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CONTINUA WHICH ADMIT NO MEAN

BY

K. KAWAMURA (TSUKUBA) AND E. D. TYMCHATYN (SASKATOON)

A symmetric, idempotent, continuous binary operation on a space is
called a mean. In this paper, we provide a criterion for the non-existence of
mean on a certain class of continua which includes tree-like continua. This
generalizes a result of Bell and Watson. We also prove that any hereditarily
indecomposable circle-like continuum admits no mean.

1. Introduction and preliminaries. A continuum is a compact con-
nected metric space. A continuous map m : X × X → X satisfying the
following conditions is called a mean:

(M1) for each x ∈ X, m(x, x) = x,
(M2) m(x, y) = m(y, x) for each x, y ∈ X.

The properties of continua which admit or which do not admit means have
been investigated by several authors. The following are some of the known
facts.

(1) Every absolute retract admits a mean.
(2) ([S]) If a continuum X admits a mean, then H̃∗(X; Z2) = 0. In

particular, X is unicoherent (see below for the definition), and if it is
1-dimensional, then it is hereditarily unicoherent.

(3) ([Ba]) The sin(1/x)-curve admits no mean, while the dyadic solenoid
admits a mean.

(4) ([BeW]) There are contractible dendroids and non-contractible den-
droids which admit means.

In particular, Bell and Watson [BeW] obtained criteria for the existence
and non-existence of means on given continua. A result of the present paper
generalizes their non-existence criterion. This generalized criterion does not
apply to hereditarily indecomposable continua. Here we also prove that

1991 Mathematics Subject Classification: Primary 54F50; Secondary 54C39.
Key words and phrases: mean, pseudo-arc.
The first named author is supported by an NSERC International Fellowship.
The second named author is supported by the NSERC grant A5616.

[97]



98 K. KAWAMURA AND E. D. TYMCHATYN

there is no mean on the pseudo-arc nor on any hereditarily indecomposable
circle-like continuum. The scheme of both of these proofs is very similar to
the one of Bell and Watson.

First, we give some preliminary notions and facts used in the proof.

Definition 1.1. (1) A continuum X is said to be arc-like (circle-like
resp.) if, for each ε > 0, there is a finite open cover U = {U1, . . . , Un} of X,
called an ε-chain cover (ε-circular chain cover resp.), with meshU < ε such
that Ui ∩ Uj 6= ∅ if and only if |i − j| ≤ 1 (|i − j| mod n ≤ 1 resp.). Two
points a and b of an arc-like continuum X are called opposite end points if,
for each ε > 0, an ε-chain cover can be chosen so that a ∈ U1 and b ∈ Un.
In this case, X is clearly irreducible between a and b (that is, there is no
proper subcontinuum of X containing a and b). The converse does not hold
in general.

(2) A continuum X is said to be unicoherent (indecomposable resp.)
if X = A ∪ B, where A and B are subcontinua of X, implies that A ∩
B is connected (A ⊂ B or A ⊃ B resp.). If every subcontinuum of X
is unicoherent (indecomposable resp.), then X is said to be hereditarily
unicoherent (hereditarily indecomposable resp.).

(3) The topologically unique hereditarily indecomposable arc-like con-
tinuum is called the pseudo-arc and denoted by P ([Bi1]). Two points a and
b of the pseudo-arc P are opposite end points if and only if P is irreducible
between a and b ([Bi2]).

Definition 1.2. A continuous map f : X → Y is said to be weakly
confluent if, for each subcontinuum B of Y , there is a subcontinuum A of
X such that f(A) = B.

Theorem 1.3 ([O]). Let Yi be arc-like continua (i = 1, 2). Then for each
pair of surjective maps fi : Xi → Yi, i = 1, 2, the product map f1 × f2 :
X1 ×X2 → Y1 × Y2 is weakly confluent.

Theorem 1.4 ([M]). Suppose that f, g : [0, 1]→ [0, 1] are PL maps of the
interval. Then there are PL maps a, b : [0, 1]→ [0, 1] such that f◦a = g◦b. If ,
in addition, f−1(0) = g−1(0) = {0} and f−1(1) = g−1(1) = {1}, then a and
b can be chosen so that a−1(0) = b−1(0) = {0} and a−1(1) = b−1(1) = {1}.
Lemma 1.5. Let X be a subcontinuum of an absolute retract M . Each

mean m : X ×X → X on X can be extended to a mean m∗ : M ×M →M
on M .

