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1. Introduction. Let E and F be Banach spaces and suppose T : E →
F is a bounded linear operator. The operator T is said to be unconditionally

converging if T does not fix any copy of c0. A Banach space E is said to
have Pe lczyński’s property (V) if every unconditionally converging operator
with domain E is weakly compact. In a fundamental paper [15], Pe lczyński
showed that if Ω is a compact Hausdorff space then the space C(Ω), of all
continuous scalar-valued functions on Ω, has property (V); and he asked
([15], Remark 1, p. 645; see also [9], p. 183) whether for a Banach space E
the abstract continuous function space C(Ω,E) has property (V) whenever
E does. This question has been considered by several authors. Perhaps
the sharpest result in this direction is in the paper of Cembranos, Kalton,
E. Saab and P. Saab [5], where they proved that if E has property (U) and
contains no copy of ℓ1 then C(Ω,E) has property (V). Property (U) and
noncontainment of ℓ1 was recently proved to be equivalent to hereditarily
(V) by Rosenthal in [18]. There are, however, many known examples of Ba-
nach spaces that have property (V) but fail to satisfy the above conditions.
For instance, Kisliakov in [13] (also Delbaen [7] independently) showed that
the disk algebra has property (V); Bourgain did the same for ball algebras
and polydisk algebras in [4] and H∞ in [3]; recently Pfitzner proved that
C∗-algebras have property (V) (see [16]). For more detailed discussion and
examples of spaces with property (V), we refer to [11] and [20].

In this note, we obtain a positive answer to the above question for the
separable case; namely we prove that if E is a separable Banach space then
C(Ω,E) has property (V) if and only if E does. We also present some
applications of the main theorem to Banach spaces of compact operators as
well as to Bochner function spaces.

Our Banach space notation and terminology are standard, as may be
found in the books [8] and [9].
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2. Definitions and some preliminary results

Definition 1. Let E be a Banach space. A series
∑∞

n=1 xn in E is
said to be weakly unconditionally Cauchy (WUC ) if for every x∗ in E∗, the
series

∑∞
n=1 |x

∗(xn)| is convergent.

There are many criteria for a series to be a WUC series (see for instance
[8]).

The following proposition was proved by Pe lczyński in [15].

Proposition 1. For a Banach space E, the following assertions are

equivalent :

(i) A subset H ⊂ E∗ is relatively weakly compact whenever

lim
n→∞

sup
x∗∈H

|x∗(xn)| = 0

for every WUC series
∑∞

n=1 xn in E;
(ii) For any Banach space F , every bounded operator T : E → F that

is unconditionally converging is weakly compact.

Definition 2. A subset H ⊂ E∗ is called a (V)-subset if

lim
n→∞

sup
x∗∈H

|x∗(xn)| = 0

for every WUC series
∑∞

n=1 xn in E.

So a Banach space E has property (V) if (and only if) every (V)-subset
of E∗ is relatively weakly compact. This motivates us to study (V)-subsets
of the dual of C(Ω,E) for a given Banach space E and a compact Hausdorff
space Ω.

Recall that the space C(Ω,E)∗ is isometrically isomorphic to the Ba-
nach space M(Ω,E∗) of all weak*-regular E∗-valued measures of bounded
variation defined on the σ-field Σ of Borel subsets of Ω and equipped with
the norm ‖m‖ = |m|(Ω), where |m| is the variation of m. In this section we
study different structures of subsets of M(Ω,E∗).

Let us begin by recalling some classical facts: Fix a probability measure
λ on Σ and let m ∈M(Ω,E∗) with |m| ≤ λ and ̺ be a lifting of L∞(λ) (see
[10] and [12]). For x ∈ E, the scalar measure x◦m has density d(x◦m)/dλ ∈
L∞(λ). We define ̺(m)(ω)(x) = ̺(d(x ◦m)/dλ)(ω). It is well known that

x(m(A)) =
\
A

〈̺(m)(ω), x〉 dλ(ω) and |m|(A) =
\
A

‖̺(m)(ω)‖ dλ(ω)

for every measurable subset A of Ω. Note also that ω 7→ ̺(m)(ω) (Ω → E∗)
is weak*-scalarly measurable.

The following proposition can be deduced from [2] but we will present a
direct proof for the sake of completeness.
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Proposition 2. Let H be a bounded subset of M(Ω,E∗). If H is a

(V)-subset then V (H) = {|m| : m ∈ H} is relatively weakly compact in

M(Ω).

P r o o f. Assume that V (H) is not relatively weakly compact. Since
the space C(Ω) has property (V), there exists a WUC series

∑∞
n=1 en in

C(Ω) with supn∈N ‖en‖ ≤ 1, a sequence (mn)n in H and ε > 0 so that
〈en, |mn|〉 ≥ ε for each n ∈ N. Let λ =

∑∞
n=1 2−n|mn|. Since |mn| ≤ 2nλ,

for a lifting ̺ of L∞(λ) we can define ̺(mn) : Ω → E∗.

