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A LITTLE MORE ON THE PRODUCT
OF TWO PSEUDOCOMPACT SPACES

BY

ELIZA W A J C H ( LÓDŹ)

0. Introduction. The main aim of this paper is to answer the question
of when βX × βY is the Wallman compactification of X × Y with respect
to the normal base consisting of the zero-sets of all those continuous real
functions defined onX×Y which are continuously extendable over βX×βY .
In passing, we shall obtain several new conditions which are necessary and
sufficient for X × Y to be pseudocompact.

To provide a framework for our discussion, let us recall that a normal
base D for a Tikhonov space X is a base for the closed sets of X which
is stable under finite unions and finite intersections and has the following
properties:

(i) ∅, X ∈ D;
(ii) if A ∈ D and x ∈ X \A, then there exists B ∈ D such that x ∈ B ⊆

X \A;
(iii) if A,B ∈ D and A ∩ B = ∅, then there exist C,D ∈ D such that

A ⊆ X \ C ⊆ D ⊆ X \B.

The Wallman compactification of X with respect to a normal base D is
the space wDX of all ultrafilters in D which has the collection

{{p ∈ wDX : D ∈ p} : D ∈ D}

as a base for the closed sets (cf. [2; Section 8], [12; Section 4.4] or [6]).
Let us mention that V. M. Ul’yanov gave in [14] a solution to the fa-
mous problem of O. Frink on Wallman compactifications (cf. [6]) by prov-
ing that a compactification of a Tikhonov space need not be of Wallman
type.

All the spaces considered below are assumed to be completely regular
and Hausdorff. As usual, the symbol C(X) will stand for the algebra of
continuous real functions defined on X, and C∗(X) for the subalgebra of
C(X) consisting of bounded functions.
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One of the most natural normal bases associated with a compactification
αX of a space X is the collection Zα(X) = {f−1(0) : f ∈ Cα(X)} where
Cα(X) is the family of all those functions f ∈ C∗(X) which are continuously
extendable over αX. For simplicity, we shall put Z(X) = Zβ(X) with β
standing for the Čech–Stone compactification. Denote by wαX the Wall-
man compactification of X with respect to Zα(X). It is well known that
βX = wβX (cf. [12; 4.4(h)]). The inequality αX ≤ wαX always holds;
however, in general, αX 6= wαX (cf. [16]). Corollary 3.4 of [16] asserts
that αX = wαX for every compactification αX of X if and only if the
space X is pseudocompact. This gives a full description of the structure
of all compactifications of X × Y in the case when X × Y is pseudocom-
pact.

For compactifications αX and γY of spaces X and Y , respectively, de-
note by α× γ〈X × Y 〉 the compactification αX × γY of X × Y .

If we are given two pseudocompact spaces X and Y such that X × Y is
not pseudocompact, we can deduce from the above-mentioned Corollary 3.4
of [16] that there exists a compactification α〈X × Y 〉 of X × Y such that
α〈X × Y 〉 6= wα〈X × Y 〉; however, we do not know which one of the com-
pactifications α〈X × Y 〉 of X × Y fails to be equivalent to wα〈X × Y 〉.
In view of Glicksberg’s theorem, for infinite spaces X and Y , the equality
βX×βY = β〈X×Y 〉 holds if and only if the product X×Y is pseudocom-
pact (cf. [10]). Therefore, if X and Y are pseudocompact spaces such that
the product X × Y is not pseudocompact, then βX × βY 6= β〈X × Y 〉 and
it seems natural to ask whether a compactification α〈X × Y 〉 ≤ βX × βY
can be non-equivalent to wα〈X × Y 〉. In the present paper, among other
things, we shall prove that if X and Y are infinite Tikhonov spaces, then
βX × βY = wβ×β〈X ×Y 〉 if and only if both the spaces X and Y are pseu-
docompact, which holds if and only if α〈X × Y 〉 = wα〈X × Y 〉 for every
compactification α〈X × Y 〉 ≤ βX × βY . This result, together with Glicks-
berg’s theorem, describes the structure of all compactifications of X × Y
in the case when X × Y is pseudocompact, and the structure of all com-
pactifications smaller than βX × βY in the case when both X and Y are
pseudocompact but their product X × Y is not necessarily pseudocompact.
Our result seems a little striking if one recollects that F. Kost proved in [11]
that the product of Wallman type compactifications is of Wallman type;
furthermore, βX×βY is always the Wallman compactification with respect
a normal base consisting of some zero-sets.

