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QUASI-COMMUTATIVE POLYNOMIAL ALGEBRAS
AND THE POWER PROPERTY OF 2× 2 QUANTUM MATRICES

BY

PIOTR J ȨDRZEJEWICZ (TORUŃ)

Let K be a field. Recall (e.g. [4], 3.1, [5], 4.2.1) that a quadratic algebra
is a graded associative K-algebra

A =
∞⊕

k=0

Ak,

where A0 = K, dimK A1 < ∞ and A is generated by A1 with the ideal of
relations generated by quadratic ones:

A = T (A1)/(RA),

where T (A1) is the tensor algebra of A1 and RA ⊂ A⊗2
1 . It is convenient to

write
A ↔ {A1, RA}.

In this paper we consider quadratic algebras of a special type, with the
relations quite similar to ordinary commutativity relations. This approach
generalizes different examples of quadratic algebras. In the case of two
generators we can unify the definitions of algebras

A2|0
q = K〈x1, x2〉/(x1x2 − q−1x2x1)

and
AJ = K〈x1, x2〉/(x1x2 − x2x1 − x2

1)
(notation from [4], 1.2, [5], 4.2.8, 4.4.3). This will allow us to have a com-
mon view of some properties of quantum matrices connected with these two
algebras. In particular, our Theorem is a generalization of [5], 1.3.8(v) and
[3], (ii).

Definition 1. Let V be an m-dimensional linear space over K. Denote
by R the subspace of V ⊗2 spanned by elements x⊗ y − y ⊗ x for x, y ∈ V .
For each P ∈ GL(V ) we define the quadratic algebra

AP = AP [V ] ↔ {V, (I ⊗ P )(R)},
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where I is the identity operator. A quasi-commutative polynomial algebra
is a quadratic algebra of the form AP [V ] for some V and P ∈ GL(V ).

Lemma 1. Quadratic algebras AP1 [V ] and AP2 [V ] are isomorphic if and
only if there exist C ∈ GL(V ) and α ∈ K \ {0} such that P2 = α ·CP1C

−1.

P r o o f. Any isomorphism AP1 [V ] → AP2 [V ] is an extension of a linear
automorphism C : V → V such that (C ⊗ C)(I ⊗ P1)(R) = (I ⊗ P2)(R),
and this condition is equivalent to (I ⊗ CP1C

−1)(R) = (I ⊗ P2)(R), which
means that α · CP1C

−1 = P2 for some α 6= 0.

Now we obtain a linear basis of AP [V ]. Choose a basis x1, . . . , xm of V
and its dual basis x1, . . . , xm of V ∗. We have

AP =
∞⊕

k=0

AP
k = K〈x1, . . . , xm〉/(xiP (xj)− xjP (xi), 1 ≤ i < j ≤ m).

One easily verifies that in AP
k the following relations hold:

xiσ(1)P (xiσ(2)) . . . P k−1(xiσ(k)) = xi1P (xi2) . . . P k−1(xik
)

for all i1, . . . , ik ∈ {1, . . . ,m} and σ ∈ Sk. This implies that the monomials

xi1P (xi2) . . . P k−1(xik
)

with 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ m span AP
k . Since they are linearly indepen-

dent (proof by induction on k), this is a basis of AP
k . It makes this algebra

very similar to the algebra of commutative polynomials. In particular, we
have

dim AP
k =

(
m + k − 1

k

)
.

Note that any quadratic algebra with two generators and one non-de-
generate relation is quasi-commutative polynomial, but some well known
quadratic algebras with more than two generators are not. This is discussed
in the following two lemmas.

Lemma 2. Let A ↔ {A1, RA}, where dim A1 = 2 and dim RA = 1. If for
x, y ∈ V we have RA 6= K(x⊗y), then A is a quasi-commutative polynomial
algebra.

P r o o f. Take aij ∈ K such that the generating relation is

r = a11x1 ⊗ x1 + a12x1 ⊗ x2 + a21x2 ⊗ x1 + a22x2 ⊗ x2

= x1 ⊗ (a11x1 + a12x2)− x2 ⊗ (−a21x1 − a22x2).

Since r is not of the form x⊗y, the operator P defined by P (x1) = (−a21x1−
a22x2) and P (x2) = a11x1 +a12x2 is non-degenerate and RA = (I⊗P )(x1⊗
x2 − x2 ⊗ x1). Hence A = AP .
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Lemma 3. The algebra A = K〈x1, . . . , xm〉/(xixj − q−1
ij xjxi, 1 ≤ i <

j ≤ m) is a quasi-commutative polynomial algebra if and only if there exist
q1, . . . , qm such that qij = q−1

i qj for all i < j.

