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SCHATTEN CLASSES
AND COMMUTATORS ON SIMPLE MARTINGALES

BY

J.-A. CHAO (CLEVELAND, OHIO) AND LIZHONG PENG (BEIJING)

1. Introduction. Martingale transforms were first introduced and
studied by Burkholder [2] and recently by Chao and Long [7]. Singular
integral operators in the local field setting have been studied by Phillips and
Taibleson [21], and Chao and Taibleson [9], which led to the study of matrix
transforms on simple martingales by Janson [11], and Chao and Janson [6].
Fractional integral transforms and commutators with these singular integral
operators for simple martingales were discussed in Chao and Ombe [8], and
Chao, Daly and Ombe [5].

In this paper, we study the commutators with the above mentioned
operators in the simple martingale setting and obtain their compactness
and Schatten–von Neumann Sp-properties. These results extend those for
the Euclidean case which has been studied by many authors, e.g. Janson
and Wolff [14], Uchiyama [24], Janson and Peetre [12, 13], Peng [18, 19],
Rochberg and Semmes [22]. These commutators are operators of Hankel
type. For the study of Hankel operators, see Peller [16, 17]. The arguments
used to obtain our results for simple martingales are quite different due to
the nondegeneracy conditions for the singular integral operators involved.

In §2, we provide some preliminaries. Paraproducts and fractional inte-
grals are discussed in §3. In §4, we study the compactness and Sp-properties
(1 ≤ p ≤ ∞) of the commutators. Finally, Sp-properties for 0 < p < 1 are
studied in §5.

2. Preliminaries. Let Ω = [0, 1) and d ≥ 2 be a fixed integer. For
each n ≥ 0, let Fn be the σ-field generated by the d-adic intervals Qk

n =
[kd−n, (k + 1)d−n), 0 ≤ k < dn, of Ω. Let F be the σ-field generated by
all such intervals, and dx be the Lebesgue measure on Ω. Then (Ω,F , dx)
is a d-adic probability space. A martingale on (Ω,F , dx) is called a simple
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martingale (or d-adic martingale). For f ∈ L1(Ω), we define fn = E(f |
Fn), ∆n(f) = fn − fn−1 for n ≥ 1 and ∆0(f) = f0; then f =

∑∞
n=0∆n(f).

2.1. Operators on simple martingales. Now we introduce four operators
on simple martingales which have been studied by many authors.

1. Paraproduct :

(1.1) Πb(f) =
∞∑

n=1

∆n(b)fn−1.

In [7] Chao and Long have shown that Πb is bounded on Lp (1 < p <∞)
if and only if b ∈ BMO.

2. Martingale transform:

(1.2) Tν(f) =
∞∑

n=1

νn−1∆n(f),

where ν = {νn} is an adapted process.
In fact, Tν(f) = Πf (ν). In [2] Burkholder has shown that Tν is bounded

on Lp (1 < p <∞) if and only if ‖ν‖∞ = supn ‖νn‖∞ <∞.

3. Fractional integral operator Iα:

(1.3) Iαf =
∞∑

k=0

d−kα∆k(f).

In [8] Chao and Ombe have shown that Iα is bounded from Hp to Hq,
where 1/q = 1/p− α.

4. Singular integral operator TA. Here we consider only the case d > 2.
When d = 2, a refinement of the arguments must be applied. See Chao [3].
For f an integrable function, we notice that on any Qk

n ∈ Fn, fn is a constant
and fn+1 has d values. Hence fn+1− fn may be regarded as a vector in Cd,
which will be called the local difference of f on the atom Qk

n. It is easy to
see that every local difference actually belongs to the (d − 1)-dimensional
space V = {(xi)d

i=1 :
∑
xi = 0}. Given a d × d matrix A = (aij), we can

define a linear operator A on V which gives the singular integral operator
TA as follows:

(1.4) TA(f) =
∞∑

k=0

A∆k(f).

In [11] Janson has proved that TA is bounded on Hp (0 < p < ∞) (see
also Chao [3]).

