COLLOQUIUM MATHEMATICUM

VOL. 71	1996	NO. 2

on a Positive sine sum

BY

STAMATIS KOUMANDOS (ADELAIDE)

1. Introduction. We begin with a statement of our main result.

Theorem. For any positive integer n and for $0 \leq \varphi \leq \pi / 2$ we have

$$
\begin{equation*}
\frac{1}{4}+\sum_{k=1}^{n} \frac{\sin (4 k+1) \varphi}{(4 k+1) \sin \varphi} \geq 0 \tag{1.1}
\end{equation*}
$$

The only case of equality in (1.1) occurs when $n=1$ and $\varphi=\arccos (\sqrt{6} / 4)$.
Note that the leading constant $1 / 4$ in the above sum is best possible.
The weak version of (1.1) in which the constant $1 / 4$ is replaced by 1 can be obtained using some more general results on positive trigonometric sums. In particular, Askey and Steinig have given in [2] an alternate version of the proof of a theorem originally published by Vietoris [9], which implies

$$
\begin{equation*}
\sum_{k=0}^{n} \alpha_{k} \sin (4 k+1) \varphi>0, \quad 0<\varphi<\pi / 2 \tag{1.2}
\end{equation*}
$$

where $\alpha_{k}=2^{-2 k}\binom{2 k}{k}, k=0,1,2, \ldots$ Since the order of magnitude of α_{k} is $k^{-1 / 2}$, a summation by parts shows that (1.2) implies the inequality

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\sin (4 k+1) \varphi}{(4 k+1) \sin \varphi}>0, \quad 0<\varphi<\pi / 2 \tag{1.3}
\end{equation*}
$$

In [3], G. Brown and E. Hewitt proved, among other things, a result stronger than (1.2), replacing α_{k} by $\delta_{k}=2^{2 k} /(k+1)\binom{2 k+1}{k}, k=0,1,2, \ldots$, so that

$$
\begin{equation*}
\sum_{k=0}^{n} \delta_{k} \sin (4 k+1) \varphi>0, \quad 0<\varphi<\pi / 2 \tag{1.4}
\end{equation*}
$$

The order of magnitude of δ_{k} is also $k^{-1 / 2}$, nonetheless (1.2) can be derived by (1.4) by a summation by parts.

1991 Mathematics Subject Classification: Primary 42A05, 42C05; Secondary 33C45.
Key words and phrases: positive trigonometric sums, ultraspherical polynomials.

Although (1.4) is strong enough to give the sharper version of (1.3) where the leading constant is $3 / 10$, however, it does not imply (1.1) in which the constant $1 / 4$ is, as already mentioned, best possible.

Substituting $\pi / 2-\varphi$ for φ in the above inequalities one obtains the corresponding result for cosine sums.

It should be noted that inequalities like (1.2) and (1.4), together with their cosine analogues, have a number of surprising applications, the most striking being estimates for the location of zeros of trigonometric polynomials whose coefficients grow in a certain manner (cf. [2] and [3]). More importantly, these inequalities can be incoporated into the context of more general orthogonal polynomials and this has been emphasised in [1] and [2].

In the present article, our aim is to give a direct proof of (1.1) and discuss a more general inequality involving ultraspherical polynomials (see Section 3) suggested by it.
2. Proof of the main result. We set $\varphi=\theta / 2$ in (1.1) and we are concerned with proving that, for $0<\theta \leq \pi$,

$$
\begin{equation*}
\frac{1}{2} \sin \frac{\theta}{2}+\sum_{k=1}^{n} \frac{\sin \left(2 k+\frac{1}{2}\right) \theta}{2 k+\frac{1}{2}}>0 . \tag{2.1}
\end{equation*}
$$

We observe, first of all, that this sum is positive when $0<\theta \leq \pi /(2 n+1)$, because all its terms are positive for θ in this range.

Setting $u=\pi-\theta$, we see that inequality (2.1) becomes

$$
\frac{1}{2} \cos \frac{u}{2}+\sum_{k=1}^{n} \frac{\cos \left(2 k+\frac{1}{2}\right) u}{2 k+\frac{1}{2}}>0 .
$$

All terms in this last sum are positive for $0<u \leq \frac{\pi}{4 n+2}$, hence the sum in (2.1) is positive for $\frac{4 n+1}{4 n+2} \pi \leq \theta \leq \pi$. Thus, we seek to prove inequality (2.1) for $\frac{\pi}{2 n+1}<\theta<\frac{4 n+1}{4 n+2} \pi$.

