QUASI-COMMUTATIVE POLYNOMIAL ALGEBRAS
 AND THE POWER PROPERTY OF 2×2 QUANTUM MATRICES

BY
PIOTR JȨDRZEJEWICZ (TORUŃ)
Let K be a field. Recall (e.g. [4], 3.1, [5], 4.2.1) that a quadratic algebra is a graded associative K-algebra

$$
A=\bigoplus_{k=0}^{\infty} A_{k}
$$

where $A_{0}=K, \operatorname{dim}_{K} A_{1}<\infty$ and A is generated by A_{1} with the ideal of relations generated by quadratic ones:

$$
A=T\left(A_{1}\right) /\left(R_{A}\right)
$$

where $T\left(A_{1}\right)$ is the tensor algebra of A_{1} and $R_{A} \subset A_{1}^{\otimes 2}$. It is convenient to write

$$
A \leftrightarrow\left\{A_{1}, R_{A}\right\} .
$$

In this paper we consider quadratic algebras of a special type, with the relations quite similar to ordinary commutativity relations. This approach generalizes different examples of quadratic algebras. In the case of two generators we can unify the definitions of algebras

$$
A_{q}^{2 \mid 0}=K\left\langle x_{1}, x_{2}\right\rangle /\left(x_{1} x_{2}-q^{-1} x_{2} x_{1}\right)
$$

and

$$
A_{J}=K\left\langle x_{1}, x_{2}\right\rangle /\left(x_{1} x_{2}-x_{2} x_{1}-x_{1}^{2}\right)
$$

(notation from [4], 1.2, [5], 4.2.8, 4.4.3). This will allow us to have a common view of some properties of quantum matrices connected with these two algebras. In particular, our Theorem is a generalization of [5], 1.3.8(v) and [3], (ii).

Definition 1. Let V be an m-dimensional linear space over K. Denote by R the subspace of $V^{\otimes 2}$ spanned by elements $x \otimes y-y \otimes x$ for $x, y \in V$. For each $P \in G L(V)$ we define the quadratic algebra

$$
A^{P}=A^{P}[V] \leftrightarrow\{V,(I \otimes P)(R)\}
$$

[^0]where I is the identity operator. A quasi-commutative polynomial algebra is a quadratic algebra of the form $A^{P}[V]$ for some V and $P \in G L(V)$.

Lemma 1. Quadratic algebras $A^{P_{1}}[V]$ and $A^{P_{2}}[V]$ are isomorphic if and only if there exist $C \in \mathrm{GL}(V)$ and $\alpha \in K \backslash\{0\}$ such that $P_{2}=\alpha \cdot C P_{1} C^{-1}$.

Proof. Any isomorphism $A^{P_{1}}[V] \rightarrow A^{P_{2}}[V]$ is an extension of a linear automorphism $C: V \rightarrow V$ such that $(C \otimes C)\left(I \otimes P_{1}\right)(R)=\left(I \otimes P_{2}\right)(R)$, and this condition is equivalent to $\left(I \otimes C P_{1} C^{-1}\right)(R)=\left(I \otimes P_{2}\right)(R)$, which means that $\alpha \cdot C P_{1} C^{-1}=P_{2}$ for some $\alpha \neq 0$.

Now we obtain a linear basis of $A^{P}[V]$. Choose a basis x_{1}, \ldots, x_{m} of V and its dual basis x^{1}, \ldots, x^{m} of V^{*}. We have

$$
A^{P}=\bigoplus_{k=0}^{\infty} A_{k}^{P}=K\left\langle x_{1}, \ldots, x_{m}\right\rangle /\left(x_{i} P\left(x_{j}\right)-x_{j} P\left(x_{i}\right), 1 \leq i<j \leq m\right)
$$