For a nice function b, let the operator of multiplication by b be denoted
also by b. For any linear operator T , we may define the commutator [b, T ] =
bT − Tb. In this paper we study three kinds of commutator: [b, Tν ], [b, Iα]
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and [b, TA]. They have some similar properties to the paraproductΠb. Their
boundedness has been obtained by Chao, Daly and Ombe [5]:

• [b, Tν ] is bounded on Lp (1 < p <∞) if and only if b ∈ BMO, provided
that ν satisfies the nondegeneracy condition (Dν):

(Dν) There is an N > 0 such that if n ≥ N and Qk
n ∈ Fn, then there is

an m, 1 ≤ m ≤ n− 1, such that

ν0 +
d− 1
d

m−1∑
i=1

diνi(x)− dm−1νm(x) 6= 0 for x ∈ Qk
n.

• [b, Iα] is bounded from Hp to Hq for 0 < p < q < ∞, q > 1 and
α = 1/p− 1/q if and only if b ∈ BMO.

• [b, TA] is bounded on Lp (1 < p <∞) if and only if b ∈ BMO, provided
that A satisfies the nondegeneracy condition (DA):

(DA) For any i, there exist j, k 6= i such that

aij 6= aik (row) or aji 6= aki (column).

2.2. Schatten–von Neumann ideal Sp. Let H1, H2 be two Hilbert spaces
and L(H1,H2) the set of all bounded linear operators from H1 to H2, and
let K(H1,H2) be the set of all compact operators. For T ∈ L(H1,H2), we
define the singular number sn = sn(T ) by

(2.1) sn = inf{‖T − F‖ : rank(F ) ≤ n},
and the Schatten–von Neumann ideal Sp by

(2.2)
Sp =

{
T ∈ K(H1,H2) :

( ∞∑
n=0

sp
n

)1/p

<∞
}

for 0 < p <∞,

S∞ = L(H1,H2).

For the properties of Sp, see e.g. [13].

2.3. Besov spaces and Triebel–Lizorkin spaces. For s ∈ R and 0 < p, q ≤
∞, the Besov space Bsq

p of simple martingales is defined by

(2.3) Bsq
p =

{
f : ‖f‖Bsq

p
=

{ ∞∑
k=0

(dks‖∆k(f)‖p)q
}1/q

<∞
}
.

Sometimes we adopt shorter notations Bs
p = Bsp

p and Bp = B
1/p
p .

For s ∈ R and 0 < p, q ≤ ∞, the Triebel–Lizorkin space F sq
p of simple

martingales is defined by

(2.4) F sq
p =

{
f : ‖f‖F sq

p
=

{
E

[ ∞∑
k=0

(dks|∆k(f)|)q
]p/q}1/p

<∞
}
.
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Bsq
p and F sq

p on simple martingales have the same properties as those on
Rn (for the latter, see Bergh and Löfström [1], Peetre [15] and Triebel [23]).
In particular, we have

(1) Bsq
p and F sq

p are Banach spaces for 1 ≤ p, q ≤ ∞ and Fréchet spaces
for 0 < p, q < 1.

(2) C0 = {finite martingales} is dense in Bsq
p and F sq

p for 0 < p, q <∞.
(3) Bs2

2 = F s2
2 = H2

s = Is(H2) and F s2
p = Hp

s = Is(Hp) for 0 < p <∞.
(4) [Bs0q0

p0
, Bs1q1

p1
]θ = Bs∗q∗

p∗ and [F s0q0
p0

, F s1q1
p1

]θ = F s∗q∗

p∗ , where 0 < θ < 1,
s0, s1 ∈ R, 1 ≤ p0, p1, q0, q1 ≤ ∞, s∗ = (1− θ)s0 + θs1 and

1
p∗

=
1− θ

p0
+

θ

p1
,

1
q∗

=
1− θ

q0
+

θ

q1
.

(There are also results about real interpolation.)
(5) (Bsq

p )∗ = B−sq′

p′ and (F sq
p )∗ = F−sq′

p′ for s ∈ R, 1 ≤ p, q < ∞,
1/p+ 1/p′ = 1, 1/q + 1/q′ = 1.

Let bs∞∞ = bs∞ be the closure of C0 in Bs
∞-norm and fs2

∞ be the closure
of C0 in F s2

∞ -norm. Then

(bs∞)∗ = B−s
1 , (fs2

∞ )∗ = F
(−s)2
1 , BMO = F 02

∞ , VMO = f02
∞ .

(6) Iα is an isometric isomorphism from Bsq
p to B(s+α)q

p and from F sq
p

to F (s+α)q
p .

