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THE PURE-PROJECTIVE IDEAL OF A MODULE CATEGORY

BY

PIOTR D O W B O R (TORUŃ)

Introduction. The Galois covering technique is an important method
used successfully in contemporary representation theory of algebras over a
field. Originally, it was invented for the study of module categories over
representation-finite algebras (see [14], [1], [10]), afterwards it was general-
ized and adopted for the representation-infinite case (see [5], [7], [6], [13],
[2]) and applied successfully (see [6], [20], [21], [22], [11]). It was also defined
and investigated for matrix problems in [17], [8], [18], [19], [4].

The Galois covering reduction to stabilizers, proposed in [3], is a unifica-
tion and a generalization of the approach in [10], [5], [6] and [2]. It allows us
to reduce in good situations the study of certain subcategories of the module
category over the quotient R/G, for a given Galois covering F : R → R/G,
to the study of the representation categories of stabilizers of certain inde-
composable locally finite-dimensional R-modules called G-atoms (see [3]).
An especially important role is played by the G-atoms with infinite cyclic
stabilizers, since they are responsible for the appearance of 1-parameter
families of R/G-modules. The effect of this reduction essentially depends
on the behaviour of homomorphisms between G-atoms, in particular on a
special splitting property of the Jacobson radical of the category MOD R of
R-modules. In most cases where Galois coverings were efficiently used, each
nonisomorphism between any two G-atoms factors through a direct sum of
finite-dimensional R-modules.

The main aim of this paper is to define and investigate the pure-projective
ideal Pu of MOD R consisting of all homomorphisms having a factorization
through a direct sum of finite-dimensional R-modules. In connection with
Galois coverings we study mainly “local” properties of Pu related with some
stabilizer property of a free action of a group of K-linear automorphisms of
R (see Theorem A).

The situation we deal with is the following. Let k be a field and R be a lo-
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cally bounded k-category , i.e. all objects of R have local endomorphism rings,
different objects are nonisomorphic, and both sums

∑
y∈R dimk R(x, y) and∑

y∈R dimk R(y, x) are finite for each x ∈ R. By an R-module we mean
a contravariant k-linear functor from R to the category of k-vector spaces.
An R-module M is locally finite-dimensional (resp. finite-dimensional) if
dimk M(x) is finite for each x ∈ R (resp.

∑
x∈R dimk M(x) is finite). We de-

note by MOD R the category of all R-modules, and by Mod R (resp. modR)
the full subcategory of MOD R formed by all locally finite-dimensional (resp.
finite-dimensional) R-modules.

By the support of any object M in MOD R we shall mean the full subcat-
egory suppM of R formed by the set {x ∈ R : M(x) 6= 0}. If f : M → N is
a homomorphism of R-modules then supp(Im f) is called simply the support
of f and shortly denoted by supp f .

Given a full subcategory C of R and an R-module M we denote by
M|C the C-module being the restriction of M to C. If f : M → N is an
R-homomorphism we denote by f|C : M|C → N|C the C-homomorphism
being the restriction of f to C.

For each pair of R-modules M and N in MOD R we define two subspaces

(∗) Pu(M,N) ⊆ HomR(M,N) and F(M,N) ⊆ HomR(M,N)

of HomR(M,N) as follows. The vector space Pu(M,N) consists of all R-
homomorphisms f : M → N having a factorization through a direct sum of
finite-dimensional modules. An R-homomorphism f : M → N belongs to
F(M,N) if and only if for every finite full subcategory C of R there exists
f ′ ∈ HomR(M,N), such that supp(Im f ′) is finite and f|C = f ′|C .

The inclusion Pu(M,N) ⊆ F(M,N) is shown in Corollary 1.4, for every
pair M,N in ModR. In this case Pu(M,N) consists of all R-homomorphisms
f : M → N having a factorization through a direct sum of finite-dimensional
modules, which is additionally a locally finite-dimensional R-module (see
Corollary 1.2).