One easily verifies that in A_{k}^{P} the following relations hold:

$$
x_{i_{\sigma(1)}} P\left(x_{i_{\sigma(2)}}\right) \ldots P^{k-1}\left(x_{i_{\sigma(k)}}\right)=x_{i_{1}} P\left(x_{i_{2}}\right) \ldots P^{k-1}\left(x_{i_{k}}\right)
$$

for all $i_{1}, \ldots, i_{k} \in\{1, \ldots, m\}$ and $\sigma \in S_{k}$. This implies that the monomials

$$
x_{i_{1}} P\left(x_{i_{2}}\right) \ldots P^{k-1}\left(x_{i_{k}}\right)
$$

with $1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{k} \leq m$ span A_{k}^{P}. Since they are linearly independent (proof by induction on k), this is a basis of A_{k}^{P}. It makes this algebra very similar to the algebra of commutative polynomials. In particular, we have

$$
\operatorname{dim} A_{k}^{P}=\binom{m+k-1}{k}
$$

Note that any quadratic algebra with two generators and one non-degenerate relation is quasi-commutative polynomial, but some well known quadratic algebras with more than two generators are not. This is discussed in the following two lemmas.

Lemma 2. Let $A \leftrightarrow\left\{A_{1}, R_{A}\right\}$, where $\operatorname{dim} A_{1}=2$ and $\operatorname{dim} R_{A}=1$. If for $x, y \in V$ we have $R_{A} \neq K(x \otimes y)$, then A is a quasi-commutative polynomial algebra.

Proof. Take $a_{i j} \in K$ such that the generating relation is

$$
\begin{aligned}
r & =a_{11} x_{1} \otimes x_{1}+a_{12} x_{1} \otimes x_{2}+a_{21} x_{2} \otimes x_{1}+a_{22} x_{2} \otimes x_{2} \\
& =x_{1} \otimes\left(a_{11} x_{1}+a_{12} x_{2}\right)-x_{2} \otimes\left(-a_{21} x_{1}-a_{22} x_{2}\right)
\end{aligned}
$$

Since r is not of the form $x \otimes y$, the operator P defined by $P\left(x_{1}\right)=\left(-a_{21} x_{1}-\right.$ $\left.a_{22} x_{2}\right)$ and $P\left(x_{2}\right)=a_{11} x_{1}+a_{12} x_{2}$ is non-degenerate and $R_{A}=(I \otimes P)\left(x_{1} \otimes\right.$ $x_{2}-x_{2} \otimes x_{1}$. Hence $A=A^{P}$.

Lemma 3. The algebra $A=K\left\langle x_{1}, \ldots, x_{m}\right\rangle /\left(x_{i} x_{j}-q_{i j}^{-1} x_{j} x_{i}, 1 \leq i<\right.$ $j \leq m$) is a quasi-commutative polynomial algebra if and only if there exist q_{1}, \ldots, q_{m} such that $q_{i j}=q_{i}^{-1} q_{j}$ for all $i<j$.

Proof. Suppose that $A=A^{P}$. Let $\left(p_{k}^{i}\right)$ be the matrix of P with respect to the basis x_{1}, \ldots, x_{m}. Take any i, j such that $1 \leq i<j \leq m$. We have

$$
\begin{gathered}
r_{i j}=\sum_{l=1}^{m} p_{j}^{l} x_{i} \otimes x_{l}-\sum_{k=1}^{m} p_{i}^{k} x_{j} \otimes x_{k}=x_{i} \otimes P\left(x_{j}\right)-x_{j} \otimes P\left(x_{i}\right) \in R_{A} \\
x^{i} \otimes x^{j}+q_{i j} x^{j} \otimes x^{i} \in R_{A}^{\perp}
\end{gathered}
$$

so that $p_{j}^{j}-q_{i j} p_{i}^{i}=\left(x^{i} \otimes x^{j}+q_{i j} x^{j} \otimes x^{i}\right)\left(r_{i j}\right)=0$.
On the other hand, if there exist q_{1}, \ldots, q_{m} such that $q_{i j}=q_{i}^{-1} q_{j}$ for all $i<j$, then for $p_{k}^{i}=\delta_{k}^{i} q_{k}$ we get $A=A^{P}$.