2.4. Orthonormal, weakly orthonormal and nearly weakly orthonormal
sequences (see Rochberg and Semmes [22]). Let P = {Qk

n : n ≥ 0, 0 ≤ k <
dn} and L2(∆n) = {f : f ∈ L2,Fn-measurable and En−1(f) = 0}. Then

L2(Ω) =
∞⊕

n=0

L2(∆n).

Let {e1, . . . , ed−1} be an orthonormal basis of V , i.e. {ei = (ci1, . . . , c
i
d)}

satisfies

ci1 + ci2 + . . .+ cid = 0,
ci1c

j
1 + ci2c

j
2 + . . .+ cidc

j
d = δij for i, j = 1, . . . , d− 1.

For Q = Qk
n ∈ P, let

ψi
Q(x) = dn/2{ci1χQkd

n
(x) + ci2χQkd+1

n
(x) + . . .+ cidχQkd+d−1

n
(x)}.

Then {ψi
Q}Q∈P,i∈{1,...,d−1} is an orthonormal basis of L2(Ω), and

L2(∆n) = span{ψi
Q : |Q| = d−(n−1), i = 1, . . . , d− 1}.

Let ∆n denote also the projection of L2(Ω) onto L2(∆n), and En the
projection of L2(Ω) onto

⊕n
k=1 L

2(∆k). Then En(f) = fn is just the con-
ditional expectation of f , and ∆n(f) is the martingale difference of f .
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It should be pointed out that {ψi
Q}Q∈P,i∈{1,...,d−1} is the universal un-

conditional basis for all Bsq
p and F sq

p .
Now we introduce a frame of L2(Ω). (For the notion of frames, see e.g.

Peng [20].) For Qk
n ∈ P, let Qk

n denote its mother interval, i.e. the smallest
interval properly containing Qk

n. Let

φQk
n
(x) = dn/2

(
χQk

n
(x)− 1

d
χQ̄k

n
(x)

)
.

Then {φQk
n
} becomes a tight frame. So for every f ∈ L2(Ω), we have

∆n(f) =
∑

|Qk
n|=d−n

〈f, φQk
n
〉dn/2χQk

n
(x),

f(x) =
∑
Qk

n

〈f, φQk
n
〉dn/2χQk

n
(x) and ‖f‖2

L2 =
∑
Qk

n

|〈f, φQk
n
〉|2.

Again {φQ} is also a universal unconditional basis for Bsq
p and F sq

p (see
also [20]). Moreover, both {ψi

Q} and {φQ} are bases of BMO and VMO.
We have:

• f ∈ BMO(Ω) if and only if {λQ} ∈ BMO(P), i.e.

sup
P∈P

1
|P |

∑
Q⊂P

|λQ|2|Q| <∞,

• f ∈ VMO(Ω) if and only if {λQ} ∈ VMO(P), i.e.

{λQ} ∈ BMO(P) and |λQ| → 0 as |Q| → 0,

for λQ = 〈f, ψQ〉 or 〈f, φQ〉.
LetH be a Hilbert space. A sequence {ei} ⊂ H is called weakly orthonor-

mal (WO) if ‖
∑
λiei‖ ≤ C(

∑
|λi|2)1/2. In fact, {ei} is a WO sequence if

and only if it is the image of an orthonormal sequence under a bounded
linear map. (See Rochberg and Semmes [22].)

A nearly weakly orthonormal (NWO) sequence {eQ}Q∈P is a sequence
in L2(Ω) indexed by P such that the following maximal operator estimate
holds. Set

f∗(x) =
∑
x∈Q

{|Q|1/2|〈f, eQ〉|}.

Then
‖f∗‖2 ≤ C‖f‖2.

For example, if supp(eQ) ⊂ Q and ‖eQ‖∞ ≤ |Q|−1/2 or ‖eQ‖p ≤
|Q|1/p−1/2 for some p > 2, then {eQ} is a NWO sequence. (See again
Rochberg and Semmes [22].)

Lemma 2.1. Suppose that there exist two NWO sequences {eQ} and {fQ}
such that T =

∑
Q∈P λQ〈·, eQ〉fQ. Then
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(1) {λQ} ∈ BMO(P) implies that T ∈ S∞ and ‖T‖ ≤ C‖{λQ}‖BMO.
(2) {λQ} ∈ VMO(P) implies that T is compact.
(3) {λQ} ∈ lp(P) implies that T ∈ Sp and ‖T‖Sp

≤ Cp(
∑

Q∈P |λQ|p)1/p,
0 < p <∞.