It is easy to see that the subspaces (∗) define two two-sided ideals

(∗∗) Pu( · ,−) ⊆ HomR( · ,−) and F( · ,−) ⊆ HomR( · ,−)

of the category MOD R. Since MOD R is a Grothendieck k-category [9]
and has a set of finite-dimensional generators, the direct sums of finite-
dimensional R-modules are just pure-projective R-modules (see [15], [16])
and Pu is the two-sided ideal of MOD R generated by all pure-projective
R-modules. Following a suggestion of Daniel Simson we call Pu the pure-
projective ideal of MOD R.

Let G be a group of k-linear automorphisms of R acting freely on objects
of R. Then G acts on the category MOD R by translations g(−), which
assign to each M in MOD R the R-module gM = M ◦ g−1 and to each
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f : M → N in MOD R the R-homomorphism gf : gM → gN given by the
family of k-linear maps (f(g−1(x)))x∈R. The ideals Pu and F are invariant
with respect to this action of G.

Given M in MOD R the subgroup

GM = {g ∈ G : gM ' M}
of G is called the stabilizer of M .

By an R-action of a subgroup H of GM on M we mean a family

µ = (µg : M → g−1
M)g∈H

of R-homomorphisms such that µe = idM , where e is the unit of H, and
g−1
1 µg2 · µg1 = µg2g1 for all g1, g2 ∈ H (see [10]).

Observe that if H is a free group then M admits an R-action of H ( see
[2, Lemma 4.1]).

Let M and N be R-modules and H be a subgroup of GM ∩GN . If µ is
an R-action of H on M and ν is an R-action of H on N , then we define the
induced group action

(∗∗∗) HomR(µ, ν) : H ×HomR(M,N) → HomR(M,N)

by the mapping (h, f) 7→ hνh · hf ·µh−1 (see also [2, 2.4]). This defines a left
kH-module structure on HomR(M,N), where kH is the group algebra of H
over k. Observe that the subspaces Pu(M,N), F(M,N) of HomR(M,N)
are its kH-submodules.

The main goal of this paper is to prove the following result announced
in [3].

Theorem A. Let G be a group of k-linear automorphisms of a locally
bounded k-category R, acting freely on objects of R, and let M and N be
R-modules in Mod R. Assume that GM ∩ GN contains an infinite cyclic
subgroup H such that suppM ∩ suppN is contained in a sum of finitely
many H-orbits in R. Then the k-vector spaces Pu(M,N) and F(M,N) have
the following properties:

(i) Pu(M,N) = F(M,N).
(ii) Pu(M,N) is summably closed (in the sense of 1.2).
(iii) All decompositions M =

⊕
s∈S Ms and N =

⊕
t∈T Nt of M and N

into a direct sum of submodules induce the canonical embedding

Pu(M,N) →
∏
s∈S

∏
t∈T

Pu(Ms, Nt),

which is an isomorphism.
(iv) If µ is an R-action of H on M and ν is an R-action of H on N

then Pu(M,N) is a left kH-submodule of HomR(M,N) with respect to the
action HomR(µ, ν) (see (∗∗∗)) and Pu(M,N) is an injective kH-module.
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For applications of this result we refer to [3, Theorem 5.2].

Let C1 and C2 be full subcategories of a locally bounded k-category R.
Then C1∪C2 (resp. C1∩C2 and C1\C2) is the full subcategory of R formed
by the union (resp. intersection and difference) of the sets of objects obC1

and obC2. The subcategories C1 and C2 are disjoint (resp. orthogonal)
if obC1 ∩ obC2 = ∅ (resp. R(x, y) = 0 = R(y, x) for any x ∈ obC1 and
y ∈ obC2). The union

⋃
i∈I Ci of the family of full subcategories Ci of R,

i ∈ I, is said to be a disjoint union, and then denoted by
∨

i∈I Ci, if the
subcategories Ci, i ∈ I, are pairwise disjoint. The union of the family Ci,
i ∈ I, of pairwise orthogonal full subcategories of R (then

⋃
i∈I =

∨
i∈I Ci)

is naturally isomorphic to the coproduct of this family and will be denoted
by

∐
i∈I Ci.

