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ON A POSITIVE SINE SUM
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STAMATIS KOUMANDOS (ADELAIDE)

1. Introduction. We begin with a statement of our main result.
THEOREM. For any positive integer n and for 0 < ¢ < 7/2 we have

1 zn: sin(4k + 1)p >0

Z+k=1 (4k 4+ 1)sinp —

(1.1)

The only case of equality in (1.1) occurs when n = 1 and ¢ = arccos(v/6/4).

Note that the leading constant 1/4 in the above sum is best possible.

The weak version of (1.1) in which the constant 1/4 is replaced by 1 can
be obtained using some more general results on positive trigonometric sums.
In particular, Askey and Steinig have given in [2] an alternate version of the
proof of a theorem originally published by Vietoris [9], which implies

n
(1.2) D apsin(dk+1)p >0, 0<¢@<7/2,
k=0
where ay, = 272k (%,f), k=20,1,2,... Since the order of magnitude of «y is
k=12 a summation by parts shows that (1.2) implies the inequality
. sin(4k + 1
(1.3) ZM>0, 0< </

Pt (4k + 1)sing

In [3], G. Brown and E. Hewitt proved, among other things, a result
stronger than (1.2), replacing ay, by 6 = 2%%/(k+1) (2]“;1), k=0,1,2,...,
so that
(1.4) > Gpsin(dk + 1) >0, 0<p<m/2.

k=0

The order of magnitude of dy, is also k~1/2, nonetheless (1.2) can be derived
by (1.4) by a summation by parts.
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Although (1.4) is strong enough to give the sharper version of (1.3) where
the leading constant is 3/10, however, it does not imply (1.1) in which the
constant 1/4 is, as already mentioned, best possible.

Substituting 7/2 — ¢ for ¢ in the above inequalities one obtains the
corresponding result for cosine sums.

It should be noted that inequalities like (1.2) and (1.4), together with
their cosine analogues, have a number of surprising applications, the most
striking being estimates for the location of zeros of trigonometric polyno-
mials whose coefficients grow in a certain manner (cf. [2] and [3]). More
importantly, these inequalities can be incoporated into the context of more
general orthogonal polynomials and this has been emphasised in [1] and [2].

In the present article, our aim is to give a direct proof of (1.1) and discuss
a more general inequality involving ultraspherical polynomials (see Section
3) suggested by it.

2. Proof of the main result. We set ¢ = 0/2 in (1.1) and we are
concerned with proving that, for 0 < 6§ < m,

(2k 0
(2.1) = sm = + Z sin ( ok _:_ 2) > 0.

We observe, first of all, that this sum is positive when 0 < § < 7/(2n + 1),
because all its terms are positive for 6 in this range.

Setting u = m — 60, we see that inequality (2.1) becomes

1 U Zn:cos(2k:—|—%)u>0'

—cos— +
272 2k + 3

k=1

All terms in this last sum are positive for 0 < u < hence the sum in

4n+2’
(2.1) is positive for 4"ié7r < 6 < m. Thus, we seek to prove inequality (2.1)
for gt < 0 < iZI;TI’
Since
sin (2k + 1) ¢
(2.2) M = Scos (2k + )t at

2k + & :

and by a direct summation

n ; 3Vt — «in 3
Zcos (2/4:—1— %)t _ sin (2n—;:i21tt sin 5 t7

it can be easily checked that (2.1) is equivalent to
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1+sing n § sin(2n + 1)t dt
sin £

0

(2.3) —6Sin—+2ln<
2

0 2

COS 3

F dt > 0.
COs 5

0
cos(2n + 1)t
[ eosen 1)

In what follows we shall denote

0 1+ sin §
0= o2 (L2528,
2 cos 5
0 0
(2 1)t 2 1)t
Ssm n+ . Jn(H):SCOS( n—ti— ) it
sin £ 5 cosg

Sp(0) = f(9) + In(H) + Jn(0).