P r o o f. Let Σ(M) = M×M/(x, y) ∼ (y, x) be the symmetric product of
M and let ∆(M) be the diagonal set which is naturally contained in Σ(M).
Notice that Σ(M) is metrizable. The mean m defines a retraction of Σ(X)
onto ∆(X) which extends to a retraction of Σ(M) onto ∆(M). This defines
a mean m∗ on M .
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Definition 1.6. (1) For a subset A of X × X, A− denotes the set
{(y, x) | (x, y) ∈ A}. The subset A is said to be symmetric if A = A−.

(2) The ε-neighbourhood of a subset S of a metric space X is denoted
by N(S, ε). The Hausdorff metric induced by a metric d on X is denoted
by dH. If {An} is a sequence of compacta in X, then Lim An means the
limit of {An} in the Hausdorff metric.

2. Results. Theorem 3.5 of [BeW] asserts that, if a continuum X con-
tains an arc A and two sequences of arcs that are “folded in opposite di-
rections with respect to A”, and further, if these sequences converge to A
in a “regular way” (essentially, the 0-regularity is assumed), then X admits
no mean. Theorem 2.2 below shows that we can remove the hypothesis
of the 0-regular convergence. The key tool is the Uniformization Theorem
(Theorem 1.4).

Definition 2.1. Let X be a continuum and A be an arc-like subcon-
tinuum of X which has a and b as its opposite end points. A sequence
{An | n ∈ N} of subcontinua of X is called a folding sequence with respect
to the point a if it satisfies the following conditions: for each n ∈ N, there
are two subcontinua En and Fn of An such that

(1) An = En ∪ Fn, and Lim(En ∩ Fn) = {a},
(2) Lim En = Lim Fn = A.

Theorem 2.2. Let X be a hereditarily unicoherent continuum which has
an arc-like subcontinuum A with the following properties:

(1) A has a and b as its opposite end points, and
(2) there exist folding sequences {An} and {Bn} with respect to a and b

respectively.

Then X admits no mean.

The strategy of the proof of the above theorem is the same as that
of Theorem 3.5 of [BeW]. We prove the following two lemmas, which are
analogues of Lemmas 3.2 and 3.4 of [BeW] respectively.

Lemma 2.3. Let m be a mean on a continuum X and let A be an arc-like
continuum in X which has a and b as opposite end points. Then there exists
a subcontinuum K in A× A intersecting the diagonal ∆A such that one of
the following conditions holds:

(1) K ∩m−1(a) = ∅ and K ∩A× {a} 6= ∅, or
(2) K ∩m−1(b) = ∅ and K ∩A× {b} 6= ∅.

P r o o f. Since a and b are opposite end points of A, there is an inverse
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limit representation

A = lim←−(Ij , fj : Ij+1 → Ij)

such that each Ij = [0j , 1j ] is the interval with end points 0j and 1j , and

(3) f−1
j (0j) = {0j+1}, f−1

j (1j) = {1j+1}, and f−1
j∞(0j) = {a}, f−1

j (1j)
= {b}, where fj∞ : A→ Ij denotes the projection to Ij .

Let Ej = fj∞×fj∞(m−1(a)∩A×A) and Fj = fj∞×fj∞(m−1(b)∩A×A)
(notice that they are not empty). Taking a subsequence if necessary, we
may assume that Ej and Fj are disjoint. By (3), Ej contains (0j , 0j), and
Fj contains (1j , 1j). By Lemma 3.1 of [BeW], there exists a symmetric
subcontinuum K1 of I1 × I1 intersecting the diagonal ∆I1 such that either

(4.1) K1 ∩ I1 × {01} 6= ∅ and K1 ∩ E1 = ∅, or
(4.2) K1 ∩ I1 × {11} 6= ∅ and K1 ∩ F1 = ∅.
Without loss of generality, we assume the first case. Since f1 × f1 is

weakly confluent by Theorem 1.3, there is a subcontinuum K2 of I2 × I2

such that f1×f1(K2) = K1. By the assumption (4.1) and the condition (3),
we have K2 ∩ I2 × {02} 6= ∅ 6= K2 ∩ {02} × I2 and K2 ∩E2 = ∅. Clearly K2

intersects the diagonal ∆I2.
Continuing this process, we obtain an inverse sequence

K1
f1×f1|K2←−−−− K2

f2×f2|K3←−−−− K3 ← . . .

whose limit K, being naturally identified with a subcontinuum of A × A,
satisfies the desired conditions.