As a consequence, note that for $m>2$ and $q \neq 1$ the algebra

$$
A_{q}^{m \mid 0}=K\left\langle x_{1}, \ldots, x_{m}\right\rangle /\left(x_{i} x_{j}-q^{-1} x_{j} x_{i}, 1 \leq i<j \leq m\right)
$$

is not quasi-commutative polynomial. The algebra from Lemma 3 is considered in [8] and the case of $q_{i j}=q_{i}^{-1} q_{j}$ is connected with the version of the power property given at the end of that paper.

Now recall some general constructions of "quantum endomorphism semigroups".

Let $A \leftrightarrow\left\{V, R_{A}\right\}$. Put

$$
E(A) \leftrightarrow\left\{V^{*} \otimes V, S_{23}\left(\left(R_{A}\right)^{\perp} \otimes R_{A}\right)\right\}
$$

where $\left(R_{A}\right)^{\perp} \subset(V \otimes V)^{*} \simeq\left(V^{*} \otimes V^{*}\right)$ is the annihilator of R_{A} and S_{23} : $V^{*} \otimes V^{*} \otimes V \otimes V \rightarrow V^{*} \otimes V \otimes V^{*} \otimes V$ is the isomorphism interchanging the 2 nd and 3rd components (see [4], 4.5b, [5], 4.2.6). The canonical map

$$
V \rightarrow\left(V^{*} \otimes V\right) \otimes V: x_{k} \mapsto \sum_{i=1}^{m} z_{k}^{i} \otimes x_{i}
$$

where $z_{k}^{i}=x^{i} \otimes x_{k}$ for $1 \leq i, k \leq m$, extends to a homomorphism of algebras

$$
\delta_{A}: A \rightarrow E(A) \otimes A
$$

$E(A)$ is far from any kind of commutativity, it has m^{2} generators and only $\binom{m}{2} \cdot\left(m^{2}-\binom{m}{2}\right)=\frac{1}{2}\binom{m^{2}}{2}$ relations. To obtain a good analogue of a commutative algebra we have to add the "second half" of the relations.

Let $A \leftrightarrow\left\{V, R_{A}\right\}, B \leftrightarrow\left\{V^{*}, R_{B}\right\}$. Put

$$
E(A, B) \leftrightarrow\left\{V^{*} \otimes V, S_{23}\left(\left(R_{A}\right)^{\perp} \otimes R_{A}+R_{B} \otimes\left(R_{B}\right)^{\perp}\right)\right\}
$$

(compare [4], 6.2, [5], 4.2.7, [6], 1.4). The canonical maps $V \rightarrow\left(V^{*} \otimes V\right) \otimes V$
(as above) and

$$
V^{*} \rightarrow\left(V^{*} \otimes V\right) \otimes V^{*}: x^{i} \mapsto \sum_{k=1}^{m} z_{k}^{i} \otimes x^{k}
$$

extend to homomorphisms of algebras

$$
\delta_{A, B}^{1}: A \rightarrow E(A, B) \otimes A, \quad \delta_{A, B}^{2}: B \rightarrow E(A, B) \otimes B .
$$

$E(A, B)$ can be thought of as the "greatest common factor" of $E(A)$ and $E(B)$, both of them being generated by $V^{*} \otimes V$, the latter via the canonical isomorphism $V \otimes V^{*} \simeq V^{*} \otimes V$.

Now, we apply these constructions to quasi-commutative polynomial algebras and write down the relations in terms of the basis $z_{k}^{i}=x^{i} \otimes x_{k}$ of $V^{*} \otimes V$, which can be considered as a matrix $Z=\left(z_{k}^{i}\right)$.