Throughout the paper by an ideal of a category we mean a two-sided
ideal.

The paper is organized as follows. In Section 1 the properties of sum-
mable families of homomorphisms and summably closed ideals are discussed.
The main result of this paper is proved in Section 2.

Some of the results of this paper with the proofs in brief outline have
been announced in [3], and have been presented at the Cocoyoc Conference
ICRA VII in Mexico, August 1994, and at Paderborn University, June 1995.

The author wishes to express deep gratitude to Daniel Simson for his
effort, helpful discussions and important remarks during preparation of the
final version of this paper.

1. Summable families and summably closed ideals. The category
MOD R is equipped with an additional structure given by the partial oper-
ation of forming sums of infinite families of homomorphisms. Properties of
this operation are especially interesting if the subcategory ModR (for R in-
finite) is considered. Observe that in ModR the decomposition into a direct
sum of submodules is in fact the decomposition into their direct product. In
this section we discuss summably closed ideals in ModR, i.e. ideals which
are closed with respect to this partial operation.

1.1. Definition. Let M and N be R-modules in MOD R. A family
(fi)i∈I of homomorphisms from HomR(M,N) is said to be summable if for
each x ∈ R and m ∈ M(x), fi(x)(m) = 0 for almost all i ∈ I. In this
case the well defined R-homomorphism f =

∑
i∈I fi : M → N , given by

f(x)(m) =
∑

i∈I fi(x)(m) for any x ∈ R,m ∈ M(x), is called the sum of
the family (fi)i∈I .

Below we list a collection of basic facts concerning summable families of
homomorphisms.
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Lemma. Let (fi)i∈I be a family of R-homomorphisms from M to N ,
where M,N is a pair of R-modules.

(i) The family (fi)i∈I is summable if and only if the image of the map
M →

∏
I N induced by (fi)i∈I is contained in

⊕
I N (equivalently , in⊕

i∈I Im fi). In this case the sum f =
∑

i∈I fi : M → N factors through⊕
I N (equivalently

⊕
i∈I Im fi).

(ii) If f = f ′′f ′ is the composed R-homomorphism M
f ′−→

⊕
i∈I Zi

f ′′−→
N , where f ′ and f ′′ are defined by families (f ′i)i∈I and (f ′′i )i∈I , then the
family (f ′′i f ′i)i∈I is summable and its sum equals f .

(iii) The family (fi)i∈I is summable if and only if there exist factor-

izations M
f ′i−→ Zi

f ′′i−→ N of all fi’s, i ∈ I, such that the image of the
R-homomorphism M →

∏
i∈I Zi induced by (f ′i)i∈I is contained in

⊕
i∈I Zi.

(iv) If (fi)i∈I and (f ′i)i∈I are summable families of R-homomorphisms
from M to N , with sums f =

∑
i∈I fi and f ′ =

∑
i∈I f ′i , then for any

homomorphisms h : M ′ → M , g : N → N ′ the family (gfih + gf ′ih)i∈I is
summable and its sum is equal to gfh + gf ′h.

(v) Assume that M =
⊕

s∈S Ms and N =
∏

t∈T Nt. For each i ∈
I, let (f (s,t)

i )(s,t)∈S×T be a family of component homomorphisms f
(s,t)
i ∈

HomR(Ms, Nt), s ∈ S, t ∈ T, defining the homomorphism fi. If the family
(fi)i∈I is summable then for each (s, t) ∈ S × T the family (f (s,t)

i )i∈I is
summable and the sum

∑
i∈I fi is defined by the family of component homo-

morphisms (
∑

i∈I f
(s,t)
i )(s,t)∈S×T . If additionally T is finite or M is locally

finite-dimensional then the converse implication holds true.
(vi) Assume that M is locally finite-dimensional. Then the family (fi)i∈I

is summable if and only if for every x ∈ R, fi(x) = 0 for almost all i ∈ I.

P r o o f. Use the definition.