Lemma 2.4. Let m be a mean on a hereditarily unicoherent continuum X
and suppose that A is an arc-like subcontinuum of X which has a and b as
its opposite end points. If {An} is a folding sequence with respect to a, then
for each subcontinuum K of A× A such that K ∩∆A 6= ∅ 6= K ∩ {a} × A,
we have K ∩m−1(a) 6= ∅.

P r o o f. We may assume that X is a subset of the Hilbert cube I∞. The
mean m extends to a mean m∗ on I∞ by Lemma 1.5. Suppose that there
is a continuum K in A × A intersecting ∆A and {a} × A which is disjoint
from m−1(a). By the symmetric property of m, we may assume that K is
symmetric. Take points (p, p), (a, q) ∈ K and let 0 < 4ε < d(a,m∗(K)).
There is a δ > 0 such that δ < ε/4 and if d((x, y), (x′, y′)) < δ, then
d(m∗(x, y),m∗(x′, y′)) < ε/4.

Take a map ϕ : A → J = aJbJ onto an arc J in I∞ which is δ/2-close
to id and such that ϕ−1(aJ) = {a} and ϕ−1(bJ) = {b}. Let {En} and
{Fn} be the sequences as in the definition of the folding sequence with
respect to A and the point a. Take a large N so that dH(AN , A) < δ/4,
dH(EN ∩ FN , a) < δ/4 and choose sequences {Pj} and {Qj} of arcs in I∞
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satisfying the following conditions:

(1) Lim Pj = EN and Lim Qj = FN . The arc Pj has the end points sj

and tj , the arc Qj has the end points sj and uj .
(2) Pj ∩Qj = {sj}, where lim sj ∈ EN ∩ FN .
(3) There exists PL maps hj : Pj → J and kj : Qj → J which are

δ/2-close to id.
(4) h−1

j (aJ) = {sj} = k−1
j (aJ), h−1

j (bJ) = {tj}, and k−1
j (aJ) = {uj}.

Applying Theorem 1.4 to hj and kj , there exist maps αj : [0, 1] → Pj and
βj : [0, 1]→ Qj such that

(5) hj ◦ αj = kj ◦ βj and
α−1

j (sj) = β−1
j (sj) = {0} and α−1

j (tj) = β−1
j (uj) = {1}.

Let λj = hj ◦ αj = kj ◦ βj ; then by (4), (5) and Theorem 1.3, we have

(6) λ−1
j (aJ) = {0} and λ−1

j (bJ) = {1}, and λj × λj is weakly confluent.

So, there exists a subcontinuum Mj ⊂ [0, 1]× [0, 1] such that

λj × λj(Mj) = ϕ× ϕ(K) ⊃ {(ϕ(p), ϕ(p)), (aJ , ϕ(q)), (ϕ(q), aJ)}.
By (6), we have Mj ∩ ([0, 1]× {0}) 6= ∅ 6= Mj ∩ ({0} × [0, 1]). Therefore Mj

intersects the diagonal ∆[0, 1]. Replacing Mj by Mj ∪M−
j , we may assume

that Mj is symmetric. Take points (xj , xj), (yj , 0), (0, yj) ∈ Mj . Define a
continuum Vj in (Pj ∪Qj)× (Pj ∪Qj) as follows:

Vj = αj × αj(Mj) ∪ βj × αj(Mj) ∪ βj × βj(Mj).

To see that Vj is indeed a continuum, observe that

(7)
(αj(xj), αj(xj)), (αj(0) = sj , αj(yj)) ∈ αj × αj(Mj),

(βj(0) = sj , αj(yj)), (βj(yj), αj(0) = sj) ∈ βj × αj(Mj),
(βj(yj), sj = βj(0j)), (βj(xj), βj(xj)) ∈ βj × βj(Mj).

We may assume that the sequence {Vj} converges to a continuum V in
AN×AN , and αj(xj) and βj(xj) converge to u and v respectively, as j →∞.
By the continuity of m∗, we have Lim m∗(Vj) = m(V ).

By (7), we have (u, u), (v, v) ∈ V and the condition (M1) implies that
u, v ∈ m(V ). Since X is hereditarily unicoherent, m(V ) ∩ AN is a subcon-
tinuum of AN . From the construction, we see that u ∈ EN and v ∈ FN ,
hence m(V ) ∩AN intersects EN ∩ FN . Take a point z ∈ m(V ) ∩ EN ∩ FN ;
then it is ε/4-close to the point a by the choice of N and δ. A contradiction
is derived by proving the following claim.