P r o o f. Suppose that A = AP . Let (pi
k) be the matrix of P with respect

to the basis x1, . . . , xm. Take any i, j such that 1 ≤ i < j ≤ m. We have

rij =
m∑

l=1

pl
jxi ⊗ xl −

m∑
k=1

pk
i xj ⊗ xk = xi ⊗ P (xj)− xj ⊗ P (xi) ∈ RA,

xi ⊗ xj + qijx
j ⊗ xi ∈ R⊥

A,

so that pj
j − qijp

i
i = (xi ⊗ xj + qijx

j ⊗ xi)(rij) = 0.
On the other hand, if there exist q1, . . . , qm such that qij = q−1

i qj for all
i < j, then for pi

k = δi
kqk we get A = AP .

As a consequence, note that for m > 2 and q 6= 1 the algebra

Am|0
q = K〈x1, . . . , xm〉/(xixj − q−1xjxi, 1 ≤ i < j ≤ m)

is not quasi-commutative polynomial. The algebra from Lemma 3 is con-
sidered in [8] and the case of qij = q−1

i qj is connected with the version of
the power property given at the end of that paper.

Now recall some general constructions of “quantum endomorphism semi-
groups”.

Let A ↔ {V,RA}. Put

E(A) ↔ {V ∗ ⊗ V, S23((RA)⊥ ⊗RA)},

where (RA)⊥ ⊂ (V ⊗ V )∗ ' (V ∗ ⊗ V ∗) is the annihilator of RA and S23 :
V ∗⊗V ∗⊗V ⊗V → V ∗⊗V ⊗V ∗⊗V is the isomorphism interchanging the
2nd and 3rd components (see [4], 4.5b, [5], 4.2.6). The canonical map

V → (V ∗ ⊗ V )⊗ V : xk 7→
m∑

i=1

zi
k ⊗ xi,

where zi
k = xi⊗xk for 1 ≤ i, k ≤ m, extends to a homomorphism of algebras

δA : A → E(A)⊗A.

E(A) is far from any kind of commutativity, it has m2 generators and
only

(
m
2

)
· (m2 −

(
m
2

)
) = 1

2

(
m2

2

)
relations. To obtain a good analogue of a

commutative algebra we have to add the “second half” of the relations.
Let A ↔ {V,RA}, B ↔ {V ∗, RB}. Put

E(A,B) ↔ {V ∗ ⊗ V, S23((RA)⊥ ⊗RA + RB ⊗ (RB)⊥)}

(compare [4], 6.2, [5], 4.2.7, [6], 1.4). The canonical maps V → (V ∗⊗V )⊗V
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(as above) and

V ∗ → (V ∗ ⊗ V )⊗ V ∗ : xi 7→
m∑

k=1

zi
k ⊗ xk

extend to homomorphisms of algebras

δ1
A,B : A → E(A,B)⊗A, δ2

A,B : B → E(A,B)⊗B.

E(A,B) can be thought of as the “greatest common factor” of E(A) and
E(B), both of them being generated by V ∗⊗V , the latter via the canonical
isomorphism V ⊗ V ∗ ' V ∗ ⊗ V .

Now, we apply these constructions to quasi-commutative polynomial al-
gebras and write down the relations in terms of the basis zi

k = xi ⊗ xk of
V ∗ ⊗ V , which can be considered as a matrix Z = (zi

k).

Definition 2. Let P ∈ GL(V ). Put

EP = EP [V ∗ ⊗ V ] = E(AP [V ]).

The relations of EP [V ∗ ⊗ V ] in the above basis are the following:

zi
ktil = zi

l t
i
k, 1 ≤ i ≤ m, 1 ≤ k < l ≤ m,

zi
ktjl − zi

l t
j
k = zj

l t
i
k − zj

ktil, 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m,

where tik are the entries of the matrix T = P−1ZP .
It is useful to write these relations in matrix form:(

zi
k zi

l

zj
k zj

l

)
·
(

tjl −til
−tjk tik

)
=

(
Dij

kl 0
0 Dij

kl

)
for all i < j, k < l and suitable Dij

kl (i.e. defined by these relations).

Definition 3. Let P,Q ∈ GL(V ). Put

EP,Q = EP,Q[V ∗ ⊗ V ] = E(AP [V ], AQ∗
[V ∗]).

The relations of EP,Q[V ∗⊗V ] consist of the ones of EP [V ∗⊗V ] (above)
and the ones of EQ∗

[V ⊗ V ∗]:

zi
ksj

k = zj
ksi

k, 1 ≤ i < j ≤ m, 1 ≤ k ≤ m,

zi
ksj

l − zj
ksi

l = zj
l s

i
k − zi

ls
j
k, 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m,

where (si
k) = QZQ−1, or in matrix form:(

zj
l −zi

l

−zj
k zi

k

)
·
(

si
k si

l

sj
k sj

l

)
=

(
D′ij

kl 0
0 D′ij

kl

)
for all i < j, k < l.