Corollary. Let M and N be R-modules. If M is locally finite-dimen-
sional then Pu(M,N) consists of all R-homomorphisms f : M → N having
a factorization through a direct sum of finite-dimensional modules, which is
additionally a locally finite-dimensional R-module.

P r o o f. Let f be the composed R-homomorphism M
f ′−→

⊕
i∈I Zi

f ′′−→
N , where f ′ and f ′′ are defined by families (f ′i)i∈I and (f ′′i )i∈I , and all
Zi, i ∈ I, are finite-dimensional. Then f factors through the module⊕

i∈I Im(f ′′i f ′i), which satisfies the required conditions.

R e m a r k. If
(
(fs,i)i∈Is

)
s∈S

is a family of summable families of R-homo-
morphisms from M to N and I =

∐
s∈S Is, then the family (fs,i)(s,i)∈I need

not be summable.
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1.2. Let (Ms)s∈S and (Nt)t∈T be families of R-modules. From now on
we will identify HomR(

⊕
s∈S Ms,

∏
t∈T Nt) and

∏
s∈S

∏
t∈T HomR(Ms, Nt).

Then by Lemma 1.1, HomR(
⊕

s∈S Ms,
∏

t∈T Nt) consists of all families
(f (s,t))(s,t)∈S×T such that the family (wtf

(s,t)ps)s∈S,t∈T is summable, where
ps :

⊕
s∈S Ms → Ms, s ∈ S, (resp. wt : Nt →

⊕
t∈T Nt, t ∈ T ) denote

the canonical projections (resp. embeddings). The identification in this
situation is given by the sum operator.

If I is an ideal of a full subcategory C of MOD R, then any pair of
families (Ms)s∈S and (Nt)t∈T of R-modules in C such that both

⊕
s∈S Ms

and
⊕

t∈T Nt belong to C, induces the canonical embedding

(∗∗∗∗) I
( ⊕

s∈S

Ms,
⊕
t∈T

Nt

)
⊂

∏
s∈S

∏
t∈T

I(Ms, Nt).

We will discuss the natural problem when this inclusion is an equality.

Definition. (i) Let M and N be R-modules in MOD R. A subspace W
of HomR(M,N) is said to be summably closed if for any summable family
(fi)i∈I of R-homomorphisms from W the sum

∑
i∈I fi belongs to W.

(ii) An ideal I of a full subcategory C of MOD R is said to be summably
closed if the subspace I(M,N) of HomR(M,N) is summably closed for each
pair M,N of R-modules in C.

Lemma. Let I be an ideal of a full subcategory C of MOD R, and M,N
be R-modules in C. If the subspace I(M,N) of HomR(M,N) is summably
closed then any decompositions M =

⊕
s∈S Ms and N =

⊕
t∈T Nt in C yield

the equality

I(M,N) =
∏
s∈S

∏
t∈T

I(Ms, Nt) ∩HomR(M,N).

P r o o f. To prove the nontrivial inclusion ⊇ take any f ∈ HomR(M,N)
whose components f (s,t) ∈ HomR(Ms, Nt) belong to I(Ms, Nt) for every
s ∈ S, t ∈ T . The family (wtf

(s,t)ps)s∈S,t∈T is a summable family of R-
homomorphims from I(M,N) and therefore, by assumption, its sum f also
belongs to I(M,N).

Corollary. If I is an ideal of Mod R and M,N are R-modules in
Mod R, satisfying the conditions of Lemma 1.2, then

I(M,N) =
∏
s∈S

∏
t∈T

I(Ms, Nt).

P r o o f. Apply Lemma 1.2 to C=Mod R and use the equality
⊕

t∈T Nt =∏
t∈T Nt.

1.3. Proposition. Let I be an ideal of the category Mod R. Then I is
summably closed if and only if I satisfies the following two conditions:
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(i) The space I(M,N) is summably closed for all indecomposable M , N
in Mod R.

(ii) For each pair M , N in Mod R there exist decompositions M =⊕
s∈S Ms and N =

⊕
t∈T Nt into direct sums of indecomposable submodules

such that I(M,N) =
∏

s∈S

∏
t∈T I(Ms, Nt).