1. βX×βY as a Wallman type compactification. Before proceeding
to the body of this section, let us establish some useful facts.

The following proposition is an immediate consequence of Lemmas 1.1
and 2.1 of [17]:
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1.1. Proposition. For any compactifications αX of X and γY of Y ,
we have

Zα×γ(X × Y ) =
{ ∞⋂

i=1

ni⋃
j=1

[f−1
i,j (0)× g−1

i,j (0)] : fi,j ∈ Cα(X) & gi,j ∈ Cγ(Y )

for i ∈ N, j = 1, . . . , ni (ni ∈ N)
}
.

Our next proposition can easily be deduced from Theorems 2.2 and 2.8
of [16].

1.2. Proposition. For every compactification αX of X, the following
conditions are equivalent :

(i) αX = wαX;
(ii) for any disjoint Z1, Z2 ∈ Zα(X), we have

clαX Z1 ∩ clαX Z2 = ∅;

(iii) for any f, g ∈ Cα(X) such that f−1(0) ∩ g−1(0) = ∅, the function

h =
|f |

|f |+ |g|
is continuously extendable over αX.

1.3. Corollary. If αX = wαX and X ⊆ T ⊆ αX, then αX is
the Wallman compactification of T arising from the normal base Zα(T ) =
{f−1(0) ∩ T : f ∈ C(αX)}.

P r o o f. Take any f, g ∈ C(αX) such that f−1(0)∩ T ∩ g−1(0) = ∅. Put
h(t) = |f(t)|/(|f(t)|+ |g(t)|) for t ∈ T . Then, by 1.2, the function h�X has
a continuous extension over αX, which, together with the density of X in T ,
implies that h is continuously extendable over αX. The proof is completed
by applying 1.2 once again.

1.4. Corollary. Let αX and γX be compactifications of X such that
αX ≤ γX. If αX 6= wαX, then there exists a set Z ∈ Z(γX) such that
∅ 6= Z ⊆ γX \X.

P r o o f. It follows from 1.2 that there exist functions f1, f2 ∈ Cα(X)
such that f−1

1 (0) ∩ f−1
2 (0) = ∅ but f̃−1

1 (0) ∩ f̃−1
2 (0) 6= ∅, where f̃i is the

continuous extension of fi over αX (i = 1, 2). Put Z = π−1[f̃−1
1 (0)∩f̃−1

2 (0)],
where π : γX → αX is the quotient map showing that αX ≤ γX. Then
∅ 6= Z ∈ Z(γX) and Z ⊆ γX \X.

We shall make use of the following theorem which can be deduced from
Theorem 3.10 of [16] and Problem 3.12.16(a) of [5].
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1.5. Theorem. A non-pseudocompact Tikhonov space X is Lindelöf
if and only if αX 6= wαX for any compactification αX of X non-equivalent
to βX.

Let us say that a family E of subsets of X is semicompact if, for any
sequence 〈En〉 of members of E with

⋂∞
n=1En = ∅, there exists m ∈ N such

that
⋂m

n=1En = ∅. Recall the well-known characterization of pseudocom-
pactness which follows from [9; 5H(4)].

1.6. Proposition. A Tikhonov space X is pseudocompact if and only if
the family Z(X) is semicompact.

Now, we are in a position to prove the main result of this section.

1.7. Theorem. For infinite Tikhonov spaces X and Y , the following
conditions are equivalent :

(i) both X and Y are pseudocompact ;
(ii) the collection Zβ×β(X × Y ) is semicompact ;
(iii) X is pseudocompact and the projection pX : X×Y → X carries any

member of Zβ×β(X × Y ) onto a closed subset of X;
(iv) X is pseudocompact and , for each Z ∈ Zβ×β(X × Y ),

clX×βY (Z) =
⋃

x∈X

clX×βY [Z ∩ ({x} × Y )];

(v) βX × βY is the Wallman compactification of X × Y with respect to
the normal base Zβ×β(X × Y );

(vi) every compactification α〈X × Y 〉 of X × Y smaller than βX × βY
is the Wallman compactification of X × Y with respect to the normal base
Zα(X × Y ).