Definition 2. Let $P \in \mathrm{GL}(V)$. Put

$$
E^{P}=E^{P}\left[V^{*} \otimes V\right]=E\left(A^{P}[V]\right)
$$

The relations of $E^{P}\left[V^{*} \otimes V\right]$ in the above basis are the following:

$$
\begin{gathered}
z_{k}^{i} t_{l}^{i}=z_{l}^{i} t_{k}^{i}, \quad 1 \leq i \leq m, 1 \leq k<l \leq m \\
z_{k}^{i} t_{l}^{j}-z_{l}^{i} t_{k}^{j}=z_{l}^{j} t_{k}^{i}-z_{k}^{j} t_{l}^{i}, \quad 1 \leq i<j \leq m, 1 \leq k<l \leq m,
\end{gathered}
$$

where t_{k}^{i} are the entries of the matrix $T=P^{-1} Z P$.
It is useful to write these relations in matrix form:

$$
\left(\begin{array}{cc}
z_{k}^{i} & z_{l}^{i} \\
z_{k}^{j} & z_{l}^{j}
\end{array}\right) \cdot\left(\begin{array}{cc}
t_{l}^{j} & -t_{l}^{i} \\
-t_{k}^{j} & t_{k}^{i}
\end{array}\right)=\left(\begin{array}{cc}
D_{k l}^{i j} & 0 \\
0 & D_{k l}^{i j}
\end{array}\right)
$$

for all $i<j, k<l$ and suitable $D_{k l}^{i j}$ (i.e. defined by these relations).
Definition 3. Let $P, Q \in \mathrm{GL}(V)$. Put

$$
E^{P, Q}=E^{P, Q}\left[V^{*} \otimes V\right]=E\left(A^{P}[V], A^{Q^{*}}\left[V^{*}\right]\right)
$$

The relations of $E^{P, Q}\left[V^{*} \otimes V\right]$ consist of the ones of $E^{P}\left[V^{*} \otimes V\right]$ (above) and the ones of $E^{Q^{*}}\left[V \otimes V^{*}\right]$:

$$
z_{k}^{i} s_{k}^{j}=z_{k}^{j} s_{k}^{i}, \quad 1 \leq i<j \leq m, 1 \leq k \leq m
$$

$$
z_{k}^{i} s_{l}^{j}-z_{k}^{j} s_{l}^{i}=z_{l}^{j} s_{k}^{i}-z_{l}^{i} s_{k}^{j}, \quad 1 \leq i<j \leq m, 1 \leq k<l \leq m
$$

where $\left(s_{k}^{i}\right)=Q Z Q^{-1}$, or in matrix form:

$$
\left(\begin{array}{cc}
z_{l}^{j} & -z_{l}^{i} \\
-z_{k}^{j} & z_{k}^{i}
\end{array}\right) \cdot\left(\begin{array}{cc}
s_{k}^{i} & s_{l}^{i} \\
s_{k}^{j} & s_{l}^{j}
\end{array}\right)=\left(\begin{array}{cc}
D_{k l}^{\prime i j} & 0 \\
0 & D_{k l}^{\prime i j}
\end{array}\right)
$$

for all $i<j, k<l$.
From now on we assume that $m=2$ and we consider only 2×2 matrices.
Define

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{s}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Note that for any 2×2 matrix M we have $\left(M^{s}\right)^{s}=M, \operatorname{tr} M^{s}=\operatorname{tr} M$, $M+M^{s}=(\operatorname{tr} M) \cdot I$ and $M \cdot M^{s}=(\operatorname{det} M) \cdot I$. Also, $\left(M^{s}\right)^{k}=\left(M^{k}\right)^{s}$ for any positive integer k. If M is invertible, then $\left(M^{s}\right)^{-1}=\left(M^{-1}\right)^{s}$. If the entries of matrices M and N commute, then $(M N)^{s}=N^{s} M^{s}$.

Let $P, Q \in \mathrm{GL}_{2}(K)$. The relations of $E^{P}\left[V^{*} \otimes V\right]$ reduce to one matrix equation

$$
Z\left(P^{-1} Z P\right)^{s}=\mathrm{DET} \cdot I
$$

where $\mathrm{DET}=D_{12}^{12}$. The relations of $E^{P, Q}\left[V^{*} \otimes V\right]$ are the following:

$$
Z\left(P^{-1} Z P\right)^{s}=\mathrm{DET}_{1} \cdot I, \quad Z^{s} Q Z Q^{-1}=\mathrm{DET}_{2} \cdot I
$$

where $\mathrm{DET}_{1}=D_{12}^{12}$ and $\mathrm{DET}_{2}=D_{12}^{\prime 12}$.
Lemma 4. If $\operatorname{tr}(Q P) \neq 0$, then $\operatorname{dim} R_{E^{P, Q}}=6$ and $\mathrm{DET}_{1}=\mathrm{DET}_{2}$. If $\operatorname{tr}(Q P)=0$, then $\operatorname{dim} R_{E^{P, Q}}=5$.