Lemma 2.2. If {eQ}, {fQ} are two NWO sequences, then( ∑
Q∈P

|〈TeQ, fQ〉|p
)1/p

≤ Cp‖T‖Sp
for 1 < p <∞.

Lemma 2.3. If T is a compact operator on L2(Ω) and ei → 0 weakly as
i→∞, then ‖Tei‖2 → 0.

3. Paraproducts and fractional integrals

3.1. Paraproducts

Theorem 3.1. (1) For 1 < p <∞, Πb is bounded on Lp(Ω) if and only
if b ∈ BMO and ‖Πb‖ ≡ ‖b‖BMO.

(2) For 1 < p <∞, Πb is compact on Lp(Ω) if and only if b ∈ VMO.
(3) For 0 < p <∞, Πb ∈ Sp(L2, L2) if and only if b ∈ Bp and ‖Πb‖Sp

≡
‖b‖Bp .

P r o o f. (1) is known (see Chao and Long [7]). It can also be obtained
from Lemma 2.1. Here we give the proofs of (2) and the main result of (3).
We postpone the proof for the converse result of (3) (Πb ∈ Sp implies b ∈ Bp

for 0 < p < 1) to §5.
Instead of the operator Πb, we consider the equivalent associated bilinear

form Πb(f, g) = E(Πbf, g). Then we have

Πb(f, g) = E
( ∞∑

n=1

∆n(b)fn−1∆n(g)
)

(3.1)

=
∑
Qk

n

〈b, φQk
n
〉〈f, χQk

n
〉|Qk

n|−1〈g, φQk
n
〉.

If b =
∑n

k=1∆k(b) is a finite martingale, it is easy to see that Πb is of
finite rank, and therefore compact on Lp(Ω). The set of all finite martingales
is dense in VMO, so if b ∈ VMO, then Πb is compact.

Conversely, if Πb is compact on Lp(Ω), let us show that b ∈ VMO. By
Lemma 2.3, it suffices to show that |〈b, φQ〉| → 0 as |Q| → 0, where {φQ}
is the frame of §2.4. If that is not true, then there exists a subsequence Qj

such that |〈b, φQj
〉| ≥ C ≥ 0; we may assume that |〈b, φQ〉| ≥ C ≥ 0. Note

that
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C ≤ |〈b, φQ〉| = |〈Πb(χQ), φQ〉| ≤ dn(1/2−1/p′) sup
‖g‖p′≤1

E(Πb(χQ)g)

= dn(1/2−1/p′)‖Πb(χQ)‖p = C‖Πb(|Q|1/p′−1/2χQ)‖p.

But |Q|1/p′−1/2χQ → 0 weakly in Lp(Ω) as |Q| → 0 by Lemma 2.3, and the
compactness of Πb implies that ‖Πb(|Q|1/p′−1/2χQ)‖p → 0. This contradic-
tion shows that b ∈ VMO.

If b ∈ Bp, then

‖b‖Bp
≡

{ ∑
Q∈P

|Q|−p/2|〈b, φQ〉|p
}1/p

<∞.

By Lemma 2.1 and (3.1), we have

‖Πb‖p
Sp
≤ C

∑
Q

(|Q|−1/2|〈b, φQ〉|)p = C‖b‖p
Bp
.

Conversely, if 1 < p <∞ and Πb ∈ Sp, then by Lemma 2.2 we have

‖b‖p
Bp

≤ C
∑
Q∈P

|Q|−p/2|〈b, φQ〉|p

= C
∑
Q

|Q|−1/p|〈Πb(χQ), φQ〉|p ≤ C‖Πb‖p
Sp
.

3.2. Fractional integrals. Let α > 0 and f ∈ L2(Ω). The fractional
integral Iα can be written as

Iαf =
∞∑

n=1

d−nα∆n(f) =
∑
Q,i

d−(n+1)α〈f, ψi
Q〉ψi

Q,

where {ψi
Q} is the orthonormal basis of §2.3. This means that Iα has a

Schmidt decomposition, so

‖Iα‖p
Sp

=
∑
Q,i

d−(n+1)αp = (d− 1)
∑

n

dn−(n+1)αp.

Thus we get

Theorem 3.2. If α > 0, then Iα ∈ Sp(L2, L2) if and only if p > 1/α,
and

‖Iα‖Sp =
{

(d− 1)
∑

n

dn−(n+1)αp
}1/p

.