P r o o f. We shall show that (i)⇔(ii)⇒(iii)⇒(iv)⇒(v) and that (ii)⇒(vi).
The implication (vi)⇒(v) is obvious.

Assume that (i) holds and suppose that 〈Zn〉 is a sequence of members
of Zβ×β(X ×Y ) such that

⋂m
n=1 Zn 6= ∅ for each m ∈ N. By 1.1, there exist

functions fi,j,n ∈ C(X) and gi,j,n ∈ C(Y ) such that

Zn =
∞⋂

i=1

m(n,i)⋃
j=1

[f−1
i,j,n(0)× g−1

i,j,n(0)].

Put

Ak =
k⋂

n=1

k⋂
i=1

m(n,i)⋃
j=1

[f−1
i,j,n(0)× g−1

i,j,n(0)].

A straightforward calculation shows that
⋂∞

n=1 Zn =
⋂∞

k=1Ak and Ak+1 ⊆
Ak for k ∈ N. Let Bk = pX(Ak) for k ∈ N. As ∅ 6=

⋂k
n=1 Zn ⊆ Ak, we
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have Bk 6= ∅ for any k ∈ N. Clearly, Bk+1 ⊆ Bk for k ∈ N. Since Ak can
be represented in the form

⋃r
p=1[f

−1
p (0)× g−1

p (0)] for some fp ∈ C(X) and
gp ∈ C(Y ) (p = 1, . . . , r), the sets Bk are zero-sets in X. It follows from 1.6
that there exists x0 ∈

⋂∞
k=1Bk. Then ({x0} × Y ) ∩ Ak 6= ∅ for each k ∈ N.

Since Y is pseudocompact, we have ({x0}×Y )∩
⋂∞

k=1Ak 6= ∅ by 1.6, which
implies that

⋂∞
n=1 Zn 6= ∅. This proves that (i)⇒(ii).

Assume (ii). Suppose that Zn ∈ Z(X) and
⋂∞

n=1 Zn = ∅. Then Zn×Y ∈
Zβ×β(X × Y ) and

⋂∞
n=1(Zn × Y ) = ∅. Hence there is m ∈ N such that⋂m

n=1(Zn × Y ) = ∅, which shows that Z(X) is semicompact. By 1.6, X is
pseudocompact. Similarly, Y is pseudocompact, too.

Let Z ∈ Zβ×β(X × Y ) be represented in the form

Z =
∞⋂

i=1

ni⋃
j=1

[f−1
i,j (0)× g−1

i,j (0)],

where fi,j ∈ C(X) and gi,j ∈ C(Y ) for i ∈ N and j = 1, . . . , ni (ni ∈ N)
(cf. 1.1). Suppose that x0 6∈ pX(Z). Put Ck =

⋂k
i=1

⋃ni

j=1[f
−1
i,j (0)× g−1

i,j (0)]
for k ∈ N. Since ({x0} × Y ) ∩ Z = ∅ and Z =

⋂∞
k=1 Ck, it follows from the

pseudocompactness of Y that there is k0 ∈ N such that ({x0}×Y )∩Ck0 = ∅
(cf. 1.6). Obviously, pX(Ck0) is a zero-set in X, pX(Z) ⊆ pX(Ck0) and
x0 6∈ pX(Ck0). Therefore clX pX(Z) ⊆ pX(Ck0) and, in consequence, x0 6∈
clX pX(Z). Hence (ii)⇒(iii).

The proof that (iii)⇒(iv) is a slight modification of the proof of the impli-
cation (1)⇒(2) of Theorem 1.1 in [3]. We include it below for completeness.

Suppose that, for some Z ∈ Zβ×β(X × Y ), there exists

〈x0, y0〉 ∈ clX×βY Z \
⋃

x∈X

clX×βY [Z ∩ ({x} × Y )].