P r o o f. Since each M in ModR has a decomposition into a direct sum
of indecomposables (see [6, Lemma 2.1]) the summable closedness of I by
Corollary 1.2 implies the condition (ii) and obviously (i).

Take now any M,N in ModR and a summable family (fi)i∈I of R-
homomorphisms from M to N such that all fi, i ∈ I, belong to I(M,N).
Let M =

⊕
s∈S Ms and N =

⊕
t∈T Nt satisfy (ii). By Lemma 1.1(v) for each

(s, t) ∈ S × T the family (f (s,t)
i )i∈I of (s, t)-component maps is a summable

family of homomorphisms from I(Ms, Nt), and (
∑

i∈I fi)(s,t) =
∑

i∈I f
(s,t)
i .

Now from (i) and (ii) we conclude that
∑

i∈I fi belongs to I(M,N) and the
proof is finished.

R e m a r k. An ideal I of Mod R is usually not determined by its values
on pairs of indecomposable objects.

Example. Let R be an infinite locally-support finite locally bounded
k-category (see [5]). Denote by I the ideal of ModR consisting of all ho-
momorphisms with a finite support. Since each indecomposable R-module
in this case is finite-dimensional, the summably closed ideal HomR and the
ideal I take the same values on pairs of indecomposable R-modules. The
identity homomorphism idM does not belong to I(M,M) for any infinite-
dimensional R-module M in ModR.

1.4. Given an ideal I of the category MOD R and a full subcategory C
of MOD R we denote by I C the restriction of I to Cop × C.

Lemma. The ideal FMod R of Mod R is summably closed.

P r o o f. Take any M,N in ModR, a summable family (fi)i∈I of ho-
momorphisms such that fi ∈ F(M,N), for each i ∈ I, and a full finite
subcategory C of R. By Lemma 1.1(vi) the set I ′ consisting of all i ∈ I such
that fi|C 6= 0, is finite. For every i ∈ I ′ we fix some f i ∈ HomR(M,N) such
that supp f i is finite and f i|C = fi|C . Then (

∑
i∈I fi)|C = (

∑
i∈I f i)|C ,

the support supp(
∑

i∈I f i) is finite and consequently
∑

i∈I fi belongs to
F(M,N).

Corollary. The ideal PuMod R is contained in FMod R.

P r o o f. Take any M,N in ModR and a composed map f = f ′′f ′ :
M → N , where f ′ : M →

⊕
i∈I Zi and f ′′ :

⊕
i∈I Zi → N are given

by families (fi)i∈I and (f ′′i )i∈I , and where all R-modules Zi, i ∈ I, are
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finite-dimensional. By Lemma 1.1(ii), (f ′′i f ′i)i∈I is a summable family of
homomorphisms from F(M,N) and therefore by Lemma 1.4, f =

∑
i∈I f ′′i f ′i

belongs to F(M,N).

We do not know whether PuMod R is always summably closed or is always
equal to FMod R; see Theorem A for a complete answer in an important
special case.

2. Injective submodules. We shall prove some general facts on injec-
tive submodules of the kH-module HomR(M,N), where M,N are in ModR
and H is an infinite cyclic subgroup contained in GM ∩GN (see Theorem B,
Section 2.2). The proof of Theorem A will follow rather easily from this
result and will be completed in 2.6.

The formulation of Theorem B needs some preparation.

2.1. Let C be a full subcategory of R. Following [5] we denote by Ĉ the
full subcategory of all y ∈ R such that R(x, y) 6= 0 or R(y, x) 6= 0 for some
x ∈ C. For any M,N in MOD R we denote by HomC

R(M,N) the k-subspace
of all f ∈ HomR(M,N) such that supp f is contained in C.