Now since C(Ω,E) is norming for M(Ω,E∗), there exists θn ∈ C(Ω,E)
with ‖θn‖ = 1 and such that 〈θn,mn〉 ≥ ‖mn‖ − ε/2 for each n ∈ N, and
that is equivalent to\

θn(ω) dmn(ω) ≥
\
‖̺(mn)(ω)‖ dλ(ω) −

ε

2
or \

〈θn(ω), ̺(mn)(ω)〉 dλ(ω) ≥
\
‖̺(mn)(ω)‖ dλ(ω) −

ε

2
.

Notice also that since ‖θn(ω)‖ ≤ 1, 〈θn(ω), ̺(mn)(ω)〉 ≤ ‖̺(mn)(ω)‖ and
we get

∣∣∣
\
en(ω)θn(ω) dmn(ω) −

\
en(ω) d|mn|(ω)

∣∣∣

=
∣∣∣
\
en(ω)(〈θn(ω), ̺(mn)(ω)〉 − ‖̺(mn)(ω)‖) dλ(ω)

∣∣∣

≤ ‖en‖
\∣∣∣‖̺(mn)(ω)‖ − 〈θn(ω), ̺(mn)(ω)〉

∣∣∣ dλ(ω)

≤
\
‖̺(mn)(ω)‖ dλ(ω) −

\
〈θn(ω), ̺(mn)(ω)〉 dλ(ω)

≤
\
‖̺(mn)(ω)‖ dλ(ω) −

(\
‖̺(mn)(ω)‖ dλ(ω) −

ε

2

)
=
ε

2
.

So for each n ∈ N, ∣∣∣
\
en(ω)θn(ω) dmn

∣∣∣ >
ε

2
.

Fix ψn = en(·)θn(·) for each n ∈ N; the function ψn belongs to C(Ω,E)
and we claim that

∑∞
n=1 ψn is a WUC series in C(Ω,E). Indeed, there is

a constant C > 0 such that supn∈N ‖
∑n

k=1 tkek‖ ≤ C supn∈N |tn| for any
(tn)n ∈ ℓ∞ (see [8], p. 44). Now for any finite subset σ of N and ω ∈ Ω, we
get

∥∥∥
∑

n∈σ

ψn(ω)
∥∥∥

E
=

∥∥∥
∑

n∈σ

en(ω)θn(ω)
∥∥∥

E
= sup

‖x∗‖≤1

∣∣∣
∑

n∈σ

en(ω)〈θn(ω), x∗〉
∣∣∣

≤ sup
‖x∗‖≤1

C · sup
n∈N

|〈θn(ω), x∗〉| ≤ C · sup
n∈N

‖θn‖ ≤ C,
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which implies that for any finite subset σ of N,
∥∥∥

∑

n∈σ

ψn

∥∥∥ ≤ C.

This shows that
∑∞

n=1 ψn is a WUC series. Now 〈ψn,mn〉 ≥ ε/2 for all
n ∈ N, a contradiction with the assumption that H is a (V)-subset.

For the next proposition, we will use the following notation: for a given
measure m ∈ M(Ω,E∗) and A ∈ Σ, mχA denotes the measure (Σ → E∗)
given by mχA(B) = m(A ∩B) for any B ∈ Σ.

Proposition 3. Let H be a (V)-subset of M(Ω,E∗) and (Am)m∈H a

collection of measurable subsets of Ω. Then the subset {mχAm
: m ∈ H} is

a (V)-subset of M(Ω,E∗).

P r o o f. Assume that H is a (V)-subset of M(Ω,E∗). By Proposition 2,
the set V (H) is relatively weakly compact in M(Ω). Let λ be a control
measure for V (H). Fix a sequence (mnχAmn

)n∈N in {mχAm
: m ∈ H}. We

need to show that the countable subset {mnχAmn
: n ∈ N} is a (V)-subset of

M(Ω,E∗). Let
∑∞

n=1 fn be a WUC series in C(Ω,E) with supn ‖fn‖ ≤ 1.
For ε > 0 (fixed), there exists δ > 0 such that if A ∈ Σ with λ(A) < δ
then |m|(A) < ε/2, for all m ∈ H. For each n ∈ N, choose a compact set
Cn and an open set On such that Cn ⊂ Amn

⊂ On and λ(On \ Cn) < δ.
Fix a continuous function gn : Ω → [0, 1] with gn(ω) = 1 for ω ∈ Cn and
gn(ω) = 0 for ω ∈ Ω \On. Let φn = gnfn; we claim that

∑∞
n=1 φn is a WUC

series in C(Ω,E). For that, recall that
∑∞

n=1 fn is a WUC series in C(Ω,E)
and since (gn)n is bounded in C(Ω), one can use similar argument to that
in the proof of Proposition 2 to conclude that

∑∞
n=1 φn is a WUC series.

Consequently, limn→∞〈mn, φn〉 = 0. Now we have the following estimate:

|〈mnχAmn
, fn〉| =

∣∣∣
\
fnχAmn

dmn

∣∣∣ =
∣∣∣
\

Amn

fn dmn

∣∣∣

≤
∣∣∣
\

Cn

fn dmn

∣∣∣ +
∣∣∣

\
Amn

\Cn

fn dmn

∣∣∣

≤
∣∣∣
\
Ω

φn dmn

∣∣∣ +
∣∣∣
\

On\Cn

fn dmn

∣∣∣ +
∣∣∣

\
Amn

\Cn

fn dmn

∣∣∣

≤ |〈φn,mn〉| + |mn|(On \ Cn) + |mn|(Amn
\ Cn)

≤ |〈φn,mn〉| + 2|mn|(On \ Cn) ≤ |〈φn,mn〉| + ε.