In particular, 〈x0, y0〉 6∈ clX×βY [Z∩({x0}×Y )]. There existsH ∈ Zβ×β(X×
βY ) such that H ∩ Z ∩ ({x0} × Y ) = ∅ and 〈x0, y0〉 ∈ intX×βY H. Then
∅ 6= H ∩Z ∈ Zβ×β(X×Y ), x0 6∈ pX(H ∩Z) and x0 ∈ clX pX(H ∩Z), which
contradicts (iii). Hence (iii)⇒(iv).

Assume (iv). Take any functions f, g ∈ Cβ×β(X×Y ) such that f−1(0)∩
g−1(0) = ∅. Put h = |f |/(|f |+ |g|) and, for a, b ∈ [0; 1] with a < b, consider
the sets Za = {〈x, y〉 ∈ X × Y : h(〈x, y〉) ≤ a} and Zb = {〈x, y〉 ∈ X × Y :
h(〈x, y〉) ≥ b}. Then Za, Zb ∈ Zβ×β(X × Y ). Hence

clX×βY (Za) ∩ clX×βY (Zb)

=
⋃

x∈X

(clX×βY [Za ∩ ({x} × Y )] ∩ clX×βY [Zb ∩ ({x} × Y )]) = ∅

because the zero-sets Za ∩ ({x} × Y ) and Zb ∩ ({x} × Y ) in {x} × Y have
disjoint closures in the Čech–Stone compactification of {x} × Y . In view of
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[1; Corollary 3], the function h has a continuous extension h̃ over X × βY .
Since X is pseudocompact, so is X × βY (cf. [5; 3.10.27]). By Glicksberg’s
theorem (cf. [10]), β〈X × βY 〉 = βX × βY ; hence h̃ has a continuous
extension over βX × βY . This, together with 1.2, gives that (iv)⇒(v).

Assume (v) and suppose, if possible, that X is not pseudocompact. Take
an unbounded continuous function f : X → [0;∞). There exists an increas-
ing sequence 〈mn〉 of positive integers such that f−1((mn;mn+1)) 6= ∅ for
each n ∈ N. Choose dn ∈ f−1((mn;mn+1)) and put D = {dn : n ∈ N}.
Let E = D × βY and γE = clβX D × βY . We shall show that γE is the
Wallman compactification of E with respect to the normal base Zγ(E).

Take any Z1, Z2 ∈ Zγ(E) such that Z1 ∩ Z2 = ∅. By 1.1, there are
functions fi,j,k ∈ C∗(D) and gi,j,k ∈ C(βY ) such that

Zk =
∞⋂

i=1

n(i,k)⋃
j=1

[f−1
i,j,k(0)× g−1

i,j,k(0)] for k = 1, 2.

For each n ∈ N, choose εn > 0 such that [f(dn) − εn; f(dn) + εn] ⊂
(mn;mn+1). Let Dn = f−1([f(dn) − εn; f(dn) + εn]) for n ∈ N. Observe
that Hi,j,k =

⋃
{Dn : fi,j,k(dn) = 0} is a zero-set in X. Let

Hk =
∞⋂

i=1

n(i,k)⋃
j=1

[Hi,j,k × g−1
i,j,k(0)] for k = 1, 2.

Then H1∩H2 = ∅ and H1,H2 ∈ Zβ×β(X×βY ). According to 1.3, βX×βY
is the Wallman compactification of X × βY arising from the normal base
{h−1(0) : h ∈ Cβ×β(X × βY )}. Hence, by 1.2, clX×βY H1 ∩ clX×βY H2 = ∅.
Therefore clγE Z1∩clγE Z2 = ∅ because Zk ⊆ Hk for k = 1, 2. Thus, by 1.2,
γE is the Wallman compactification of E with respect to Zγ(E). Since E
is Lindelöf and non-pseudocompact, it follows from 1.5 that γE = βE. On
the other hand, γE = βD×βY , so β〈D×βY 〉 = βD×βY . By Glicksberg’s
theorem, D × βY is pseudocompact, which is absurd. Hence (v)⇒(i).