Lemma. Let M,N be a pair of R-modules and C be a full subcategory of
R. Then a homomorphism f ′ ∈ HomC(M|C , N|C) can be extended by f ′′ ∈
HomR\C(M|R\C , N|R\C) to a homomorphism from HomR(M,N) if and only
if f ′ can be extended by f ′′

|Ĉ\C
to a homomorphism from Hom

Ĉ
(M|Ĉ ,

N|Ĉ). In particular , any homomorphism f ∈ HomC

Ĉ
(M |

Ĉ
, N|Ĉ) can be

extended by the zero map to the homomorphism (f ; 0) ∈ HomR(M,N)
and therefore the restriction to Ĉ induces an isomorphism HomC

R(M,N) '
HomC

Ĉ
(M|Ĉ , N|Ĉ).

P r o o f. Obvious.

Corollary. Let Ci, i ∈ I, be a family of pairwise orthogonal full sub-
categories of R, C =

⊔
i∈I Ci and C∗

j =
⊔

i∈I\{j} Ci for each j ∈ I. Then the
natural inclusions HomCi

R (M,N) ⊂ HomC
R(M,N) and the maps (−|Ĉi

; 0) :

HomC
R(M,N) → HomCi

R (M,N), i ∈ I, induce an isomorphism HomC
R(M,N)

'
∏

i∈I HomCi

R (M,N), which, in case I is finite, turns into the equality
HomC

R(M,N) =
⊕

i∈I HomCi

R (M,N). In particular , we have HomC
R(M,N)

= HomCj

R (M,N)⊕Hom
C∗

j

R (M,N) for every j ∈ I.

P r o o f. Since Ci, i ∈ I, are pairwise disjoint,
∏

i∈I HomCi

R (M,N) con-
sists only of summable families and the natural inclusions define correctly
the map

∏
i∈I HomCi

R (M,N) → HomC
R(M,N) by attaching to any (fi)i∈I

its sum
∑

i∈I fi. The map HomC
R(M,N) →

∏
i∈I HomCi

R (M,N) assigning
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to any f the family
(
(f|Ĉi

; 0)
)
i∈I

is also well defined (see Lemma 2.1), be-
cause the Ci, i ∈ I, are pairwise orthogonal. The two maps are mutually
inverse and the remaining assertions follow trivially.

2.2. Let W be a k-linear subspace of HomR(M,N). We say that W is
f-summably closed if for any summable family (fi)i∈I of R-homomorphisms
from W such that supp fi is finite for every i ∈ I, the sum

∑
i∈I fi belongs

to W.
For any full subcategory C of R we denote by WC the intersection W ∩

HomC
R(M,N). We say that W is homogeneous with respect to a pair of

orthogonal full subcategories A and B of R if the natural inclusions induce
the equality WA ⊕WB = WAtB (see Corollary 2.1).

Theorem B. Let G be a group of k-linear automorphisms of a locally
bounded k-category R, acting freely on objects of R, and let M and N be
R-modules in Mod R. Assume that GM ∩ GN contains an infinite cyclic
subgroup H such that suppM ∩ suppN is contained in a sum of finitely
many H-orbits in R. Suppose that µ is an R-action of H on M , ν is an
R-action of H on N and W is a k-subspace of HomR(M,N) satisfying the
following conditions:

(i) W is H-invariant with respect to the action HomR(µ, ν),
(ii) W is f-summably closed ,
(iii) W is homogeneous with respect to any pair of full orthogonal subcat-

egories of R such that one of them is finite,
(iv) for any f ∈ W and any finite full subcategory C of R there exists

f ∈ W such that the support supp f is finite and f|C = f |C .

Then the kH-module W, with the structure defined by the action
HomR(µ, ν), is injective.

The major part of this section will be devoted to the proof of the above
theorem.

2.3. Denote by fs(R) the class of all finite full subcategories of R.

Lemma. Let M ,N and H be as in Theorem B, µ (resp. ν) be an R-action
of H on M (resp. N ) and let L = suppM∩ suppN . Assume additionally that
W is a k-subspace of HomR(M,N) which is H-invariant with respect to the
action HomR(µ, ν) and moreover satisfies the condition (iv) of Theorem B.
Then there exists an H-equivariant function u : fs(R) → fs(L) with the
property that for any C ∈ fs(C) and f ∈ W, the restriction f|C coincides
with f |C for some f ∈ Wu(C).