This implies that lim supn→∞ |〈mnχAmn
, fn〉| ≤ ε and since ε is arbitrary,

we conclude that limn→∞ |〈mnχAmn
, fn〉| = 0. This shows that {mnχAmn

:
n ∈ N} is a (V)-subset.
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If we denote by M∞(λ,E∗) the set {m ∈ M(Ω,E∗) : |m| ≤ λ} then we
obtain the following corollary.

Corollary 1. Let H be a (V)-subset of M(Ω,E∗) and consider λ the

control measure of V (H). For ε > 0 fixed , there exist N ∈ N and Hε a

(V)-subset of M(Ω,E∗) with Hε ⊂ NM∞(λ,E∗) so that H ⊆ Hε + εB,
where B denotes the closed unit ball of M(Ω,E∗).

P r o o f. Let gm : Ω → R+ be the density of |m| with respect to λ. Then

lim
N→∞

\
{ω:gm(ω)>N}

gm(ω) dλ(ω) = 0 uniformly on H.

For ε > 0, choose N ∈ N so that\
{ω:gm(ω)>N}

gm(ω) dλ(ω) < ε

and let Am = {ω : gm(ω) ≤ N}. It is clear that Hε = {mχAm
: m ∈ H} is

a subset of NM∞(λ,E∗) and is a (V)-subset by Proposition 3. Also each
measure m in H satisfies m = mχAm

+mχAc
m

with ‖mχAc
m
‖ < ε.

Our next proposition can be viewed as a generalization of Theorem 1 of
[17] for sequences of weak*-scalarly measurable maps. We denote by (en)
the unit vector basis of c0, by (Ω,Σ, λ) a probability space and, for any
Banach space F , by F1 the closed unit ball of F .

Proposition 4. Let Z be a separable subspace of a real Banach space

E and (fn)n be a sequence of maps from Ω to E∗ that are weak*-scalarly

measurable with supn ‖fn‖∞ ≤ 1. Let a, b be real numbers with a < b.
Then there exist a sequence gn ∈ conv{fn, fn+1, . . .} and measurable subsets

C and L of Ω with λ(C ∪ L) = 1 such that

(i) if ω ∈ C and T ∈ L(c0, Z)1 then either

lim sup
n→∞

〈gn(ω), T en〉 ≤ b or lim inf
n→∞

〈gn(ω), T en〉 ≥ a;

(ii) if ω ∈ L then there exists k ∈ N so that for each infinite sequence

σ of zeros and ones, there exists T ∈ L(c0, Z)1 such that for n ≥ k,

σn = 1 ⇒ 〈gn(ω), T en〉 ≥ b and σn = 0 ⇒ 〈gn(ω), T en〉 ≤ a.

P r o o f. The proof is a further refinement of the techniques used in [22]
and [17] so we recommend that the reader should get familiar with the proof
of Theorem 1 of [17] before reading our extension.

We begin by introducing some notations, part of which were already used
in [22] and [17].

Let fn : Ω → E∗ be a sequence as in the statement of the proposition.
We write u ≪ f (or (un) ≪ (fn)) if there exist k ∈ N and p1 < q1 < p2 <
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q2 < . . . < pn < qn < . . . so that for n ≥ k,

un =

qn∑

i=pn

λifi with λi ∈ [0, 1] and

qn∑

i=pn

λi = 1.

Consider L(c0, Z)1, the closed unit ball of L(c0, Z) with the strong operator
topology. It is not difficult to see (using the fact that Z is separable) that
L(c0, Z)1 is a Polish space; in particular, it has a countable basis (On)n.
Since L(c0, Z)1 is a metric space, we can assume that the On’s are open
balls.

The letter K will stand for the set of all (strongly) closed subsets of
L(c0, Z)1. We will say that ω 7→ K(ω) (Ω → K) is measurable if the set
{ω : K(ω) ∩On 6= ∅} is a measurable subset of Ω for every n ∈ N.

Let hn =
∑qn

i=pn
λifi with

∑qn

i=pn
λi = 1, λi ≥ 0 and p1 < q1 < p2 <

q2 < . . . ; let V be an open subset of L(c0, Z)1 and ω 7→ K(ω) be a fixed
measurable map. We set

hn(ω) = sup
k≥qn

sup{〈hn(ω), T ek〉 : T ∈ V ∩K(ω)},(1)

θ(h)(ω) = lim sup
n→∞

hn(ω).(2)

Notice that the definition of hn depends on the representation of hn as a
block convex combination of fn’s. Note also that since V is fixed, it does
not appear in the notation. The measurability of hn can be deduced with
similar argument to that in [22] (see also [17]) and it is clear that ‖hn‖∞ ≤ 1.
Similarly we set

h̃n(ω) = inf
k≥qn

inf{〈hn(ω), T ek〉 : T ∈ V ∩K(ω)},(3)

ϕ(h)(ω) = lim inf
n→∞

h̃n(ω).(4)

The proof of the following lemma is just a notational adjustment of the
proof of Lemma 2 of [17].