Proof. Let $R=K\left(x_{1} \otimes x_{2}-x_{2} \otimes x_{1}\right)$ and $R^{\prime}=K\left(x^{1} \otimes x^{2}-x^{2} \otimes x^{1}\right)$. Since

$$
\left(x^{1} \otimes Q^{*}\left(x^{2}\right)-x^{2} \otimes Q^{*}\left(x^{1}\right)\right)\left(x_{1} \otimes P\left(x_{2}\right)-x_{2} \otimes P\left(x_{1}\right)\right)=\operatorname{tr}(Q P)
$$

we have $\left(I \otimes Q^{*}\right)\left(R^{\prime}\right) \subset((I \otimes P)(R))^{\perp}$ if and only if $\operatorname{tr}(Q P)=0$. Therefore

$$
\begin{array}{r}
\operatorname{dim}((I \otimes P)(R))^{\perp} \otimes(I \otimes P)(R) \cap\left(I \otimes Q^{*}\right)\left(R^{\prime}\right) \otimes\left(\left(I \otimes Q^{*}\right)\left(R^{\prime}\right)\right)^{\perp} \\
= \begin{cases}1 & \text { if } \operatorname{tr}(Q P)=0 \\
0 & \text { if } \operatorname{tr}(Q P) \neq 0\end{cases}
\end{array}
$$

Finally, $\operatorname{dim} R_{E^{P, Q}}=5$ if $\operatorname{tr}(Q P)=0$ and $\operatorname{dim} R_{E^{P, Q}}=6$ if $\operatorname{tr}(Q P) \neq$ 0 . Now suppose that $\operatorname{tr}(Q P) \neq 0$. For any 2×2 matrices A, B we have $\operatorname{tr}\left(A B^{s}\right)=\operatorname{tr}(A \cdot \operatorname{tr} B-A B)=\operatorname{tr}((\operatorname{tr} A) \cdot B-A B)=\operatorname{tr}\left(A^{s} B\right)$. Since $Z(Q Z P)^{s}=(Q P)^{s} \cdot \mathrm{DET}_{1}$ and $Z^{s} Q Z P=Q P \cdot \mathrm{DET}_{2}$, we get

$$
\begin{aligned}
\operatorname{tr}(Q P) \cdot \mathrm{DET}_{1} & =\operatorname{tr}\left((Q P)^{s}\right) \cdot \mathrm{DET}_{1}=\operatorname{tr}\left(Z(Q Z P)^{s}\right) \\
& =\operatorname{tr}\left(Z^{s} Q Z P\right)=\operatorname{tr}(Q P) \cdot \mathrm{DET}_{2}
\end{aligned}
$$

and hence $\mathrm{DET}_{1}=\mathrm{DET}_{2}$.
So, when $\operatorname{tr}(Q P) \neq 0$, the relations of $E^{P, Q}\left[V^{*} \otimes V\right]$ take the form

$$
Z\left(P^{-1} Z P\right)^{s}=Z^{s} Q Z Q^{-1}=\mathrm{DET} \cdot I
$$

Take any $p, q \in K \backslash\{0\}, p q \neq-1$. For

$$
P=\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right), \quad Q=\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right)
$$

we get the quantum matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of the algebra $M_{p, q}(2)$ with the relations

$$
\begin{gathered}
b a=p a b, \quad d c=p c d, \quad c a=q a c, \quad d b=q b d, \\
c b=p^{-1} q b c, \quad d a=a d+\left(q-p^{-1}\right) b c
\end{gathered}
$$

which is discussed in [6]-[8] and, for $p=q$, in [1], [2], [4], [5], [9], [10].