R e m a r k. Theorem 3.2 says that Iα has a cut off at p = 1/α.

4. Commutators. Now we return to the commutators [b, Tν ], [b, Iα]
and [b, TA]. The main results for them are the following three theorems.
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Theorem 4.1. (1) For 1 < p < ∞, [b, Tν ] is bounded on Lp if and only
if b ∈ BMO.

(2) For 1 < p <∞, [b, Tν ] is compact on Lp if and only if b ∈ VMO.
(3) For 0 < p <∞, [b, Tν ] ∈ Sp(L2, L2) if and only if b ∈ Bp.

Theorem 4.2. Let α 6= 0.

(1) For 1 < p <∞, [b, Iα] is bounded on Lp if and only if Iαb ∈ BMO.
(2) For 1 < p <∞, [b, Iα] is compact on Lp if and only if Iαb ∈ VMO.
(3) For 0 < p <∞, [b, Iα] ∈ Sp(L2, L2) if and only if b ∈ B1/p−α

p .

Theorem 4.3. (1) For 1 < p <∞, [b, TA] is bounded on Lp if and only
if b ∈ BMO.

(2) For 1 < p <∞, [b, TA] is compact on Lp if and only if b ∈ VMO.
(3) For 0 < p <∞, [b, TA] ∈ Sp(L2, L2) if and only if b ∈ Bp.

We postpone the proof of the partial converse results in part (3) of these
theorems for 0 < p < 1 to §5. Now we give the proofs of the rest of the
theorems.

The boundedness results in part (1) of the above three theorems are
known. Theorems 4.1(1) and 4.3(1) are due to Chao, Daly and Ombe [5].
Theorem 4.2(1) can be proved in the same way. It can also be obtained from
the proof of the Sp-estimates given below.

4.1. Compactness. We start with a general linear operator T on L2(Ω).
Let T denote again its associate bilinear form, T ′ denote its adjoint in the
sense E(gT ′(h)) = E(T (g)h) and Tb denote the commutator [b, T ]. Formally
we have (see [5], p. 63)

(4.1) E([b, T ](f)g) = E(b(T (f)g − fT ′(g))).

Now we prove the compactness results in part (2) of Theorems 4.1, 4.2
and 4.3. Let b be a finite martingale. Then [b, Tν ], [b, Iα] and [b, TA] are
of finite rank; this implies that if b ∈ VMO (for Theorems 4.1 and 4.3) or
Iαb ∈ VMO (for Theorem 4.2), then [b, Tν ], [b, Iα] and [b, TA] are compact.

To get the converse results we need the following fact, which is easily
shown from the proof of Theorems 4, 6, 8 in [4].

Let {ψi
Q} be an orthonormal basis in L2 of §2.3. Then there exists {hi

Q}
with supp(hi

Q) ⊂ Q and ‖hi
Q‖∞ ≤ 1 such that

ψi
Q = Tν(hi

Q)gi
Q − hi

QT
′
ν(gi

Q),

where gi
Q = Cψi

Q. Similarly we have

Iαψi
Q = Iα(hi

Q)gi
Q − hi

QI
α(gi

Q), ψi
Q = TA(hi

Q)gi
Q − hi

QT
′
A(gi

Q).
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From this fact and (4.1) we have

|〈b, ψi
Q〉| = |E(b(Tν(hi

Q)gi
Q − hi

QT
′
ν(gi

Q)))| = |E([b, Tν ](hi
Q)gi

Q)|

≤ ‖[b, Tν ](|Q|1/p′−1/2hi
Q)‖p,

|〈Iαb, ψi
Q〉| = |〈b, Iαψi

Q〉| = |E(b(Iα(hi
Q)gi

Q − hi
QI

α(gi
Q)))|

= |E([b, Iα](hi
Q)gi

Q)| ≤ ‖[b, Iα](|Q|1/p′−1/2hi
Q)‖p,

|〈b, ψi
Q〉| = |E(b(TA(hi

Q)gi
Q − hi

QT
′
A(gi

Q)))|

= |E([b, TA](hi
Q)gi

Q)| ≤ ‖[b, TA](|Q|1/p′−1/2hi
Q)‖p.

