R-1\right), D^{T-1}-D\right\}$ give

$$
\begin{equation*}
\operatorname{deg} C_{1}(X)=D\left(D^{T-1}-2\right)+1 \tag{6}
\end{equation*}
$$

Hence Lemma 2(i) and the formulas (4) and (6) give $p^{M} \mid D\left(D^{T-1}-2\right)+1$, and using (3) we get the assertion.
(ii) As $X^{D\left(D^{T-1}-2\right)+1} \in L_{M}$, using (4) we obtain

$$
\begin{equation*}
C_{2}(X)=C_{1}(X)-X^{D\left(D^{T-1}-2\right)+1} \in L_{M} \tag{7}
\end{equation*}
$$

Let us consider more carefully the term

$$
\begin{aligned}
F(X)^{D^{T-1}-2} X & =\left(X^{D}+a_{R} X^{R}+\ldots\right)^{D^{T-1}-2} X \\
& =X^{D\left(D^{T-1}-2\right)+1}+\left(D^{T-1}-2\right) X^{D\left(D^{T-1}-3\right)} a_{R} X^{R} X+\ldots
\end{aligned}
$$

appearing in (4).
As $R \neq 0,1, R \leq D-2$ and $D \geq 3$ we have the inequalities

$$
\begin{gather*}
D\left(D^{T-1}-3\right)+R+1>D\left(D^{T-1}-3\right)+2 \tag{8}\\
D\left(D^{T-1}-3\right)+R+1>D\left(D^{T-1}-D+R-1\right)
\end{gather*}
$$

$$
\begin{equation*}
D\left(D^{T-1}-3\right)+R+1>D\left(D^{T-2}-1\right) \tag{10}
\end{equation*}
$$

Using $D^{T-1}-2=-1 \neq 0$ in K we get $\operatorname{deg} C_{2}(X)=D\left(D^{T-1}-3\right)+R+1$.
Applying Lemma 2(i) and (7) we obtain

$$
\begin{equation*}
p^{M} \mid D\left(D^{T-1}-3\right)+R+1 \tag{11}
\end{equation*}
$$

which in view of (i) gives the assertion (ii).
LEmMA 6. Let $f(X)=X^{d}+a_{r} X^{r}+\ldots$, where $p \nmid d, d \geq 2, a_{r} \neq 0$, $r \leq d-2, v \mid u$ and $v<u$. Then

$$
\frac{f_{u}(X)-X}{f_{v}(X)-X} \in L_{M} \quad \Rightarrow \quad p^{M} \leq d-1
$$

Proof. Lemma 4 gives $f_{v}(X)=X^{d^{v}}+a_{r} d^{v-1} X^{d^{v}-d+r}+\ldots$ We use Lemma 5 for $F(X)=f_{v}(X), T=u / v, D=d^{v}$ and $R=d^{v}-d+r$. Its assumptions are satisfied as $D-R=d^{v}-\left(d^{v}-d+r\right)=d-r \geq 2$, hence we obtain
1° If $d^{v}-d+r \neq 0,1$ then $p^{M} \mid d^{v}-\left(d^{v}-d+r\right)=d-r$.
2° If $d^{v}-d+r \in\{0,1\}$ then $v=1$ and $p^{M} \mid d-1$ (as in this case $D=d$). Hence $p^{M} \leq \max \{d-r, d-1\}$. In view of $p \nmid d$ the lemma follows.
3. Proof of Theorem 1. Owing to Lemma 1 it suffices to consider two kinds of polynomials, namely:

1) $f(X)=X^{d}+a_{r} X^{r}+\ldots$, where $a_{r} \neq 0, r \leq d-2, p \nmid d$ and $d \geq 2$, and
2) $f(X)=X^{d}$ for $p \nmid d$ and $d \geq 2$.
3.1. Let $f(X)=X^{d}+a_{r} X^{r}+\ldots$, where $a_{r} \neq 0, r \leq d-2, p \nmid d$ and $d \geq 2$.