The power property, first noticed for $M_{p, q}(2)$, states that if the entries of the matrix Z satisfy the conditions with parameters p, q, then the entries of Z^{n} satisfy analogous conditions with p^{n}, q^{n}.

Let char $K \neq 2$ and $p, q \in K$. For

$$
P=\left(\begin{array}{ll}
1 & p \\
0 & 1
\end{array}\right), \quad Q=\left(\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right)
$$

we obtain the algebra $M_{p, q}^{J}(2)$ (considered in [3], [5], [6]) with the following relations:

$$
\begin{gathered}
a c=c a+q c^{2}, \quad d c=c d+p c^{2} \\
d a=a d+p c a-q c d, \quad b c=c b+p q c^{2}+p c a+q c d \\
b a=a b+p q c d+p c b+p a^{2}-p a d, \quad b d=d b+q^{2} c d+q c b-q a d+q d^{2}
\end{gathered}
$$

We observe that the algebra with these relations (for $p, q \neq 0$) is isomorphic to one with $p^{\prime}=1, q^{\prime}=p^{-1} q\left(a^{\prime}=p a, b^{\prime}=b, c^{\prime}=p^{2} c, d^{\prime}=p b\right)$.

In the case of the quantum matrix Z with the relations of $M_{p, q}^{J}(2)$, the entries of its nth power Z^{n} satisfy the relations given by parameters $n p, n q$ (see [3]).

This phenomenon is clear from the following theorem.
Theorem. Let $\operatorname{dim} V=2, P, Q \in \mathrm{GL}(V), P Q=Q P, \operatorname{tr}(Q P) \neq 0$. For any positive integer n the following equalities hold in $E^{P, Q}\left[V^{*} \otimes V\right]$:

$$
Z^{n}\left(P^{-n} Z^{n} P^{n}\right)^{s}=\left(Z^{n}\right)^{s} Q^{n} Z^{n} Q^{-n}=\mathrm{DET}^{n} \cdot I
$$

The proof will follow from Lemmas 5 and 6 . The theorem remains true also in the case of $\operatorname{tr}(Q P)=0$, provided we add the relation $\mathrm{DET}_{1}=\mathrm{DET}_{2}$.

The power property seems to be possible because these quantum matrices have enough commutation relations, namely 6 relations for 4 generators of $E^{P, Q}$. But it turns out that we need only 3 relations of E^{P} with one additional cubic relation to prove that the nth power satisfies the corresponding relations.

The equality $Z\left(P^{-1} Z P\right)^{s}=\mathrm{DET} \cdot I$ is equivalent to $Z(Z P)^{s}=P^{s}$.DET. We have $Z^{2} P^{2}=Z\left(Z P+(Z P)^{s}\right) P-Z(Z P)^{s} P=Z P \cdot \operatorname{tr}(Z P)-\mathrm{DET} \cdot \operatorname{det} P$, i.e. putting $\mathrm{TR}_{P}=\operatorname{tr}(Z P), \mathrm{DET}_{P}=\mathrm{DET} \cdot \operatorname{det} P$, we get an analogue of the Hamilton-Cayley Formula:

$$
Z^{2} P^{2}-Z P \cdot \mathrm{TR}_{P}+\mathrm{DET}_{P}=0
$$

For $M_{p, q}(2)$ this formula was stated in [2], [9], and for $M^{J}(2)$ in [3]. Note that this implies the formula

$$
Z^{n} P^{n}=Z^{n-1} P^{n-1} \cdot \operatorname{tr}(Z P)-Z^{n-2} P^{n-2} \cdot \mathrm{DET} \cdot \operatorname{det} P
$$

for $n \geq 2$, which will be useful below.
Let us add to E^{P} the cubic relation we need.