Assume now that (vi) does not hold. By 1.4, there is a function ψ ∈
C(βX × βY ) such that ∅ 6= ψ−1(0) ⊆ (βX × βY ) \ (X × Y ). Put Zn =
ψ−1([−1/n; 1/n]) ∩ (X × Y ). Then Zn ∈ Zβ×β(X × Y ) and

⋂m
n=1 Zn 6= ∅

for each m ∈ N. Obviously,
⋂∞

n=1 Zn = ∅, which contradicts (ii). Hence
(ii)⇒(vi) and the proof of 1.7 is complete.

Let us observe that, in view of [3; Thms. 4.3 & 1.1], conditions (iii) and
(iv) of Theorem 1.7 will be equivalent to the pseudocompactness of X × Y
if one replaces Zβ×β(X × Y ) by Zβ(X × Y ).

It follows from the results of F. Kost obtained in [11] that, for any
Tikhonov spaces X and Y , βX × βY is the Wallman compactification of
X × Y with respect to the normal base B consisting of all finite unions of
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sets of the form f−1(0)× g−1(0), where f ∈ C∗(X) and g ∈ C∗(Y ). Denote
by Bδ the smallest family which contains B and is closed under countable
intersections. In the light of 1.1, Bδ = Zβ×β(X×Y ); thus Theorem 1.7 shows
that the Wallman compactification with respect to B can be equivalent to
the Wallman compactification with respect to Bδ only under very restrictive
conditions.

The referee has posed the following problem:

Problem. If X and Y are pseudocompact spaces such that the product
X × Y is not pseudocompact , must every compactification of X × Y be of
Wallman type?

A satisfactory answer to the referee’s question is unknown to the author;
however, under MA and the negation of CH, we shall show that there exist
pseudocompact spaces X and Y such that the space X × Y has a com-
pactification which is not of Wallman type. To this end, we shall need the
following

1.8.Theorem. Under the negation of CH , every normal non-pseudocom-
pact space has a compactification which is not of Wallman type.

P r o o f. Let X be a normal non-pseudocompact space. The space X be-
ing non-pseudocompact, it contains a closed copy of the space N of positive
integers. Without loss of precision, we may assume that N is a closed sub-
space of X. If we assume the negation of CH, then 2ω ≥ ω2 and, according
to Corollary 2 of [14], there exists a compactification γN of N which is not of
Wallman type. Obviously, βN = clβXN. Let π : clβXN → γN be the natural
quotient map which witnesses that γN ≤ βN. Then the decomposition

A = {π−1(z) : z ∈ γN \ N} ∪ {{y} : y ∈ βX \ (βN \ N)}

of βX is upper semicontinuous. Therefore, by the Alexandrov theorem (cf.
[5; 3.2.11]), the quotient space αX = βX/A obtained from βX by identifying
each element of A with a point is a compactification of X. Suppose, if
possible, that there exists a normal base D for X such that αX = wDX.
Let F = {D ∩N : D ∈ D}. To show that F is a normal base for N and that
wFN = clαXN, it suffices to check that

clαX(D ∩ N) = clαX D ∩ clαX N

for each D ∈ D. Let us consider any D ∈ D and suppose that y ∈ clαX D ∩
clαX N but y 6∈ clαX(D ∩ N). There exists C ∈ D such that y ∈ clαX C
and clαX C ∩ clαX(D ∩ N) = ∅. Then C ∩ D ∩ N = ∅ and it follows from
the normality of X that clβX(C ∩ D) ∩ clβX N = ∅. This implies that
∅ = clαX(C ∩ D) ∩ clαX N = clαX C ∩ clαX D ∩ clαX N (cf. [12; 4.4(f)]),
which is absurd. The contradiction obtained proves that F is a normal base
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for N and that wFN = clαX N. But this is impossible because clαX N = γN.
Accordingly, αX cannot be of Wallman type.

By Corollary 1 of [14], every compactification of every separable Tikho-
nov space is of Wallman type if and only if the continuum hypothesis holds;
hence the assumption of the negation of CH cannot be omitted in Theo-
rem 1.8. However, the author does not know whether the assumption of
normality is essential in 1.8. Clearly, every compactification of every pseu-
docompact space is of Wallman type.