Lemma 1. There exists (gn) ≪ (fn) such that if (hn) ≪ (gn) then

lim
n→∞

‖θ(g) − hn‖1 = 0 and lim
n→∞

‖ϕ(g) − h̃n‖1 = 0.

Main construction. Fix a < b and let τ be the first uncountable
ordinal. Set h0

n = fn and K0(ω) = L(c0, Z)1 for every ω ∈ Ω. We construct
inductively, as in [17], for α < τ , sequences hα = (hα

n)n and measurable
maps Kα : Ω → K with the following property:

(5) for β < α < τ, hα ≪ hβ .
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For α < τ and h≪ f with hn =
∑qn

j=pn
λifi, if we define

(6)

hn,l,α(ω) = sup
k≥qn

sup{〈hn(ω), T ek〉 : T ∈ Ol ∩Kα(ω)},

θl,α(h)(ω) = lim sup
n→∞

hn,l,α(ω),

h̃n,l,α(ω) = inf
k≥qn

inf{〈hn(ω), T ek〉 : T ∈ Ol ∩Kα(ω)},

ϕl,α(h)(ω) = lim inf
n→∞

h̃n,l,α(ω),

then for each α of the form β + 1, each l ≥ 1 and each h≪ hα, we have

lim
n→∞

‖θl,β(hα) − hn,l,β‖1 = 0 and lim
n→∞

‖ϕl,β(hα) − h̃n,l,β‖1 = 0.

If α is limit, we set

(7) Kα(ω) =
⋂

β<α

Kβ(ω).

If α = β + 1, then

(8) Kα(ω) = {T ∈ Kβ(ω) : T ∈ Oℓ ⇒ θl,β(hα)(ω) ≥ b, ϕl,β(hα)(ω) ≤ a}.

The construction is done in the same manner as in [17] and is a direct
application of Lemma 1 of the present paper, so we will not present the
details.

As in [17], one can fix an ordinal α < τ such that for a.e. ω ∈ Ω,
Kα(ω) = Kα+1(ω).

Let h = hα+1,

C = {ω : Kα(ω) = ∅} and M = {ω : Kα(ω) = Kα+1(ω) 6= ∅}.

Clearly C and M are measurable and λ(C ∪M) = 1.

The next lemma is the analogue of Lemma 4 of [17].

Lemma 2. Let ω ∈ C and T ∈ L(c0, Z)1. If u≪ h then either

lim sup
n→∞

〈un(ω), T en〉 ≤ b or lim inf
n→∞

〈un(ω), T en〉 ≥ a.

P r o o f. Let ω ∈ C, T ∈ L(c0, Z)1 and fix u ≪ h ≪ f (say u =∑bn

j=an
αjfj); let S : c0 → c0 be an operator defined as follows: Sebn

= en

and Sej = 0 if j 6= bn, n ∈ N. The operator S is obviously bounded linear
with ‖S‖ = 1. So T ◦ S ∈ L(c0, Z)1 = K0(ω). Since T ◦ S 6∈ Kα(ω), there
exists a least ordinal β for which T ◦ S 6∈ Kβ(ω). The ordinal β cannot be
limit, so β = γ + 1 and T ◦ S ∈ Kγ(ω). By the definition of Kβ(·), there
exists l ∈ N with T ◦ S ∈ Ol but either θl,γ(hβ)(ω) ≤ b or ϕl,γ(hβ)(ω) ≥ a.
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Now since u≪ hβ , we get either

lim sup
n→∞

〈un(ω), T en〉 = lim sup
n→∞

〈un(ω), T ◦ Seqn
〉

≤ θl,γ(u)(ω) ≤ θl,γ(hβ)(ω) ≤ b

or

lim inf
n→∞

〈un(ω), T en〉 ≥ ϕl,γ(u)(ω) ≥ θl,γ(hβ)(ω) ≥ a.

Lemma 2 is proved.

The following property of the measurable subset M is somewhat stronger
than that obtained in Lemma 5 of [17] and is the main adjustment of the
entire proof.

Lemma 3. There exists a subsequence (n(i)) of integers such that for a.e.

ω ∈ M , if σ is an infinite sequence of zeros and ones then there exists an

operator T ∈ L(c0, Z)1 (which may depend on ω and σ) such that :

σi = 1 ⇒ 〈hn(i)(ω), T ei〉 ≥ b and σi = 0 ⇒ 〈hn(i)(ω), T ei〉 ≤ a.

P r o o f. Let us denote by F the set of finite sequences of zeros and ones
and by F∞ the set of infinite sequences of zeros and ones. For s ∈ F , |s|
will denote the length of s. Let s = (s1, . . . , sn) and r = (r1, . . . , rm) with
n ≤ m. We say that s < r if si = ri for i ≤ n. Let us fix a representation
of (hn) as a block convex combination of (fn):

hn =

qn∑

i=pn

λifi.