If [b, Tν ], [b, Iα] or [b, TA] is compact, then |〈b, ψi
Q〉| → 0 or |〈Iαb, ψi

Q〉| →
0 as |Q| → 0, and therefore b ∈ VMO (for Theorem 4.1 and 4.3) or Iαb ∈
VMO (for Theorem 4.2).

4.2. Sp-direct estimates. For Tb = [b, T ], let

Tnm
b (f, g) = E(Tb(∆n(f))∆m(g)).

Then

(4.2) Tb = T
(1)
b + T

(2)
b + T

(3)
b ,

where

T
(1)
b =

∞∑
n=1

n−1∑
m=1

Tnm
b , T

(2)
b =

∞∑
m=1

m−1∑
n=1

Tnm
b and T

(3)
b =

∞∑
n=1

Tnn
b .

Note that

EnTν = TνEn, EnI
α = IαEn and EnTA = TAEn.

Then we have

E([b, Tν ]fg) = E(Tν(f)Πb(g))− E(fΠb(T ′νg))(4.3)
+ E(Πb(Tνf)g)− E(Πb(f)T ′νg),

E([b, Iα]fg) = E(Iα(f)Πb(g))− E(fΠb(Iαg))(4.4)
+ E(Πb(Iαf)g)− E(Πb(f)Iαg),

and

E([b, A]fg) = E(TA(f)Πb(g))− E(fΠb(T ′Ag))(4.5)

+ E(Πb(TAf)g)− E(Πb(f)T ′Ag) + T
(3)
b (f, g),

where

T
(3)
b (f, g) =

∞∑
n=1

E(b(TA∆n(f)∆n(g)−∆n(f)TA∆n(g)))
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=
∑
Q∈P

d−1∑
i=1

d−1∑
i′=1

E
(
(b− bQ̄)

d∑
s=1

(astc
i
tc

i′

s − atsc
i
sc

i′

t )χQ

)
× dn〈f, ψi

Q〉〈g, ψi
Q〉

=
∑
Q∈P

d−1∑
i=1

d−1∑
i′=1

d∑
s=1

Aii′s∆n(b)χQ〈f, ψi
Q〉〈g, ψi

Q〉.

Then Theorem 3.1 gives us

‖[b, Tν ]‖Lp→Lp ≤ C‖b‖BMO for 1 < p <∞,

‖[b, Tν ]‖Sp ≤ C‖b‖p for 0 < p <∞,

‖[b, Iα]‖Lp→Lp ≤ C‖Iαb‖BMO for 1 < p <∞,

‖[b, Iα]‖Sp ≤ C‖Iαb‖p = C‖b‖
B

1/p−α
p

for 0 < p <∞,

and

‖T (3)
b ‖Lp→Lp ≤ C‖b‖BMO for 1 < p <∞,

‖T (3)
b ‖Sp ≤ C‖b‖p for 0 < p <∞.

Therefore
‖[b, TA]‖Lp→Lp ≤ C‖b‖BMO for 1 < p <∞,

‖[b, TA]‖Sp ≤ C‖b‖p for 0 < p <∞.

4.3. Sp-converse estimates for 1 ≤ p ≤ ∞. If an operator S has the
Schmidt decomposition S =

∑
λi〈·, ei〉fi, then tr(ST ∗) =

∑
λi〈T (fi), ei〉.

By this fact and Theorem 4.1, for g ∈ B−1/p
p′ , we have

|E(bg)| =
∣∣∣E(

b
∑
Q,i

|Q|1/2(Tν(hi
Q)gi

Q − hi
QT

′
ν(gi

Q))〈g, ψi
Q〉

)∣∣∣
=

∣∣∣ ∑
Q,i

|Q|1/2〈g, ψi
Q〉E([b, Tν ](hi

Q)gi
Q)

∣∣∣ = |tr(S[b, Tν ]∗)|,

where

S =
∑
Q,i

|Q|1/2〈g, ψi
Q〉〈·, gi

Q〉hi
Q,

and {gi
Q} and {hi

Q} are NWO. Therefore

|E(bg)| ≤ ‖[b, Tν ]‖Sp‖S‖Sp′ ≤ ‖[b, Tν ]‖Sp

{∑
Q,i

|Q|1/2|〈g, ψi
Q〉|p

′
}1/p′

≤ C‖[b, Tν ]‖Sp
‖g‖

B
−1/p

p′
.