E. K. van Douwen proved in [4] that, under MA, there exist normal
pseudocompact spaces X and Y such that X×Y is normal but not pseudo-
compact (cf. also [15; 3.2, p. 577]). If, in addition, we assume the negation
of CH, then van Douwen’s construction and Theorem 1.8 will give us a
negative answer to the above-mentioned problem of the referee.

2. The pseudocompactness of X × Y . Let E be a family of subsets
of a set X and let T be a topological space. A mapping K : T → E will be
called E-upper semicontinuous (abbr. E-u.sc.) if, for any t0 ∈ T and E ∈ E
such that K(t0) ∩ E = ∅, there exists an open neighbourhood U of t0 in T
such that K(t) ∩ E = ∅ for any t ∈ U . We shall say that E semiseparates a
set A ⊆ X if, for any E ∈ E with A ∩ E = ∅, there exists F ∈ E such that
A ⊆ F and F ∩E = ∅. When A is a collection of subsets of X, we shall say
that E semiseparates A if E semiseparates any set A ∈ A.

In what follows, the algebra C∗(T ) will always be considered with the
topology of uniform convergence.

2.1. Lemma. Suppose that both X and Y are pseudocompact , and a set
A ⊆ X × Y has the property that , for any f ∈ C(X) and g ∈ C(Y ) with
A ∩ [f−1(0)× g−1(0)] = ∅, there is Z ∈ Zβ×β(X × Y ) such that A ⊆ Z and
Z ∩ [f−1(0)× g−1(0)] = ∅. Then Zβ×β(X × Y ) semiseparates A.

P r o o f. Take any C ∈ Zβ×β(X×Y ) such that C ∩A = ∅. Then, by 1.1,
C has a Suslin representation in the form

C =
⋃

σ∈NN

∞⋂
n=1

[f−1
σ�n(0)× g−1

σ�n(0)]

for some fσ�n ∈ C(X) and gσ�n ∈ C(Y ). For any σ ∈ NN, there is Zσ ∈
Zβ×β(X×Y ) such that A ⊆ Zσ and Zσ∩

⋂∞
n=1[f

−1
σ�n(0)×g−1

σ�n(0)] = ∅. Since,
by 1.7, the collection Zβ×β(X × Y ) is semicompact, there is m(σ) ∈ N such
that Zσ ∩

⋂m(σ)
n=1 [f−1

σ�n(0)× g−1
σ�n(0)] = ∅. Put

D =
⋃

σ∈NN

m(σ)⋂
n=1

[f−1
σ�n(0)× g−1

σ�n(0)].
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Then D ∩ A = ∅ and D can be represented as D =
⋃∞

n=1[f
−1
n (0)× g−1

n (0)]
for some fn ∈ C(X) and gn ∈ C(Y ). Choose Zn ∈ Zβ×β(X × Y ) such that
A ⊆ Zn and Zn ∩ [f−1

n (0) × g−1
n (0)] = ∅. Then, for Z =

⋂∞
n=1 Zn, we have

A ⊆ Z and Z ∩ C = ∅.
2.2. Theorem. For any non-void Tikhonov spaces X and Y , the follow-

ing conditions are equivalent :

(i) X × Y is pseudocompact ;
(ii) both X and Y are pseudocompact and Zβ×β(X × Y ) = Z(X × Y );
(iii) the mapping K : C∗(X)× C∗(Y ) → Z(X × Y ) defined by

K(f, g) = f−1(0)× g−1(0)

is Z(X × Y )-u.sc.;
(iv) for any Z ∈ Z(X×Y ) and 〈f, g〉 ∈ C∗(X)×C∗(Y ) with Z∩[f−1(0)×

g−1(0)] = ∅, there exists ε > 0 such that Z∩[f−1([−ε; ε])×g−1([−ε; ε])] = ∅;
(v) both X and Y are pseudocompact and Zβ×β(X × Y ) semiseparates

Z(X × Y ).