Claim. d(m(V ), a) > ε.

P r o o f o f C l a i m. First recall that d(m∗(K), a) > 4ε. Since ϕ is
δ-close to id, we have d(m∗(ϕ × ϕ(K)), a) > 4ε − ε/2 > 3ε. Take a point
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(m,n) ∈ Mj . Since hj × hj(αj(m), αj(n)) = λj × λj(m,n) ∈ ϕ × ϕ(K)
and hj is δ/2-close to id, we see that αj × αj(m,n) ∈ N(ϕ × ϕ(K), δ).
By the same argument, we can prove that Vj ⊂ N(ϕ × ϕ(K), δ). Hence
αj × αj(Mj) ⊂ N(ϕ × ϕ(K), δ). Therefore, d(m∗(Vj), a) > 3ε − ε = 2ε.
Taking the limit, we see that d(m(V ), a) > ε.

This completes the proof of Lemma 2.4.

Theorem 2.2 follows immediately from the above two lemmas. How-
ever, it does not apply to hereditarily indecomposable continua, because it
assumes the existence of decomposable subcontinua. The non-existence of
means on the pseudo-arc is proved from the following result.

Theorem 2.5. Let X be a hereditarily unicoherent continuum which con-
tains a pseudo-arc. Then X admits no mean.

Corollary 2.6. The pseudo-arc and each hereditarily indecomposable
circle-like continuum admit no mean.

For the proof, we need the following result, which is obtained by the
proof of [L], Theorem 1.

Theorem 2.7. Let P be a pseudo-arc in a metric space M which is
irreducible between x and y. For each ε > 0, there exists a δ > 0 such that
for each pseudo-arc Q in M which is irreducible between s and t and such
that dH(P,Q) < δ, d(x, s) < δ and d(y, t) < δ, there is a homeomorphism
h : (P, x, y)→ (Q, s, t) such that d(h, id) < ε.

For any homogeneous continuum K and for each ε > 0, there exists a
δ > 0, called the Effros number for ε, such that for each pair x, y of points
of K with d(x, y) < δ, there exists a homeomorphism h : K → K such that
d(h, id) < ε and h(x) = y.

P r o o f o f T h e o r e m 2.5. Let Q0 be a pseudo-arc in X and let P ⊂ Q0

be a proper sub-pseudo-arc of Q0. The strategy of the proof is exactly the
same as that of Theorem 2.2. We derive a contradiction by combining
Lemma 2.3 with the following assertion:

Assertion. Suppose that the pseudo-arc P above is irreducible between
a and b and suppose that m is a mean on X. For any subcontinuum K of
P × P with K ∩∆P 6= ∅ 6= K ∩ {a} × P , we have K ∩m−1(a) 6= ∅.

P r o o f o f A s s e r t i o n. Let K be a subcontinuum of P × P which
intersects ∆P and {a} × P , and suppose that K is disjoint from m−1(a).
We may assume that K is symmetric.

Let ε > 0 be a positive number such that d(a,m(K)) > 4ε. Let πj :
P × P → P be the projection to the jth factor (j = 1, 2). Observe that
π1(K) = π2(K) =: R. Notice that R is also a pseudo-arc.
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First we prove the following:

(1) There exists a continuum L ⊂ R×R such that

(1.1) πj(L) = R, j = 1, 2,

(1.2) L ∩∆P 6= ∅ 6= L ∩ {a} × P ,
(1.3) d(m(L), a) > 4ε,
(1.4) there is a point r ∈ R such that (r, r) ∈ L and R is irreducible

between a and r.

Indeed, let (p, p), (a, q) ∈ K. Notice that the points a and p need not
belong to different composants of R. Take a β > 0 such that for any
subcontinuum S of P × P with dH(S, K) < β, we have d(m(S), a) > 4ε.

Let γ > 0 be the Effros number for β and R. There exists a point r ∈ R
which belongs to a different composant of R than the point a and is such
that d(r, p) < γ. By the choice of γ, there is a homeomorphism u : R → R
such that d(u, idR) < β and u(p) = r.

Define L = u×u(K) ⊂ R×R. Clearly dH(L,K) < β, so d(m(L), a) > 4ε.
Let c ∈ R be a point such that u(c) = a. Then (c, d) ∈ K for some d ∈ R,
thus (a, u(d)) ∈ L. Therefore L is the desired continuum, and (1) is proved.