So we get ‖b‖Bp ≤ C‖[b, Tν ]‖Sp for 1 < p <∞.
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Similarly we have

|E(Iα(b)g)| =
∣∣∣E(

b
∑
Q,i

|Q|1/2(Iα(hi
Q)gi

Q − hi
QI

α(gi
Q))〈g, ψi

Q〉
)∣∣∣

=
∣∣∣ ∑

Q,i

|Q|1/2〈g, ψi
Q〉E([b, Iα](hi

Q)gi
Q)

∣∣∣ = |tr(S[b, Iα]∗)|,

where S, {gi
Q} and {hi

Q} are as before. Therefore

|E(Iα(b)g)| ≤ ‖[b, Iα]‖Sp‖S‖Sp′ ≤ ‖[b, Iα]‖Sp

{∑
Q,i

|Q|1/2|〈g, ψi
Q〉|p

′
}1/p′

≤ C‖[b, Iα]‖Sp
‖g‖

B
−1/p

p′
.

Thus ‖Iαb‖Bp ≤ C‖[b, Iα]‖Sp for 1 < p <∞.
Finally, we have

|E(bg)| =
∣∣∣E(

b
∑
Q,i

|Q|1/2(TA(hi
Q)gi

Q − hi
QT

′
A(gi

Q))〈g, ψi
Q〉

)∣∣∣
=

∣∣∣ ∑
Q,i

|Q|1/2〈g, ψi
Q〉E([b, TA](hi

Q)gi
Q)

∣∣∣ = |tr(S[b, TA]∗)|,

where S, {gi
Q} and {hi

Q} are as before. Hence

|E(bg)| ≤ ‖[b, TA]‖Sp
‖S‖Sp′ ≤ ‖[b, TA]‖Sp

{∑
Q,i

|Q|1/2|〈g, ψi
Q〉|p

′
}1/p′

≤ C‖[b, TA]‖Sp
‖g‖

B
−1/p

p′
.

Therefore ‖b‖Bp ≤ C‖[b, TA]‖Sp for 1 < p <∞.
We can also get the BMO-estimates for these three commutators by

using g ∈ H1 as in [5].

5. Sp-converse estimates for 0 < p < 1. Here we just follow the
argument in Peng [19].

Lemma 5.1. Suppose that b 7→ Tb is a linear map from BMO to
S∞(L2, L2), define Tn,m

b = ∆mTb∆n, and suppose that

(1) EnTb = Tbn ,
(2) ‖Tn+1,n

b ‖Sp
≥ Cd(n+1)/p‖∆n(b)‖p

(or ‖Tn,n+1
b ‖Sp ≥ Cd(n+1)/p‖∆n(b)‖p),

(3) ‖
∑∞

n=1∆nTbEn−N‖Sp ≤ Cd−N/2‖b‖Bp and ‖
∑∞

n=1En−NTb∆n‖Sp

≤ Cd−N/2‖b‖Bp
.

Then Tb ∈ Sp implies b ∈ Bp and

(5.1) ‖b‖Bp ≤ C‖Tb‖Sp .
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P r o o f. It suffices to show (5.1) for b ∈ Bp. Since any finite martingale
b ∈ Bp, by (1) we have

‖bN‖Bp ≤ C‖TbN
‖Sp ≤ C‖ENTb‖Sp ≤ C‖Tb‖Sp .

Letting N →∞, we get (5.1) for general b.
Now assume b ∈ Bp, and let us show (5.1). For N large enough, let

Tb,k =
∞∑

n=0

∞∑
m=0

TNn+k+1,Nm+k
b for k = 0, 1, . . . , N − 1.

Then ‖Tb,k‖Sp ≤ ‖Tb‖Sp . Define

T
(0)
b,k =

∞∑
n=0

TNn+k+1,Nn+k
b ,

T
(1)
b,k =

∞∑
n=0

n−1∑
m=0

TNn+k+1,Nm+k
b ,

T
(2)
b,k =

∞∑
m=0

m−1∑
n=0

TNn+k+1,Nn+k
b .

Then

N‖Tb‖p
Sp
≥

N−1∑
k=0

‖Tb,k‖p
Sp
≥

N−1∑
k=0

{‖T (0)
b,k ‖

p
Sp
− ‖T (1)

b,k ‖
p
Sp
− ‖T (2)

b,k ‖
p
Sp
},

‖T (0)
b,k ‖

p
Sp
≥

∞∑
k=0

‖TNn+k+1,Nn+k
b ‖p

Sp
≥ CdNn+k+1‖∆Nn+k+1(b)‖p

p (by (2)),

‖T (1)
b,k ‖

p
Sp
≤ Cd−Np/2‖b‖p

Bp
, ‖T (2)

b,k ‖
p
Sp
≤ Cd−Np/2‖b‖p

Bp
.