Definition 4. Denote by $E_{+}^{P}=E_{+}^{P}\left[V^{*} \otimes V\right]$ the algebra generated by $V^{*} \otimes V$ with the relations

$$
Z(Z P)^{s}=P^{s} \cdot \mathrm{DET}, \quad \mathrm{DET} \cdot \operatorname{tr}(Z P)=\operatorname{tr}(Z P) \cdot \mathrm{DET}
$$

Lemma 5. Let $\operatorname{dim} V=2$ and $P \in \mathrm{GL}(V)$. For any positive integer n the following equalities hold in $E_{+}^{P}\left[V^{*} \otimes V\right]$:

$$
Z^{n}\left(Z^{n} P^{n}\right)^{s}=\left(P^{n}\right)^{s} \cdot \mathrm{DET}^{n} \quad \text { and } \quad \mathrm{DET} \cdot \operatorname{tr}\left(Z^{n} P^{n}\right)=\operatorname{tr}\left(Z^{n} P^{n}\right) \cdot \mathrm{DET}
$$

Proof. Induction on n. For $n=0$ and $n=1$ the formulas are obvious. Take any $n \geq 2$. Assume that the formulas hold for $n-1$ and $n-2$. We have

$$
\begin{aligned}
Z^{n}(& \left.Z^{n} P^{n}\right)^{s} \\
\quad & =Z^{n}\left(Z^{n-1} P^{n-1}\right)^{s} \cdot \operatorname{tr}(Z P)-Z^{n}\left(Z^{n-2} P^{n-2}\right)^{s} \cdot \mathrm{DET} \cdot \operatorname{det} P \\
& =Z\left(P^{n-1}\right)^{s} \cdot \mathrm{DET}^{n-1} \cdot \operatorname{tr}(Z P)-Z^{2}\left(P^{n-2}\right)^{s} \cdot \mathrm{DET}^{n-2} \cdot \mathrm{DET} \cdot \operatorname{det} P \\
& =\left(Z \cdot \operatorname{tr}(Z P)-Z^{2} P\right)\left(P^{n-1}\right)^{s} \cdot \mathrm{DET}^{n-1}=Z(Z P)^{s}\left(P^{n-1}\right)^{s} \cdot \mathrm{DET}^{n-1} \\
& =\left(P^{n}\right)^{s} \cdot \mathrm{DET}^{n}
\end{aligned}
$$

Since $\operatorname{tr}\left(Z^{n} P^{n}\right)=\operatorname{tr}\left(Z^{n-1} P^{n-1}\right) \cdot \operatorname{tr}(Z P)-\operatorname{tr}\left(Z^{n-2} P^{n-2}\right) \cdot$ DET $\cdot \operatorname{det} P$, we get DET $\cdot \operatorname{tr}\left(Z^{n} P^{n}\right)=\operatorname{tr}\left(Z^{n} P^{n}\right) \cdot$ DET.

Note that applying Lemma 5 to $E_{+}^{Q^{*}}\left[V \otimes V^{*}\right]$, we get

$$
\left(Z^{t}\right)^{n}\left(\left(Z^{t}\right)^{n}\left(Q^{t}\right)^{n}\right)^{s}=\left(\left(Q^{t}\right)^{n}\right)^{s} \cdot \operatorname{DET}^{n}
$$

and $\left(Z^{t}\right)^{n}$ is of course very different from $\left(Z^{n}\right)^{t}$, so this is not what we need. But we can get what we need by a dual argument.

Definition 5. Denote by $E_{-}^{Q^{*}}=E_{-}^{Q^{*}}\left[V \otimes V^{*}\right]$ the algebra generated by $V \otimes V^{*}$ with the relations

$$
\left(Q^{-1} Z\right)^{s} Z=\left(Q^{-1}\right)^{s} \cdot \mathrm{DET}, \quad \mathrm{DET} \cdot \operatorname{tr}\left(Q^{-1} Z\right)=\operatorname{tr}\left(Q^{-1} Z\right) \cdot \mathrm{DET}
$$

Lemma 6. Let $\operatorname{dim} V=2$ and $Q \in \mathrm{GL}(V)$. For any positive integer n the following equalities hold in $E_{-}^{Q^{*}}\left[V \otimes V^{*}\right]$: $\left(Q^{-n} Z^{n}\right)^{s} Z^{n}=\left(Q^{-n}\right)^{s} \cdot$ DET n and DET $\cdot \operatorname{tr}\left(Q^{-n} Z^{n}\right)=\operatorname{tr}\left(Q^{-n} Z^{n}\right) \cdot$ DET.