In the rest of the proof, we assume that K = L and p = r. For conve-
nience, let us summarize the properties of K.

(2.1) π1(K) = π2(K) =: R ⊂ P .
(2.2) (p, p), (a, q) ∈ K and d(a,m(K)) > 4ε.
(2.3) The points a and p belong to different composants in R.

Take δ and η with 0 < δ < ε/2, 0 < η < δ as follows:

(3.1) If d((x, y), (x′, y′)) < δ, then d(m(x, y),m(x′, y′)) < ε/4.
(3.2) If a pseudo-arc T in X satisfies dH(T,R) < η, T is irreducible

between s and t, and d(a, s) < η and d(p, t) < η, then there exists
a homeomorphism h : (R, a, p)→ (T, s, t) such that d(h, id) < δ/2.

(Such an η exists by Theorem 2.7.)
We apply Theorem 2.7 (or [L], Theorem 1) to obtain a ξ > 0 such that

for each pseudo-arc P ′ in X with dH(P, P ′) < ξ, there is a homeomorphism
g : P → P ′ such that d(g, id) < η/2.

Since P is a subcontinuum of Q0, there is a pseudo-arc Q in Q0 such
that dH(P,Q) < ξ. By the choice of ξ above, there exists a homeomorphism
h : P → Q such that

(4) d(h, id) < η/2.

Let c = h(a) and d = h(b).
We will define sequences {Q1

j} and {Q2
j} of subcontinua of Q and se-

quences of homeomorphisms {h1
j : R → Q1

j} and {h2
j : R → Q2

j} as follows:
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First let S = h(R) and observe that {c, h(p)} ⊂ S. By the choice of h,
dH(S, R) < η/2. Fix two points p1 and p2 in S such that

(5) d(pt, h(p)) < η/2, t = 1, 2, and S is irreducible between any pair of
points from {c, p1, p2}.

For t = 1, 2, let {Qt
j}∞j=1 be a sequence of proper subcontinua of S such that

(6) pt ∈ Qt
j for each j ≥ 1 and t = 1, 2 (in particular, Q1

i and Q2
j belong

to different composants of S for each i, j), and Limj Qt
j = S (t = 1, 2).

By taking a subsequence if necessary, we may assume that

(7) dH(Qt
j , R) < η/2 for each j ≥ 1 and t = 1, 2.

For t = 1, 2, take a sequence {ct
j}∞j=1 of points of Qt

j such that

(8) limj ct
j = c, t = 1, 2, and ct

j and pt belong to different composants of
Qt

j for each j ≥ 1.

Note that, by (4) and (5),

(9) d(pt, p) < η,

and we may assume (by (4) and by taking a subsequence if necessary) that

(10) d(ct
j , a) < η.

By the choice of η and (7) and (8), there is a homeomorphism ht
j : R→ Qt

j

such that

(11) d(ht
j , id) < δ/2, ht

j(a) = ct
j , ht

j(p) = pt for t = 1, 2 and for each
j ≥ 1.

Define a closed set Vj ⊂ S × S as follows:

Vj = h1
j × h1

j (K) ∪ h1
j × h2

j (K) ∪ h2
j × h2

j (K).

Recalling that K is symmetric and (p, p), (a, q), (q, a) ∈ K, we have

(12)

(p1, p1), (c1
j , h

1
j (q)), (h

1
j (q), c

1
j ) ∈ h1

j × h1
j (K),

(p1, p2), (c1
j , h

2
j (q)), (h

1
j (q), c

2
j ) ∈ h1

j × h2
j (K),

(p2, p2), (c2
j , h

2
j (q)), (h

2
j (q), c

2
j ) ∈ h2

j × h2
j (K).

We may assume that {Vj} converges to a compactum V . Although Vj is not
connected, the conditions (8) and (12) imply that V is a continuum. Since
{p1, p2} ⊂ m(Vj) for each j ≥ 1, we have m(V ) ⊃ {p1, p2}.

Since X is hereditarily unicoherent, m(V ) ∩ S is a subcontinuum of S
intersecting different composants by (6). Thus, m(V ) ∩ S = S, that is,
c ∈ S ⊂ m(V ). Therefore, d(m(V ), a) ≤ d(c, a) < η < δ < ε/4.

On the other hand, a computation similar to Lemma 2.4 shows that
d(m(V ), a) > ε, which contradicts the above.

This completes the proof of the Assertion and hence also of Theorem 2.5.
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