From now on we assume that m = 2 and we consider only 2×2 matrices.
Define (

a b
c d

)s

=
(

d −b
−c a

)
.
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Note that for any 2 × 2 matrix M we have (Ms)s = M , trMs = trM ,
M + Ms = (tr M) · I and M ·Ms = (detM) · I. Also, (Ms)k = (Mk)s for
any positive integer k. If M is invertible, then (Ms)−1 = (M−1)s. If the
entries of matrices M and N commute, then (MN)s = NsMs.

Let P,Q ∈ GL2(K). The relations of EP [V ∗ ⊗ V ] reduce to one matrix
equation

Z(P−1ZP )s = DET · I,

where DET = D12
12. The relations of EP,Q[V ∗ ⊗ V ] are the following:

Z(P−1ZP )s = DET1 · I, ZsQZQ−1 = DET2 · I,

where DET1 = D12
12 and DET2 = D′12

12 .

Lemma 4. If tr(QP ) 6= 0, then dim REP,Q = 6 and DET1 = DET2. If
tr(QP ) = 0, then dim REP,Q = 5.

P r o o f. Let R = K(x1 ⊗ x2 − x2 ⊗ x1) and R′ = K(x1 ⊗ x2 − x2 ⊗ x1).
Since

(x1 ⊗Q∗(x2)− x2 ⊗Q∗(x1))(x1 ⊗ P (x2)− x2 ⊗ P (x1)) = tr(QP ),

we have (I ⊗Q∗)(R′) ⊂ ((I ⊗P )(R))⊥ if and only if tr(QP ) = 0. Therefore

dim((I ⊗ P )(R))⊥ ⊗ (I ⊗ P )(R) ∩ (I ⊗Q∗)(R′)⊗ ((I ⊗Q∗)(R′))⊥

=
{

1 if tr(QP ) = 0,
0 if tr(QP ) 6= 0.

Finally, dim REP,Q = 5 if tr(QP ) = 0 and dim REP,Q = 6 if tr(QP ) 6=
0. Now suppose that tr(QP ) 6= 0. For any 2 × 2 matrices A,B we have
tr(ABs) = tr(A · trB − AB) = tr((tr A) · B − AB) = tr(AsB). Since
Z(QZP )s = (QP )s ·DET1 and ZsQZP = QP ·DET2, we get

tr(QP ) ·DET1 = tr((QP )s) ·DET1 = tr(Z(QZP )s)
= tr(ZsQZP ) = tr(QP ) ·DET2,

and hence DET1 = DET2.

So, when tr(QP ) 6= 0, the relations of EP,Q[V ∗ ⊗ V ] take the form

Z(P−1ZP )s = ZsQZQ−1 = DET · I.

Take any p, q ∈ K \ {0}, pq 6= −1. For

P =
(

1 0
0 p

)
, Q =

(
1 0
0 q

)
,

we get the quantum matrix
(
a b
c d

)
of the algebra Mp,q(2) with the relations

ba = pab, dc = pcd, ca = qac, db = qbd,

cb = p−1qbc, da = ad + (q − p−1)bc,

which is discussed in [6]–[8] and, for p = q, in [1], [2], [4], [5], [9], [10].
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The power property, first noticed for Mp,q(2), states that if the entries
of the matrix Z satisfy the conditions with parameters p, q, then the entries
of Zn satisfy analogous conditions with pn, qn.

Let charK 6= 2 and p, q ∈ K. For

P =
(

1 p
0 1

)
, Q =

(
1 q
0 1

)
,

we obtain the algebra MJ
p,q(2) (considered in [3], [5], [6]) with the following

relations:

ac = ca + qc2, dc = cd + pc2,

da = ad + pca− qcd, bc = cb + pqc2 + pca + qcd,

ba = ab + pqcd + pcb + pa2 − pad, bd = db + q2cd + qcb− qad + qd2.

We observe that the algebra with these relations (for p, q 6= 0) is isomorphic
to one with p′ = 1, q′ = p−1q (a′ = pa, b′ = b, c′ = p2c, d′ = pb).

In the case of the quantum matrix Z with the relations of MJ
p,q(2), the

entries of its nth power Zn satisfy the relations given by parameters np, nq
(see [3]).

This phenomenon is clear from the following theorem.

Theorem. Let dim V = 2, P,Q ∈ GL(V ), PQ = QP , tr(QP ) 6= 0. For
any positive integer n the following equalities hold in EP,Q[V ∗ ⊗ V ]:

Zn(P−nZnPn)s = (Zn)sQnZnQ−n = DETn · I.