We will construct sequences of integers n(i) and m(i), measurable sets
Bi ⊂M and measurable maps Q(s, ·) : M → N (for s ∈ F ) such that:

(9) qn(1) < m(1) < qn(2) < m(2) < . . . < qn(i) < m(i) < . . . ;

(10) for all s ∈ F, sup{Q(s, ω) : ω ∈M} <∞;

(11) λ(M \Bi) ≤ 2−i;

(12) for all s ∈ F, diam(OQ(s,ω)) ≤ 1/|s|;

(13) for s, r ∈ F, s < r, and ω ∈
⋂

|s|≤i≤|r|

Bi, OQ(r,ω) ⊂ OQ(s,ω);

(14) for all ω ∈M and s ∈ F, Kα(ω) ∩OQ(s,ω) 6= ∅;

(15) for all s ∈ F, for all i ≤ p = |s| and all ω ∈
⋂

i≤j≤|s|

Bj ,

si = 1 ⇒ for all T ∈ OQ(s,ω), sup
qn(i)≤k≤m(i)

〈hn(i)(ω), T ek〉 ≥ b,

si = 0 ⇒ for all T ∈ OQ(s,ω), inf
qn(i)≤k≤m(i)

〈hn(i)(ω), T ek〉 ≤ a.
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The construction is done in a similar fashion to that in [17]; the only
difference is in the selection of the measurable map Q(s, ·) : Ω → N so that
(12) is satisfied. For that we consider, instead of N, the subset M ⊂ N

defined by

M =

{
k ∈ N : diamOk ≤

1

|s|

}
,

and since N and M are equipped with the discrete topology, we can replace
N by M and use the same argument to get Q(s, ·) : Ω → M.

To complete the proof, let L =
⋃

k

⋂
i≥k Bi. It is clear that λ(M \L) = 0.

Fix ω ∈
⋂

i≥k Bi and σ ∈ F∞ with σ = (σi)i∈N. Let

σ(m) = (σ1, . . . , σm) ∈ F for all m ∈ N.

By (15) we deduce that for m ∈ N and all i ≤ m and ω ∈
⋂

i≤j≤mBj ,

σi = 1 ⇒ for all T ∈ OQ(σ(m),ω), sup
qn(i)≤k≤m(i)

〈hn(i)(ω), T ek〉 ≥ b,

σi = 0 ⇒ for all T ∈ OQ(σ(m),ω), inf
qn(i)≤k≤m(i)

〈hn(i)(ω, Tek〉 ≤ a.

It is easy to check that the same conclusion holds for T ∈ OQ(σ(m),ω) (the
closure of OQ(σ(m),ω) for the strong operator topology). So if we let A =⋂

m∈N
OQ(σ(m),ω), then A 6= ∅. In fact, (OQ(σ(m),ω))m∈N is a nested sequence

of nonempty closed sets (by (13)) of a complete metric space and such that
diam(OQ(σ(m),ω)) → 0 (as m → ∞) (by (12)), so A 6= ∅ (see for instance
[14], p. 270).

It is now clear that if ω ∈
⋂

i≥k Bi and A ∈ A, then for i ≥ k,

σi = 1 ⇒ sup
qn(i)≤k≤m(i)

〈hn(i)(ω), Aek〉 ≥ b,

σi = 0 ⇒ sup
qn(i)≤k≤m(i)

〈hn(i)(ω), Aek〉 ≤ a.

We complete the proof as in [17]: choose k(i) ∈ [qn(i),m(i)] such that

sup
qn(i)≤k≤m(i)

〈hn(i)(ω), Aek〉 = 〈hn(i)(ω), Aek(i)〉

for σi = 1 and

inf
qn(i)≤k≤m(i)

〈hn(i)(ω), Aek〉 = 〈hn(i)(ω), Aek(i)〉

for σi = 0. The sequence (k(i)) is an increasing sequence by (9) so one can
construct an operator S : c0 → c0 with Sei = ek(i) for all i ∈ N and it is
now clear that

σi = 1 ⇒ 〈hn(i)(ω), A ◦ Sei〉 ≥ b and σi = 0 ⇒ 〈hn(i)(ω), A ◦ Sei〉 ≤ a.
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The operator T = A ◦ S satisfies the required property. The proof of
Lemma 3 is complete.

To finish the proof of Proposition 4, we take gi = hn(i) for i ∈ N.

3. Main theorem

Theorem 1. Let E be a separable Banach space and Ω be a compact

Hausdorff space. Then the space C(Ω,E) has property (V) if and only if E
has property (V).

P r o o f. If C(Ω,E) has property (V), then the space E has property (V)
since E is isomorphic to a complemented subspace of C(Ω,E).

For the converse, we will present the case where Ω is compact metrizable;
the reduction of the general case to the metrizable case was already done in
the proof of Theorem 3 (case 2) of [5], so we will not present the details.

Assume that E has property (V) and Ω is a compact metric space. Let H
be a (V)-subset of M(Ω,E∗). Our goal is to show that H is relatively weakly
compact. Using Corollary 1, we can assume without loss of generality that
there exists a probability measure λ on Σ such that |m| ≤ λ for each m ∈ H.
Observe that if E has property (V), then E∗ is weakly sequentially complete
(Corollary 5 of [15]) and thus M(Ω,E∗) is weakly sequentially complete, as
shown in [22] (Theorem 17). If H is not relatively weakly compact, then it
contains a sequence (mn)n that is equivalent to the ℓ1-basis. By Theorem 14
of [22], there exist m′

n ∈ conv{mn,mn+1, . . .} and Ω′ ⊂ Ω, λ(Ω′) > 0, so
that for ω ∈ Ω′, there exists l ∈ N such that (̺(m′

n)(ω))n≥l is equivalent to
the ℓ1-basis in E∗. Let

fn(ω) = ̺(m′
n)(ω)χΩ′(ω), n ∈ N.