P r o o f. Fix any set fs0(R) of representatives of H-orbits in fs(R). First
we define a function u0 : fs0(R)→ fs(L). Take any C∈ fs0(R). Then the set
V of all f|C , where f ∈ W, is a finite-dimensional k-vector space. Fix any
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basis f1|C , . . . , fn|C of V, where n = dimk V. Since W satisfies the condition
(iv) of Theorem B we can assume that all fi, i = 1, . . . , n, have finite support.
Then we set u0(C) = supp f1 ∪ . . .∪ supp fn. Since the action of H on fs(R)
is free the map u0 can be uniquely extended to an H-equivariant function
u : fs(R) → fs(L). It is easy to check that u has the required property.

2.4. Throughout this section L denotes a locally bounded k-category.

Lemma. Let · : H×L → L be a free action of an infinite cyclic group H ,
with a generator h, on a locally bounded k-category L such that L/H is finite.
Then there exists a trisection of L into a disjoint union L = L− ∨ L0 ∨ L+

of full subcategories satisfying the following conditions:

(i) L0 is finite,
(ii) L(x, y) = 0 = L(y, x) for each x ∈ L− and y ∈ L+,
(iii) L+ ⊂

⋃
n≥0 hnL0 and L− ⊂

⋃
n≤0 h−nL0,

(iv) hn(L0 ∪ L+) ⊂ L+ and h−n(L0 ∪ L−) ⊂ L− for n � 0.

P r o o f. Take any set D of representatives of H-orbits in L. Since by
assumption D is finite, D̂ is also finite. The action of H on L is free, therefore
there exist only finitely many i ∈ N such that hiD ∩ D̂ 6= ∅. Denote by m
the maximum of all i ∈ N with the above property and set L0 =

⋃m−1
i=0 hiD,

L+ =
⋃

i∈N hiL0 \ L0 =
⋃

i≥m hiD and L− =
⋃

i∈N h−iL0 \ L0 =
⋃

i≤0 hiD.
Now one can easily check the required conditions.

Let L = L− ∨ L0 ∨ L+ satisfy the assertions of Lemma 2.4. Then we
set L′

n = L+ ∩ hnL−, Ln,m = hmnL0, L+
n,m = hmnL+, L−

n,m = hmnL−,
L′

n,m = hmnL′
n for any n ∈ N and m ∈ Z.

Corollary. Under the notation above, the category L decomposes into
a disjoint union

L =
∨

m∈Z
Ln,m ∨

⊔
m∈Z

L′
n,m

of finite full subcategories, for sufficiently large n ∈ N.

P r o o f. Fix any n ∈ N satisfying the condition (iv) of Lemma 2.4. The
finiteness of the L′

n,m’s, m ∈ Z, follows from the property (iii) and the fact
that the action is free. For the proof of the decomposition one shows first
inductively, using the property (iv), that

L+
n =

p∨
m=1

Ln,m ∨
p−1∨
m=0

L′
n,m ∨ L+

n,p

for every p ∈ N. Observe that since the action is free, by (iii) we obtain
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⋂
p∈N L+

n,p = ∅, and therefore

L+
n =

∨
m>0

Ln,m ∨
∨

m≥0

L′
n,m.

Similarly one shows

L−
n =

∨
m<0

Ln,m ∨
∨

m<0

L′
n,m and L =

∨
m∈Z

Ln,m ∨
∨

m∈Z
L′

n,m.

The orthogonality of the L′
n,m’s follows from the property (ii) and the in-

clusions L′
n,m ⊂ L+

n,s, L′
n,m ⊂ L−

n,t proved above for any s, t ∈ Z such that
m ≥ s and m < t.