The proof will follow from Lemmas 5 and 6. The theorem remains true
also in the case of tr(QP ) = 0, provided we add the relation DET1 = DET2.

The power property seems to be possible because these quantum matri-
ces have enough commutation relations, namely 6 relations for 4 generators
of EP,Q. But it turns out that we need only 3 relations of EP with one addi-
tional cubic relation to prove that the nth power satisfies the corresponding
relations.

The equality Z(P−1ZP )s = DET·I is equivalent to Z(ZP )s = P s ·DET.
We have Z2P 2 = Z(ZP +(ZP )s)P−Z(ZP )sP = ZP ·tr(ZP )−DET ·detP ,
i.e. putting TRP = tr(ZP ), DETP = DET ·detP , we get an analogue of the
Hamilton–Cayley Formula:

Z2P 2 − ZP · TRP + DETP = 0.

For Mp,q(2) this formula was stated in [2], [9], and for MJ(2) in [3]. Note
that this implies the formula

ZnPn = Zn−1Pn−1 · tr(ZP )− Zn−2Pn−2 ·DET · detP,

for n ≥ 2, which will be useful below.
Let us add to EP the cubic relation we need.
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Definition 4. Denote by EP
+ = EP

+ [V ∗ ⊗ V ] the algebra generated by
V ∗ ⊗ V with the relations

Z(ZP )s = P s ·DET, DET · tr(ZP ) = tr(ZP ) ·DET.

Lemma 5. Let dim V = 2 and P ∈ GL(V ). For any positive integer n
the following equalities hold in EP

+ [V ∗ ⊗ V ]:

Zn(ZnPn)s = (Pn)s ·DETn and DET · tr(ZnPn) = tr(ZnPn) ·DET.

P r o o f. Induction on n. For n = 0 and n = 1 the formulas are obvious.
Take any n ≥ 2. Assume that the formulas hold for n − 1 and n − 2. We
have

Zn(ZnPn)s

= Zn(Zn−1Pn−1)s · tr(ZP )− Zn(Zn−2Pn−2)s ·DET · detP

= Z(Pn−1)s ·DETn−1 · tr(ZP )− Z2(Pn−2)s ·DETn−2 ·DET · detP

= (Z · tr(ZP )− Z2P )(Pn−1)s ·DETn−1 = Z(ZP )s(Pn−1)s ·DETn−1

= (Pn)s ·DETn.

Since tr(ZnPn) = tr(Zn−1Pn−1) · tr(ZP )− tr(Zn−2Pn−2) ·DET · detP , we
get DET · tr(ZnPn) = tr(ZnPn) ·DET.

Note that applying Lemma 5 to EQ∗

+ [V ⊗ V ∗], we get

(Zt)n((Zt)n(Qt)n)s = ((Qt)n)s ·DETn,

and (Zt)n is of course very different from (Zn)t, so this is not what we need.
But we can get what we need by a dual argument.

Definition 5. Denote by EQ∗

− = EQ∗

− [V ⊗ V ∗] the algebra generated
by V ⊗ V ∗ with the relations

(Q−1Z)sZ = (Q−1)s ·DET, DET · tr(Q−1Z) = tr(Q−1Z) ·DET.

Lemma 6. Let dim V = 2 and Q ∈ GL(V ). For any positive integer n

the following equalities hold in EQ∗

− [V ⊗ V ∗]:

(Q−nZn)sZn = (Q−n)s·DETn and DET·tr(Q−nZn) = tr(Q−nZn)·DET.

The proof is analogous to the proof of Lemma 5, but now we use the
Hamilton–Cayley Formula for EQ∗

− [V ⊗ V ∗]:

Q−2Z2 − tr(Q−1Z) ·Q−1Z + DET · detQ−1 = 0.

P r o o f o f t h e T h e o r e m. It is enough to prove that the equalities

DET · tr(ZP ) = tr(ZP ) ·DET, DET · tr(Q−1Z) = tr(Q−1Z) ·DET

hold in EP,Q[V ∗ ⊗ V ].
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We have ZP−1Zs = P−1 ·DET and ZsQZ = Q ·DET, so P−1Q ·DET ·
Z = ZP−1ZsQZ = ZP−1Q ·DET, therefore

DET · ZP = Q−1PZP−1Q ·DET · P = Q−1PZPP−1Q ·DET.

This implies

DET · tr(ZP ) = tr(Q−1PZPP−1Q) ·DET = tr(ZP ) ·DET.

Analogously DET · tr(Q−1Z) = tr(Q−1Z) ·DET.
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