P r o o f. In view of Glicksberg’s theorem (cf. [10]), the implication
(i)⇒(ii) is obvious.

Assume (ii). Take any f0 ∈ C∗(X), g0 ∈ C∗(Y ) and Z ∈ Z(X × Y ) such
that Z ∩ [f−1

0 (0) × g−1
0 (0)] = ∅. By 1.7(ii), there exists n ∈ N such that

Z ∩ [f−1
0 ([−1/n; 1/n])× g−1

0 ([−1/n; 1/n])] = ∅. If 〈f, g〉 ∈ C∗(X)× C∗(Y ),
|f − f0| < 1/n and |g − g0| < 1/n, then Z ∩ [f−1(0)× g−1(0)] = ∅ because
f−1(0)× g−1(0) ⊆ f−1

0 ([−1/n; 1/n])× g−1
0 [−1/n; 1/n]). Hence (ii)⇒(iii).

Assume (iii). Now, let 〈f1, g1〉 ∈ C∗(X) × C∗(Y ), Z ∈ Z(X × Y ) and
Z∩[f−1

1 (0)×g−1
1 (0)] = ∅. Since K is Z(X×Y )-u.sc., there is ε > 0 such that

if 〈f, g〉 ∈ C∗(X)×C∗(Y ) has the property that |f−f1| ≤ ε and |g−g1| ≤ ε,
then K(f, g) ∩ Z = ∅. Let 〈x1, y1〉 ∈ f−1

1 ([−ε; ε]) × g−1
1 ([−ε; ε]). Then, for

f = f1 − f1(x1) and g = g1 − g1(y1), we have |f − f1| ≤ ε and |g − g1| ≤ ε;
hence Z ∩ [f−1(0)× g−1(0)] = ∅. Since 〈x1, y1〉 ∈ f−1(0)× g−1(0), we have
〈x1, y1〉 6∈ Z. Altogether this yields Z ∩ [f−1

1 ([−ε; ε])× g−1
1 ([−ε; ε])] = ∅ and

we conclude that (iii)⇒(iv).
Assume (iv) and suppose, if possible, that X is not pseudocompact.

There exists a sequence 〈fn〉 of continuous functions fn : X → [0; 1] such
that f−1

n+1(0) ⊆ f−1
n (0) 6= ∅ for any n ∈ N but

⋂∞
n=1 f

−1
n (0) = ∅. Put

f =
∑∞

n=1(1/2
n)fn and g(y) = 0 for any y ∈ Y . Then, for Z0 = X × Y ,

we have Z0 ∩ [f−1(0) × g−1(0)] = ∅; thus there exists ε > 0 such that
Z0 ∩ [f−1([−ε; ε]) × g−1([−ε; ε])] = ∅. Hence f−1([−ε; ε]) = ∅. Take
n0 ∈ N such that

∑∞
n=n0+1 1/2n < ε. Then f−1

n0
(0) ⊆ f−1([−ε; ε]) be-

cause f−1
n0

(0) ⊆ f−1
n (0) for each n ≤ n0. Hence f−1([−ε; ε]) 6= ∅ and we

obtain a contradiction which shows that X is pseudocompact. Similarly, Y
is pseudocompact, too. Now, an application of 2.1 shows that (iv)⇒(v).
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Assume (v) and suppose that X × Y is not pseudocompact. There is
an unbounded continuous function h : X ×X → [0;∞). We can define by
induction an increasing sequence 〈mn〉 of positive integers, numbers εn > 0
and functions fn ∈ C∗(X) and gn ∈ C∗(Y ) such that f−1

n ([−εn; εn]) ×
g−1

n ([−εn; εn]) ⊆ h−1((mn;mn+1)) and f−1
n (0)× g−1

n (0) 6= ∅ for each n ∈ N.
By the equivalence (i)⇔(v) of 1.7 and by 1.2, there exist functions hn ∈
Cβ×β(X × Y ) such that

hn[(X × Y ) \ (f−1
n [(−εn; εn)]× g−1

n [(−εn; εn)])] = {0}

and

hn[f−1
n ([−εn/2; εn/2])× g−1

n ([−εn/2; εn/2])] = {1}.
Put ψn =

∑∞
m=n hm for n ∈ N. Clearly, ψn ∈ C∗(X × Y ) and ψ−1

n (1) =⋃∞
m=n h

−1
m (1) for n ∈ N. We now show that pX(ψ−1

n (1)) is closed in X for
any n ∈ N.