Suppose that $\# E(f) \geq 2$ and assume that $f(X)$ has no cycles of lengths n and $k, n>k$. Notice that $k>1$ as K is algebraically closed. In [3] the formula

$$
d^{n}-d^{n-k} \leq p^{M}\left(\sum_{l \in Z(n)} d^{l}+\sum_{j \in Z(k)} d^{n-k+j}-1\right)
$$

has been established, where $M \geq 0$ is the largest number satisfying

$$
\frac{f_{n}(X)-X}{f_{n-k}(X)-X} \in L_{M}
$$

Lemmas 3 and 6 give $p^{M} \leq d-1$. Hence

$$
\begin{equation*}
d^{n}-d^{n-k} \leq(d-1)\left(\sum_{l \in Z(n)} d^{l}+\sum_{j \in Z(k)} d^{n-k+j}-1\right) \tag{12}
\end{equation*}
$$

We are going to show that this inequality leads to a contradiction.

Let k^{\prime} and n^{\prime} be the largest elements of $Z(k)$ and $Z(n)$ respectively. As

$$
\sum_{l \in Z(n)} d^{l}<1+d+\ldots+d^{n^{\prime}}<\frac{d}{d-1} d^{n^{\prime}}
$$

and

$$
\sum_{j \in Z(k)} d^{n-k+j}<\frac{d}{d-1} d^{n-k+k^{\prime}}
$$

(12) leads to

$$
d^{n}<d^{n-k}+d^{n^{\prime}+1}+d^{n-k+k^{\prime}+1} .
$$

In view of the last inequality we have three possibilities:

- $n-n^{\prime}=1$,
- $n-n^{\prime}-1=1$ and $k-k^{\prime}-1=1$,
- $k-k^{\prime}=1$.

The equality $n-n^{\prime}=1$ gives $n=2$, contradicting $n>k>1$.
The equations $n-n^{\prime}-1=1$ and $k-k^{\prime}-1=1$ give $n=4$ and $k=3$. But for these particular values (12) gives $d^{4}-d \leq(d-1)\left(d^{2}+d^{2}-1\right)$, which is clearly impossible.

The equality $k-k^{\prime}=1$ gives $k=2$. In this case, (12) after a simple transformation leads to

$$
\begin{equation*}
d^{n-2} \leq \sum_{l \in Z(n)} d^{l}-1 \tag{13}
\end{equation*}
$$

But the sum occurring here is less than $d^{n^{\prime}+1}$, and we have $n-2<n^{\prime}+1$. Hence $n \in\{3,4\}$. It is easy to check that for these values of n, (13) does not hold. So in our case $\# E(f) \leq 1$.
3.2. Let $f(X)=X^{d}$, where $p \nmid d$ and $d \geq 2$.

Lemma 7. Assume that the polynomial $f(X)=X^{d}$ has no cycle of length j. Let q be a prime divisor of $d^{j}-1$. Then either $q=p$ or $q \mid d^{j^{\prime}}-1$ for some $j^{\prime}<j$.

Proof. We may assume that $q \neq p$. Let ξ be a primitive q th root of unity. So $\xi^{d^{j}}=\xi$ and $f_{j}(\xi)=\xi$ follows. But f has no cycles of length j. Thus there is $j^{\prime}<j$ such that $f_{j^{\prime}}(\xi)=\xi$, which means $\xi^{d^{j^{\prime}}}=\xi$ and $\xi^{d^{j^{\prime}}-1}=1($ as $\xi \neq 0)$.

Now let us recall that a prime divisor of $a^{n}-b^{n}$ is called primitive provided it does not divide $a^{k}-b^{k}$ for any positive $k<n$.

We have the following result of A. S. Bang [1] (for the proof see e.g. [2]).

Theorem. If $d>1$ then for every j there is at least one prime primitive divisor of $d^{j}-1$ except in the following cases:
(a) $j=1, d=2$,
(b) $j=2, d=2^{t}-1$,
(c) $j=6, d=2$.