(fn)n is a sequence of weak*-scalarly measurable maps and supn ‖fn‖∞
<∞.

Proposition 5. There exist a sequence gn ∈ conv{fn, fn+1, . . .}, a pos-

itive number δ and a strongly measurable map T : Ω → L(c0, E)1 such

that

lim inf
n→∞

∣∣∣
\
〈gn(ω), T (ω)en〉 dλ(ω)

∣∣∣ ≥ δ.

P r o o f. Let (a(k), b(k))k∈N be an enumeration of all pairs of rationals
with a < b. By induction, we construct sequences (gk) and measurable sets
Ck, Lk of Ω satisfying the following:

(i) gk+1 ≪ gk for each k ∈ N;
(ii) Ck+1 ⊂ Ck, Lk ⊂ Lk+1, λ(Ck ∪ Lk) = 1;

(iii) for all ω ∈ Ck and all j ≥ k, if T ∈ L(c0, E)1, then either

lim sup
n→∞

〈gj
n(ω), T en〉 ≤ b(k) or lim inf

n→∞
〈gj

n(ω), T en〉 ≥ a(k);



PE LCZYŃSKI’S PROPERTY (V) 73

(iv) for all ω ∈ Lk, there exists j ∈ N such that for each infinite sequence
σ of zeros and ones, there exists T ∈ L(c0, E)1 such that if n ≥ j, then

σn = 1 ⇒ 〈gk
n(ω), T en〉 ≥ b(k) and σn = 0 ⇒ 〈gk

n(ω), T en〉 ≤ a(k).

This is just an application of Proposition 4 inductively, starting from g0 = f .
Let P = {k ∈ N : b(k) > 0} and N = {k ∈ N : a(k) < 0}. It is clear that

N = N ∪ P. Consider C =
⋂

k Ck and L =
⋃

k Lk; we have λ(C ∪ L) = 1.

C a s e 1: λ(L) > 0. Since L =
⋃

k Lk, there exists k ∈ N such that
λ(Lk) > 0. Let (gn) = (gk

n). We claim that (gn) satisfies the requirements
of Proposition 5. For that let us assume first that k ∈ P (i.e. b(k) > 0).
Fix σ = (1, 1, 1, . . .). For each ω ∈ Lk, there exists T ∈ L(c0, E)1 such that
〈gn(ω), T en〉 ≥ b(k) for all n ≥ j for some j ∈ N. We can choose the above
operator measurably using the following lemma:

Lemma 4. There exists a strongly measurable map T : Ω → L(c0, E)1
such that :

(α) T (ω) = 0 for all ω 6∈ Lk;
(β) For ω ∈ Lk, there exists j ∈ N such that if n ≥ j, then 〈gn(ω),

T (ω)en〉 ≥ b(k).

P r o o f. Consider L(c0, E)1 with the strong operator topology and E∗
1

with the weak*-topology. The space E∗
1 is a compact metric space and hence

is a Polish space. The space E∗N
1 × L(c0, E)1 equipped with the product

topology is a Polish space. Let A be the following subset of E∗N
1 ×L(c0, E)1:

{(x∗n), T} ∈ A ⇔ there is j ∈ N for which 〈x∗n, T en〉 ≥ b(k) for all n ≥ j.

The set A is clearly a Borel subset of E∗N × L(c0, E)1 and if Π : E∗N
1 ×

L(c0, E)1 → E∗N
1 is the first projection, then Π(A) is an analytic subset of

E∗N
1 . By Theorem 8.5.3 of [6], there exists a universally measurable map

Θ : Π(A) → L(c0, E)1 such that the graph of Θ is a subset of A. Notice
that if ω ∈ Lk, then (gn(ω))n≥1 ∈ Π(A). We define

T (ω) =
{
Θ((gn(ω))n≥1) if ω ∈ Lk,
0 otherwise.

It is easy to check that T satisfies all the requirements of the lemma. Lemma
4 is proved.

Back to the proof of the proposition, we have 〈gn(ω), T (ω)en〉 ≥ b(k) for
all ω ∈ Lk and n ≥ j (for some j ∈ N). So lim infn→∞〈gn(ω), T (ω)en〉 ≥ b(k)
for ω ∈ Lk, and by Fatou’s lemma,

lim inf
n→∞

\
〈gn(ω), T (ω)en〉 dλ(ω) ≥ b(k)λ(Lk).

The integrand in the above integral is clearly integrable and if we set δ =
b(k)λ(Lk) > 0, the proof is complete for k ∈ P.
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Now if k ∈ N (i.e. a(k) < 0), we consider σ = (0, 0, . . .) and choose a
strongly measurable map ω 7→ T (ω) (using similar argument to that in the
above lemma) with T (ω) = 0 for ω 6∈ Lk; for ω ∈ Lk, there exists j ∈ N

such that 〈gn(ω), T (ω)en〉 ≤ a(k) < 0 for n ≥ j. So we get

lim sup
n→∞

〈gn(ω), T (ω)en〉 ≤ a(k)

for each ω ∈ Lk and hence

lim sup
n→∞

\
〈gn(ω), T (ω)en〉 dλ(ω) ≤ a(k)λ(Lk) < 0,

which implies that

lim inf
n→∞

∣∣∣
\
〈gn(ω), T (ω)en〉 dλ(ω)

∣∣∣ ≥ |a(k)|λ(Lk),

so the proof of the proposition is complete for the case λ(L) > 0.