So, in view of (2.3), it suffices to establish the positivity of S,(f) in

T 4dn4l - . - .
(2n T Ant 3 7T). For this purpose, we consider the following cases:

The interval i” <0< 4”“71 n > 5. Let

nt2 an+2
T osint
Ey=\——dt k=0,1,2,...
U( ) §t+k77 ) 07 M ) b
and
p() = sing’

We observe that for 6 lying in this interval we have

6m/(2n+1) . 6m .
sin(2n + 1)t sint t
2.4 L,(6 ——dt=2\ — dt
(24) () > (S) sin% (S) t p<4n—|—2>

> 2{0(0) - 0(1)p<2n7:_ 1) +o(2) - 0(3)p<2n2j- 1>
+ot) - or(5,57) |

us 27
= 2{0(0) —oll 11sin 7 (2) — ol )11 sin 7+ 11
o) — o ()" z }
Numerical integration using Maple V (see [6]) gives
7(0) = 1.851937..., o(1) = 0.433785.
o(2) = 0.25661..., o(3) = 0.1826.
o(4) =0.1418...,  o(5) = 0.11593.. .,
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so that in view of (2.4) above we get
(2.5) 1,,(0) > 2.9725.

It can be easily seen that in this case

37/ (4n+2) (4n—1)7/(4n+2)
2 1)t 2 1)t
26) J.0)> | cosnt V)t 4y | | cos@n Dt 4,
cos cos <
0 2 37 /(4n+2) 2
Clearly,
/) cos(2n + 1)t 1 " cost
(2.7) | o dt = | — dt
5 oS 3 2n+1 o COS s
1 2
> - —).
2n+1 CoS 8n14
We write
(n—D)m/(4n+2) cos(2n + 1)t n_1 (kH8)m/(n+2) cos(2n + 1)t
A, = S ——dt = Z X ————dt
31/ (4n+2) oS 3 k=1 (4h—D)m/(4nt2) 02
and observe that
(4k+3)7/(4n+2)
2 1)t
(2.8) cos@n + )t
(4k—1)7 ) (4n+2) €oS 3
1 (4k+1)7/2 ! !
= S — — 7 — costdt
2n+1 (th—1)r/2 (S Tmgz  COS (4n+2 + 4n+2)
S 2 { 1 1 }
T 2n+1 cosgj—iiﬂ coséﬁ—ﬁﬂ .
It follows from this that
n—1
2 1 1
Ap = — Z < 4k+3 4k+1 >
2n+1 — \cos Whﬂ' cos Whﬂ'
2n—1
2 1
_ A2 N
2n+1 ;:2 (=1) cos 5252—11177
2n—2
2 1
=- D e
2n+1 P sin g -

8 2n—2 1
- _1 k-}-li‘
- T kz_:l( ) 2k +1
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Since
> 1 ™
— k — —
(29) Z( 1 2k+1 47
k=0
we deduce from the above that
An>2—§ for all n.
T
Hence, from this, (2.6) and (2.7) we obtain
1 2 8
(2.10) Jn(0) > < — 3 ) +2 - —
2n+1 cos 8n14 T
1 2
> —(l—-—==)+2— § = —0.64164...
11 oS 41 s

Since 127—2” < iﬁ;gw for n > 5 and the function f(6) is strictly increasing on
Lim 7T] we have

55

£(6) > f<%> = —2.19676...,

4n—3
4n+2

. 47
The interval T < 0 <

47 /(2 v 1) .

1,(0) >
(9) 2 [S) sin%
T 2T
9sin 5

> 2 <J(0) —o(1) Son T
9

(2.11)

which in combination with (2.5) and (2.10) yields S,,(6) > 0.134.
m, n > 4. In a similar way, for any 6 in

(4n=8)n/(4n+2) cos(2n + 1)t i@t

We also have

37/ (4n+2)
cos(2n + 1)t
Tn(0) 2 S cos & dt + S cos &
2 37 /(4n+2) 2

0
Now using again (2.8) and (2.9) we get
n—2 (4k+3)7/(4n+2) cos(2n + 1)t B

S ;
COS 3

(4n—5)m/(4n+2) cos(2n + 1)t
——dt = g
k=1 (4k—1)7/(4n+2)

)

t
coS =
37/ (4n+2) 2
-2
e i
4k+3 4k+1
COS ga™  COSgg

- 2n+1k:1
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9 2n—2 1
- _ _1 k-i—li
2n +1 1;:;3 (=1) sin éﬁi}lﬂ'
2n—2
8 1 104
> —— —1)kHt >2— —.
T kZ:;) (=1) 2k +1 157
From (2.7) and the above it follows that
1 2 104
(2.12) Jn(0) > <1 — T > +2 - —
2n +1 COS 507 157
1 2 104
> —<1— —W> +2— — = —0.325898...
9 COS 15 157

Now by (2.11), (2.12) and the fact that the function f(6) attains its absolute
minimum in [0,7] at g = 2arccos (V3/3) = 1.9106..., so that f(6p) =
—2v6+21In (V24 /3) = —2.6065478.. .., we obtain S, (6) > 0.0025 in the

interval under consideration.