Thus we get
N‖Tb‖p

Sp
≥ C1‖b‖p

Bp
− C2Nd

−Np/2‖b‖p
Bp
.

Choosing N so large that C1 − C2Nd
−Np/2 = C > 0, we obtain (5.1).

Now we check that Πb, [b, Tν ], [I−α, Iα] and [b, TA] satisfy the conditions
of Lemma 5.1. In fact our main task is to verify (2) and (3), the others are
trivial.

For Πb,

‖Tn+1,n
b ‖ =

∥∥∥ dn−1+1∑
k=0

d−1∑
i=1

(k+1)d−1∑
k′=kd

d−1∑
i′=1

〈b, ψi′

Qk′
n
〉〈·, ψi

Qk
n−1

〉ψi
Qk

n−1
ψi′

Qk′
n

∥∥∥
Sp

≥ Cdn/2
{ ∑
|Q|=d−n

|〈b, ψi
Q〉|p

}1/p

= Cdn/p‖∆n(b)‖p,

Tn,n+1
b = 0,
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∞∑
n=1

∆nΠbEn−N =
∑
Q,i

〈b, ψi
Qk

n−1
〉
〈
·, 1
|Qk′

n−N |1/2
χQk′

n−N

〉
d(n−N)/2ψi

Qk
n−1

.

By Lemma 3.2, we have∥∥∥ ∞∑
n=1

∆nΠbEn−N

∥∥∥
Sp

≤ Cd−N/(2p)‖b‖Bp ,

∞∑
m=0

EmnΠb∆m = 0.

The verifications of (3) for [b, Tν ], [I−αb, Iα] and [b, TA] are similar: just
use Lemma 3.2 and (4.3)–(4.5).

Now we verify (2) for the three commutators. First we consider [b, Tν ].
Suppose that ν satisfies the nondegeneracy condition (Dν). Then for any
Qk

n, there exists Qk′

n 6= Qk
n such that Tν(χQk′

n
) = C 6= 0 for x ∈ Qk

n (see [5]).
Thus

Tn+1,n
b (f, g) = E(b(Tν∆n+1(f)∆n(g)−∆n+1(f)T ′ν∆n(g)))

=
dn−1∑
k=0

d−1∑
i=1

E(b(Tνψ
i
Qk

n
∆n(g)− ψi

Qk
n
T ′ν∆n(g)))〈f, ψi

Qk
n
〉

= C

dn−1∑
k=0

d−1∑
i=1

〈b, ψi
Qk

n
〉〈f, ψi

Qk
n
〉∆n(g)|Qk

n
,

‖Tn+1,n
b ‖p

Sp
= C

dn−1∑
k=0

d−1∑
i=1

|〈b, ψi
Qk

n
〉|pdnp/2 = Cdn+1‖∆n+1(b)‖p

p.

The verification for [I−αb, Iα] is similar.
Finally, we verify [b, TA]. Suppose that A satisfies the nondegeneracy

condition (DA). Then for any k, there exist i and j such that aki 6= akj .
Thus

Tn+1,n
b (f, g) = E(b(TA∆n+1(f)∆n(g)−∆n+1(f)T ′A∆n(g)))

=
dn−1∑
k=0

d−1∑
i=1

E(b(TAψ
i
Qk

n
∆n(g)− ψi

Qk
n
T ′A∆n(g)))〈f, ψi

Qk
n
〉.

Notice that
dn−1∑
k=0

d−1∑
i=1

〈[b, TA]∆n(f)|Qk
n
, PQ̄k

n
g〉

=
dn−1∑
k=0

d−1∑
i=1

(ak (mod d)i − ak (mod d)j)〈b, ψi
Qk

n
〉(gQi

n
− gQj

n
)〈f, ψi

Qk
n
〉.
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Therefore

‖Tn+1,n
b ‖p

Sp
≥ C

dn−1∑
k=0

d−1∑
i=1

|〈b, ψi
Qk

n
〉|pdnp/2 = C‖b‖p

Bp
.

This completes the proof.
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