The proof is analogous to the proof of Lemma 5, but now we use the Hamilton-Cayley Formula for $E_{-}^{Q^{*}}\left[V \otimes V^{*}\right]$:

$$
Q^{-2} Z^{2}-\operatorname{tr}\left(Q^{-1} Z\right) \cdot Q^{-1} Z+\mathrm{DET} \cdot \operatorname{det} Q^{-1}=0
$$

Proof of the Theorem. It is enough to prove that the equalities
DET $\cdot \operatorname{tr}(Z P)=\operatorname{tr}(Z P) \cdot$ DET, \quad DET $\cdot \operatorname{tr}\left(Q^{-1} Z\right)=\operatorname{tr}\left(Q^{-1} Z\right) \cdot$ DET hold in $E^{P, Q}\left[V^{*} \otimes V\right]$.

We have $Z P^{-1} Z^{s}=P^{-1} \cdot$ DET and $Z^{s} Q Z=Q \cdot$ DET, so $P^{-1} Q \cdot$ DET. $Z=Z P^{-1} Z^{s} Q Z=Z P^{-1} Q \cdot \mathrm{DET}$, therefore

$$
\mathrm{DET} \cdot Z P=Q^{-1} P Z P^{-1} Q \cdot \mathrm{DET} \cdot P=Q^{-1} P Z P P^{-1} Q \cdot \mathrm{DET} .
$$

This implies

$$
\mathrm{DET} \cdot \operatorname{tr}(Z P)=\operatorname{tr}\left(Q^{-1} P Z P P^{-1} Q\right) \cdot \mathrm{DET}=\operatorname{tr}(Z P) \cdot \mathrm{DET}
$$

Analogously DET $\cdot \operatorname{tr}\left(Q^{-1} Z\right)=\operatorname{tr}\left(Q^{-1} Z\right) \cdot$ DET.

REFERENCES

[1] E. Corrigan, D. B. Fairlie, P. Fletcher and R. Sasaki, Some aspects of quantum groups and supergroups, J. Math. Phys. 31 (1990), 776-780.
[2] H. Ewen, O. Ogievetsky and J. Wess, Quantum matrices in two dimensions, Lett. Math. Phys. 22 (1991), 297-305.
[3] B. A. Kupershmidt, The quantum group $\mathrm{GL}_{h}(2)$, J. Phys. A 25 (1992), L1239L1244.
[4] Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Université de Montréal, 1988.
[5] -, Topics in Noncommutative Geometry, Princeton University Press, 1991.
[6] E. E. Mukhin, Quantum de Rham complexes, Comm. Algebra 22 (1994), 451-498.
[7] O. Ogievetsky and J. Wess, Relations between $\mathrm{GL}_{p, q}(2)$'s, Z. Phys. C 50 (1991), 123-131.
[8] A. Sudbery, Consistent multiparameter quantisation of GL(n), J. Phys. A 23 (1990), L697-L704.
[9] T. Umed a and M. Wakayama, Powers of 2×2 quantum matrices, Comm. Algebra 21 (1993), 4461-4465.
[10] S. Vokos, J. Wess and B. Zumino, Analysis of the basic matrix representation of $\mathrm{GL}_{q}(2, \mathcal{C})$, Z. Phys. C 48 (1990), 65-74.

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: pjedrzej@mat.uni.torun.pl

Added in proof. After submitting this paper for publication I found out that the quasi-commutative algebras were considered in the papers: M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Birkhäuser, Boston, 1990, 33-85, and M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings, J. Algebra 133 (1990), 249-271.

[^0]: 1991 Mathematics Subject Classification: Primary 16W30.