Suppose that $f(X)$ has no cycles of lengths n, k with $n>k$.
If both $d^{n}-1$ and $d^{k}-1$ have prime primitive divisors q_{1}, q_{2} respectively then Lemma 7 gives $q_{1}=q_{2}=p$, and we obtain a contradiction as $q_{2} \mid d^{k}-1$ and q_{1} is a prime primitive divisor of $d^{n}-1$.

Hence one of the numbers $d^{n}-1, d^{k}-1$ has no prime primitive divisor. By Bang's theorem we obtain the following posibilities:

1st possibility: $(d, k)=\left(2^{t}-1,2\right)$;
2nd possibility: $(d, k)=(2,6)$;
3 rd possibility: $(d, n)=(2,6)$.
Lemma 8. (i) If for $d=2^{t}-1$ the polynomial X^{d} has no cycle of length 2 then $p \mid d^{2}-1$.
(ii) If X^{2} has no cycles of length 6 then $p=3$.

Proof. (i) Every root of $X^{d^{2}}-X$ is a root of $X^{d}-X$. In particular, every root of $X^{d^{2}-1}-1$ is a root of $X^{d-1}-1$. This in turn implies that $X^{d^{2}-1}-1$ has multiple roots. Hence the polynomial $X^{d^{2}-1}-1$ and its derivative $\left(d^{2}-1\right) X^{d^{2}-2}$ have a common root. So $d^{2}-1=0$ in K and $p \mid d^{2}-1$ follows.
(ii) Every root of $X^{2^{6}}-X$ is a root of $X^{2^{3}}-X$ or of $X^{2^{2}}-X$. In particular, every root of $X^{63}-1$ is a root of $X^{7}-1$ or of $X^{3}-1$. This in turn implies that $X^{63}-1$ has multiple roots. In the same manner as in the proof of (i) we get $p \mid 63$, i.e. $p \in\{3,7\}$.

If $p=7$ then $X^{7}-1=(X-1)^{7}$. The polynomial $X^{9}-1$ divides $X^{63}-1$, hence each of its roots is a root of $X^{3}-1$, thus it must have multiple roots, so $7=p \mid 9$, a contradiction.

Hence $p=3$.

Let us finally consider the three possibilities mentioned above:
1 st possibility, $(d, k)=\left(2^{t}-1,2\right)$. Bang's theorem and Lemma 7 show that p is a primitive prime divisor of $d^{n}-1$, so $p \nmid d^{2}-1$, contrary to Lemma 8(i).
$2 n d$ possibility, $(d, k)=(2,6)$. As $k=6$, Lemma 8(ii) gives $p=3$. Since $d=2$ and $n>6$, Bang's theorem and Lemma 7 show that 3 is a primitive prime divisor of $2^{n}-1$, but this is not possible in view of $3 \mid 2^{6}-1$.

3 rd possibility, $(d, n)=(2,6)$. Also Lemma 8 (ii) gives $p=3$. Since $X^{2^{6}}-X=X\left(X^{7}-1\right)^{9}$ and $X^{2^{2}}-X=X(X-1)^{3}$ the polynomial X^{2} has
no cycles of lengths 2 and 6 . As we obtained $n=6$ for every $n, k \in E\left(X^{2}\right)$ with $n>k$, in this case $\# E(f)=2$.

The proof of Theorem 1 is now complete.

4. Some examples

a) $X^{p^{n}-1}$ has no cycles of length 2 .
b) X^{2} has no cycles of length q if $p=2^{q}-1$ is a Mersenne prime.
c) $X^{2}-X$ has no cycles of length 2 in any characteristic.

REFERENCES

[1] A. S. Bang, Taltheoritiske undersøgelser, Tidsskr. Mat. 4 (1886), 70-80, 130-137.
[2] W. Narkiewicz, Classical Problems in Number Theory, PWN, Warszawa, 1986.
[3] T. Pezda, Cycles of polynomials in algebraically closed fields of positive characteristic, Colloq. Math. 67 (1994), 187-195.

Institute of Mathematics
Wrocław University
Pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland

[^0]: 1991 Mathematics Subject Classification: 11C08, 12E05.
 Research supported by the KBN-grant No. 2 P03A 03608.