Take any x ∈ X such that x 6∈ pX(ψ−1
n (1)). Then ({x} × Y ) ∩ ψ−1

n (1)
= ∅. Since Y is pseudocompact, it follows from 1.6 that, for each m ≥ n,
there exists δm > 0 such that ({x} × Y ) ∩ h−1

m ((1 − δm; 1 + δm)) = ∅.
Put Am = (X × Y ) \ h−1

m ((1 − δm; 1 + δm)) and A =
⋂∞

m=nAm. Then
A ∈ Zβ×β(X × Y ), {x} × Y ⊆ A and A ∩ ψ−1

n (1) = ∅. Since Zβ×β(X × Y )
semiseparates Z(X × Y ), there is D ∈ Zβ×β(X × Y ) such that ψ−1

n (1) ⊆ D
and D∩A = ∅. Then x 6∈ pX(D). By (i)⇔(iii) of 1.7, x 6∈ clX pX(D), which
implies that x 6∈ clX pX(ψ−1

n (1)). Hence pX(ψ−1
n (1)) is closed in X.

Put Un = intX pX(ψ−1
n (1)) for n ∈ N. Then Un 6= ∅ and Un+1 ⊆ Un

for any n ∈ N. Since X is pseudocompact, it follows from Theorem 3.10.23
of [5] that there exists x0 ∈

⋂∞
n=1 clX Un. Then x0 ∈

⋂∞
n=1 pX(ψ−1

n (1)).
This implies that ({x0} × Y ) ∩ ψ−1

n (1) 6= ∅ for each n ∈ N. Since Y is
pseudocompact and ψ−1

n+1(1) ⊆ ψ−1
n (1) for any n ∈ N, it follows from 1.6

that ({x0} × Y ) ∩
⋂∞

n=1 ψ
−1
n (1) 6= ∅, which is absurd. Hence (v)⇒(i).

A variety of other conditions equivalent to the pseudocompactness of
X × Y have been found by many authors (cf., for instance, [3], [7], [10]
& [13]).

IfX and Y are pseudocompact andX×Y is not pseudocompact, then the
semiseparation of Z(X×Y ) by Zβ×β(X×Y ) is spoilt by a set Z ∈ Z(X×Y )
which is a countable union of members of Zβ×β(X×Y ). Therefore one may
suspect that there exist pseudocompact spaces X and Y such that X × Y
is not pseudocompact but the smallest σ-algebra containing Zβ×β(X × Y )
is equal to the smallest σ-algebra containing Z(X × Y ). Such an example
is not known to the author.

Let us observe that the implication (ii)⇒(i) of 2.2 is an immediate con-
sequence of 1.6 and the implication (i)⇒(ii) of 1.7.

The proof of 2.2 shows that the following proposition holds:
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2.3. Proposition. For non-void Tikhonov spaces X and Y , the following
conditions are equivalent :

(i) both X and Y are pseudocompact ;
(ii) the mapping K : C∗(X)× C∗(Y ) → Zβ×β(X × Y ) defined by

K(f, g) = f−1(0)× g−1(0)

is Zβ×β(X × Y )-u.sc.;
(iii) for any Z ∈ Zβ×β(X × Y ) and 〈f, g〉 ∈ C∗(X) × C∗(Y ) with Z ∩

[f−1(0) × g−1(0)] = ∅, there exists ε > 0 such that Z ∩ [f−1([−ε; ε]) ×
g−1([−ε; ε])] = ∅.

Finally, let us notice that the following pseudocompact version of Lem-
ma 8.6 of [8] can easily be drawn from 2.2:

2.4. Proposition. A Tikhonov space X is pseudocompact if and only if
the mapping K : C∗(X) → Z(X) defined by K(f) = f−1(0) is Z(X)-u.sc.
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