. 4 .
The interval ﬁ <6< TL’ n > 4. Here we follow again the same

argument as in the proof of the two previous cases. In particular, for 6 in
this range we have

27 /(2n+1) .
sin(2n + 1)t
(2.13) L0 > | —
0 2
> 2<a(0) - 0(1)98; _ ) > 2.81843.
9
Plainly, in this case
37 /(4n+2) 77 /(4n+2)
cos(2n + 1)t cos(2n + 1)t
0 2 37/ (4n+2) 2
On account of (2.8),
e cos(2n + 1)t gt > 2 < 1 1 )
t = 5r s :
37/ (4n+2) €os 3 2n+1\cos ghg  cos gl
It follows from (2.7) and the above that
1 2 2 2
(214) Jn(g) 2 In+1 <1 B 3 + 57 s >
n COSgnyz CSgpa  OSgia

> —0.1451 for n > 4.
Observe also that in this case 6 < 47/9 and the function f(6) is strictly
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decreasing on [0, 47 /9], so that

£(6) > f(%”) = —2.330906. ..

and hence by (2.13) and (2.14) we now obtain S,,(6) > 0.3424.

In order to establish (1.1) for the remaining cases n = 1,2,3,4, we set
x = cos ¢ and recall that
sin(4k + 1
u = Une(a)
sin
is the Chebyshev polynomial of second kind and degree 4k, in z. Then we
define the polynomials

n

1 1
gnlz) =7 + kzl 7 5 1 (@)

The positivity of the polynomials g, (z), n = 2,3,4, in [0, 1] can be easily
checked by a straightforward computation. For example, by the method of
Sturmian sequences one can verify that these polynomials have no zeros in
[0,1] and since g,,(0) > 0, it follows that g,(x) > 0, 0 < z < 1. Finally, an
elementary computation yields g; () = 82 — 1?2352 + % >0,0<z<1.

5
The proof of (1.1) is now complete.

3. Ultraspherical sums. Let C}(z) be the ultraspherical polynomial
of degree n and order A, A > 0, defined by the generating function

(1—2zr +7?)~* = Z CXz)r™, x| < 1.
n=0

Recalling that
Ch(cosf)  sin(n+1)0

Ct1) — (n+1)sing’
we see that (1.3) is the special case A = 1 of the inequality

n A
(3.1) ZM>O, 0<p<m/2
k=0 C4k(1)

which holds for all A > Ao, where )¢ is the unique root in (0,1) of the
equation
37 /2 "
| =5-dt=0
0
(Ao = 0.308443...). This is obtained from our results in [4].
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Inequality (1.1) suggests that a sharper version of (3.1) may be true.
This is

3 ~ Ciy.(cos p)
+ =20, 0<p<m/2.
A+3)2A+1) kZ::l Cy(1)
Clearly, when A = 1, (3.2) is the inequality (1.1).
The leading constant m is best possible, because the equality

1/ 6()\—‘,-3) )

in (3.2) occurs when n =1 and ¢ = arccos ( 6 )

Numerical evidence suggests that (3.2) should be also true for the range
A > Ag. The natural method to prove this is to use the integral represen-
tation of ultraspherical polynomials given by the Dirichlet—Mehler formula,
see [7, 10.9, 32], (whose (2.2) itself is the special case A = 1) and then esti-
mate the corresponding integrals in a manner similar to that demonstrated
in [4]. However, it appears to be quite laborious to achieve a proof of (3.2)
in this way. The reason (3.2) is interesting is that it can be used to prove
the positivity of some quadrature schemes by the method developed in [5].

Finally, we note that neither (3.1) nor (3.2) holds for A < A¢. Indeed, it
is well known that (see, for example, [8, p. 192])

) C;}(cos %)
AN

where a = A — 1/2, J,, being the Bessel function of the first kind and order
«. Using this and the fact that

9\ 1/2
J_1/2(t) = (E) cost,

3 OO0 (3 + )

(3.2)

=2T(a+1) 27 %Jy(2),

we obtain

k=0 Ci\k(l)
) on I_AF()\—I—%) ecost
_nhigo <7> NG (S) > dt = —o0  for A < \g, 0 =37/2.

See also the discussion in [10, V, 2.29].
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