C a s e 2: λ(L) = 0. Since λ(C∪L) = 1, we have λ(Ω\C) = 0. Choose a
sequence (gn) so that (gn) ≪ (gk

n) for every k ∈ N (see Lemma 1 of [22]). By
the definition of the Ck’s and by (iii), we have either lim supn→∞〈gn(ω), T en〉
≤ b(k) or lim infn→∞〈gn(ω), T en〉 ≥ a(k) for all k ∈ N, and therefore for
each ω ∈ C,

(∗) lim
n→∞

〈gn(ω), T en〉 exists for every T ∈ L(c0, E)1.

But for ω ∈ Ω′, the sequence (fn(ω))n is equivalent to the ℓ1-basis
in E∗; and since (gn) ≪ (fn), the sequence (gn(ω))n is also equivalent
to the ℓ1-basis in E∗; and since E has property (V), the set {gn(ω) :
n ≥ 1} cannot be a (V)-subset of E∗, i.e., there exists a WUC series∑∞

n=1 xn in E such that lim supn→∞〈gn(ω), xn〉 > 0. Define T : c0 → E
by T ((tn)n) =

∑∞
n=1 tnxn for every (tn)n ∈ c0; T is well defined, linear

and bounded (see for intance [8]). Clearly Ten = xn for all n ∈ N. Re-
placing T by T/‖T‖ (if necessary), we conclude that there exists an oper-
ator T ∈ L(c0, E)1 such that lim supn→∞〈gn(ω), T en〉 > 0. But condition
(∗) above insures that the limit exists, so for each ω ∈ Ω′, there exists
T ∈ L(c0, E)1 such that limn→∞〈gn(ω), T en〉 > 0. We now choose the op-
erator T measurably using the same argument as in the above lemma: i.e.,
there exists T : Ω 7→ L(c0, E)1 strongly measurable such that T (ω) = 0
for ω 6∈ Ω′ and limn→∞〈gn(ω), T (ω)en〉 > 0 for all ω ∈ Ω′. Let δ(ω) =
limn→∞〈gn(ω), T (ω)en〉 for ω ∈ Ω′ and 0 otherwise.

The map ω 7→ δ(ω) is measurable and we obtain

lim
n→∞

\
〈gn(ω), T (ω)en〉 dλ(ω) =

\
δ(ω) dλ(ω) = δ > 0.

The proof of Proposition 5 is complete.

To complete the proof of Theorem 1, fix (gn) ≪ (fn), T : Ω → L(c0, E)1
strongly measurable and δ > 0 as in Proposition 5.
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For each n ∈ N, let Gn : Σ → E∗ be the measure in M(Ω,E∗) defined
by

Gn(A) = weak*-
\
A

gn(ω) dλ(ω).

Since fn(ω) = ̺(m′
n)(ω)χΩ′(ω) for every ω ∈ Ω and m′

n ∈ conv{mn,
mn+1, . . .}, it is clear that Gn ∈ conv{mnχΩ′ ,mn+1χΩ′ , . . .} and we will
show that {Gn : n ≥ 1} is not a (V)-subset of M(Ω,E∗) to get a contra-
diction by virtue of Proposition 3. Since ω 7→ T (ω)en is norm-measurable
for each n ∈ N, one can choose (using Lusin’s Theorem) a compact sub-
set Ω′′ ⊂ Ω with λ(Ω \ Ω′′) < δ/3 and such that the map ω → T (ω)en

(Ω′′ → E) is continuous for each n ∈ N.
Let Λ : C(Ω′′, E) → C(Ω,E) be an extension operator (the existence

of such an operator is given by Theorem 21.1.4 of [21]) and consider tn =
Λ(T (·)en|Ω′′). The series

∑∞
n=1 tn is a WUC series in C(Ω,E). In fact, the

operator S : c0 → C(Ω′′, E) given by Se = T (·)e|Ω′′ is easily checked to be
linear and bounded and tn = Λ ◦ S(en), so

∑∞
n=1 tn is a WUC series.

The following estimate concludes the proof:

〈tn, Gn〉 =
\
〈gn(ω), tn(ω)〉 dλ(ω)

=
\

Ω′′

〈gn(ω), T (ω)en〉 dλ(ω) +
\

Ω\Ω′′

〈gn(ω), tn(ω)〉 dλ(ω),

so

〈tn, Gn〉 −
\
〈gn(ω), T (ω)en〉 dλ(ω)

=
\

Ω\Ω′′

〈gn(ω), tn(ω)〉 dλ(ω) −
\

Ω\Ω′′

〈gn(ω), T (ω)en〉 dλ(ω)

and ∣∣∣〈tn, Gn〉 −
\
〈gn(ω), T (ω)en〉 dλ(ω)

∣∣∣ ≤ 2
δ

3
,

which implies that
∣∣∣
\
〈gn(ω), T (ω)en〉 dλ(ω)

∣∣∣ ≤ 2
δ

3
+ |〈tn, Gn〉|.