2.5. Let M,N be a pair of R-modules in ModR, H be an infinite cyclic
subgroup of GM ∩GN and W a submodule of the kH-module HomR(M,N)
with the kH-module structure defined by the action HomR(µ, ν), for fixed
R-actions µ and ν of H on M and N respectively (see (∗∗∗)). For any
C ∈ fs(R) we denote by QC the kH-module

∏
g∈H WgC . Since C is finite,

WC is finite-dimensional, the kH-module QC is isomorphic to the k-dual
of a finitely generated free kH-module and therefore QC is injective. The
inclusions WgC ⊂ HomR(M,N) induce a map πC : QC → HomR(M,N)
given by the formula πC

(
(fg)g∈H

)
=

∑
g∈H fg, where (fg)g∈H ∈ QC . The

map πC is well defined since G acts freely on R and therefore QC consists
only of summable families of homomorphisms. Denote by

π :
⊕

C∈fs(C)

QC → HomR(M,N)

the kH-homomorphism induced by the maps πC , C ∈ fs(R). Observe that
Im π is an injective kH-module since kH is a principal ideal domain. More-
over, Im π ⊂ Pu(M,N) by Lemma 1.1(i).

P r o o f o f T h e o r e m B. For the proof of the injectivity of kH-module
W satisfying the assumptions (i)–(iv) it is enough to show that W = Im π,
where π is the map defined above. By (ii) we obtain Im πC ⊂ W for any
C ∈ fs(R) and therefore W ⊂ Im π. Let L = supp M ∩ suppN and fix
some generator h of H. Then L/H is finite, hence there exists a trisection
L=L−∨ L0∨ L+ of L satisfying the assertions of Lemma 2.4. Denote by L
the union L0∪u(L0) (see Lemma 2.3). Since G acts freely on R and L is finite,
by Corollary 2.5 there exists n ∈ N such that L =

∨
m∈Z Ln,m ∨

⊔
m∈Z L′

n,m

and
⋃

m∈Z Ln,m =
∨

m∈Z Ln,m, where Ln,m = hmnL0, L′
n,m = hmnL+ ∩

hn(m+1)L− and Ln,m = hmnL, for each m ∈ Z. Fix some n ∈ N as above,
and take now an arbitrary f ∈W. By Lemma 2.3 for each m∈Z, there exists
fm ∈ W L̄n,m such that f|Ln,m

= fm|Ln,m
. Obviously the family (fm)m∈Z is

summable and f =
∑

m∈Z fm ∈ Im πL̄. By (ii) the map f ′ = f−f belongs to
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W and since supp f ′ ⊂
⊔

m∈Z L′
n,m it follows that f ′ =

∑
m∈Z f ′m for some

summable family (f ′m)m∈Z, where f ′m ∈ HomL′
n,m(M,N) for each m ∈ Z

(see Corollary 2.1). Invoking the assumption (iii), we get f ′m ∈ WL′
n,m for

every m ∈ Z, and therefore f ′ ∈ Im πL′
, where L′ = L′

n,0. In this way
the inclusion W ⊂ Im π is shown and the proof of the injectivity of the
kH-module W is completed.

As a consequence of the above proof we get the following.

Corollary. Under the assumptions of Theorem B and the notation of
the above proof , the following inclusions hold :

W ⊂ Im πD̄ + Im πE ⊂ Im π ⊂ W and Im π ⊂ Pu(M,N).

2.6. P r o o f o f T h e o r e m A. Let M,N and H satisfy the assump-
tions of Theorem A. Since H is a free group there always exists an R-action
of H on any R-module. Let us fix a pair of such actions, µ on M and ν
on N . Then the subspace F(M,N) of HomR(M,N) is H-invariant with
respect to the action HomR(µ, ν) and satisfies the remaining assumptions
of Theorem B. The assumption (ii) is satisfied since by Lemma 1.4 the sub-
space F(M,N) is summably closed. The assumptions (iii) and (iv) are
trivially satisfied by the definition of F . Therefore by Theorem B the
kH-module F(M,N) is injective, and by Corollaries 2.5 and 1.4 we get
Pu(M,N) = F(M,N). The remaining assertion now follows easily from the
above equality, the inclusion (∗∗∗∗), Lemma and Corollaries 1.4 and 1.2.
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