Hence

lim inf
n→∞

|〈tn, Gn〉| ≥
δ

3
.

This of course shows that {Gn : n ≥ 1} is not a (V)-set.
Theorem 1 is proved.

Theorem 1 above has the following consequences relative to Banach
spaces of compact operators. In what follows, if X and Y are Banach
spaces, then Kw∗(X∗, Y ) denotes the Banach space of weak* to weakly con-
tinuous compact operators from X∗ to Y equipped with the operator norm
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and K(X,Y ) the space of compact operators from X to Y with the operator
norm. We have the following corollaries.

Corollary 2. Let X and Y be Banach spaces. If X is injective and

Y is separable and has property (V) then Kw∗(X∗, Y ) has property (V).

P r o o f. Kw∗(X∗, Y ) is isometrically isomorphic to Kw∗(Y ∗,X), which
is a complemented subspace of Kw∗(Y ∗, C(BX∗)) ≈ C(BX∗ , Y ), and has
property (V) by Theorem 1.

Corollary 3. Let X be an L∞-space and Y a separable Banach space

with property (V). Then K(X∗, Y ) has property (V).

P r o o f. The space K(X∗, Y ) is isomorphic to Kw∗(X∗∗∗, Y ) (see [19])
and it is well known that X∗∗ is injective and so Kw∗(X∗∗∗, Y ) has property
(V) by Corollary 2.

We now turn our attention to Bochner spaces. In [1], Bombal observed
that if E is a closed subspace of an order-continuous Banach lattice, then
Lp(µ,E) has property (V) if 1 < p <∞ and E has property (V). Our next
result shows that for the separable case, property (V) can be lifted to the
Bochner space Lp(µ,E).

Theorem 2. Let E be a separable Banach space and (Ω,Σ, µ) be a finite

measure space. If 1 < p < ∞, then the space Lp(µ,E) has property (V) if

and only if E does.

P r o o f. Without loss of generality, we will assume that Ω is a compact
Hausdorff space, µ is a Borel measure and Σ is the completion of the field of
Borel-measurable subsets of Ω. For 1 < p <∞, let q such that 1/p+1/q = 1.

It is a well-known fact that the dual of Lp(µ,E) is isometrically isomor-
phic to the space Mq(µ,E∗) of all vector measures F : Σ → E∗ with

‖F‖q = sup
π

{∑

A∈π

‖F (A)‖q

µ(A)q
µ(A)

}1/q

<∞

(see for instance [9], p. 115).

Let H be a (V)-subset of Mq(µ,E∗). We need to show that H is
relatively weakly compact in Mq(µ,E∗). Since C(Ω,E) ⊂ Lp(µ,E) and
C(Ω,E) has property (V) by Theorem 1, H is relatively weakly compact in
M(Ω,E∗). Let (mn)n ⊂ H and let gn : Ω → E∗ be the weak*-density
of mn with respect to µ. There exist Gn ∈ conv{mn,mn+1, . . .} and
G ∈ M(Ω,E∗) such that Gn converges to G in M(Ω,E∗). If we denote
by g the weak*-density of G with respect to µ, then we get

lim
n→∞

\
‖gn(ω) − g(ω)‖ dµ(ω) = 0,
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and by passing to a subsequence, we can assume that ‖gn(ω) − g(ω)‖ con-
verges to zero µ-a.e. Since supn

T
‖gn(ω)‖q dµ(ω) < ∞, it is clear thatT

‖g(ω)‖q dµ(ω) <∞ and therefore G ∈Mq(µ,E∗).
Now for each ϕ ∈ Lp(µ), the sequence (ϕ(·)‖gn(·) − g(·)‖) is uniformly

integrable and therefore

lim
n→∞

\
ϕ(ω)‖gn(ω) − g(ω)‖ dµ(ω) = 0.

This shows that the sequence (‖gn(·) − g(·)‖) converges weakly to zero in
Lq(µ). There exists ψn ∈ conv{‖gn(·) − g(·)‖, ‖gn+1(·) − g(·)‖, . . .} so that
ψn converges to zero in norm in Lq(µ). Let ψn =

∑qn

i=pn
λi‖gi(·) − g(·)‖.

We define the following sequence of measures:

Fn(A) = weak*-
\qn∑

i=pn

λigi(ω) dµ(ω).

Clearly Fn ∈ conv{mn,mn+1, . . .} and

‖Fn −G‖q
q =

\(∥∥∥
qn∑

i=pn

λigi(ω) − g(ω)
∥∥∥
)q

dµ(ω)

≤
\( qn∑

pn

λi‖gi(ω) − g(ω)‖
)q

dµ(ω) =
\
(ψn(ω))q dµ(ω),

so limn→∞ ‖Fn−G‖q = 0, which proves that H is relatively weakly compact
in Mq(µ,E∗) (see for instance [23]). Theorem 2 is proved.

R e m a r k. As was observed in [20], the property (V) cannot be lifted
from a Banach space E to the Bochner space L∞(µ,E). In fact, the space
E = (Σ ⊕ ℓn1 )c0 has property (V) but L∞(µ,E) contains a complemented
copy of ℓ1, hence failing property (V).
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