Since

$$
\begin{equation*}
\frac{\sin \left(2 k+\frac{1}{2}\right) \theta}{2 k+\frac{1}{2}}=\int_{0}^{\theta} \cos \left(2 k+\frac{1}{2}\right) t d t \tag{2.2}
\end{equation*}
$$

and by a direct summation

$$
\sum_{k=1}^{n} \cos \left(2 k+\frac{1}{2}\right) t=\frac{\sin \left(2 n+\frac{3}{2}\right) t-\sin \frac{3}{2} t}{2 \sin t}
$$

it can be easily checked that (2.1) is equivalent to

$$
\begin{align*}
&-6 \sin \frac{\theta}{2}+2 \ln \left(\frac{1+\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right)+\int_{0}^{\theta} \frac{\sin (2 n+1) t}{\sin \frac{t}{2}} d t \tag{2.3}\\
&+\int_{0}^{\theta} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t>0
\end{align*}
$$

In what follows we shall denote

$$
\begin{aligned}
f(\theta) & =-6 \sin \frac{\theta}{2}+2 \ln \left(\frac{1+\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right) \\
I_{n}(\theta) & =\int_{0}^{\theta} \frac{\sin (2 n+1) t}{\sin \frac{t}{2}} d t, \quad J_{n}(\theta)=\int_{0}^{\theta} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t \\
S_{n}(\theta) & =f(\theta)+I_{n}(\theta)+J_{n}(\theta)
\end{aligned}
$$

So, in view of (2.3), it suffices to establish the positivity of $S_{n}(\theta)$ in $\left(\frac{\pi}{2 n+1}, \frac{4 n+1}{4 n+2} \pi\right)$. For this purpose, we consider the following cases:

The interval $\frac{4 n-3}{4 n+2} \pi \leq \theta<\frac{4 n+1}{4 n+2} \pi, n \geq 5$. Let

$$
\sigma(k)=\int_{0}^{\pi} \frac{\sin t}{t+k \pi} d t, \quad k=0,1,2, \ldots
$$

and

$$
p(x)=\frac{x}{\sin x}
$$

We observe that for θ lying in this interval we have

$$
\begin{align*}
& I_{n}(\theta)>\int_{0}^{6 \pi /(2 n+1)} \frac{\sin (2 n+1) t}{\sin \frac{t}{2}} d t=2 \int_{0}^{6 \pi} \frac{\sin t}{t} p\left(\frac{t}{4 n+2}\right) d t \tag{2.4}\\
& \geq 2\left\{\sigma(0)-\sigma(1) p\left(\frac{\pi}{2 n+1}\right)+\right. \sigma(2)-\sigma(3) p\left(\frac{2 \pi}{2 n+1}\right) \\
&\left.+\sigma(4)-\sigma(5) p\left(\frac{3 \pi}{2 n+1}\right)\right\} \\
& \geq 2\left\{\sigma(0)-\sigma(1) \frac{\pi}{11 \sin \frac{\pi}{11}}+\sigma(2)-\sigma(3) \frac{2 \pi}{11 \sin \frac{2 \pi}{11}}\right. \\
&\left.+\sigma(4)-\sigma(5) \frac{3 \pi}{11 \sin \frac{3 \pi}{11}}\right\} .
\end{align*}
$$

Numerical integration using Maple V (see [6]) gives

$$
\begin{array}{ll}
\sigma(0)=1.851937 \ldots, & \sigma(1)=0.433785 \ldots, \\
\sigma(2)=0.25661 \ldots, & \sigma(3)=0.1826 \ldots, \\
\sigma(4)=0.1418 \ldots, & \sigma(5)=0.11593 \ldots,
\end{array}
$$

so that in view of (2.4) above we get

$$
\begin{equation*}
I_{n}(\theta)>2.9725 \tag{2.5}
\end{equation*}
$$

It can be easily seen that in this case

$$
\begin{equation*}
J_{n}(\theta) \geq \int_{0}^{3 \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t+\int_{3 \pi /(4 n+2)}^{(4 n-1) \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t \tag{2.6}
\end{equation*}
$$

Clearly,

$$
\begin{align*}
\int_{0}^{3 \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t & =\frac{1}{2 n+1} \int_{0}^{3 \pi / 2} \frac{\cos t}{\cos \frac{t}{4 n+2}} d t \tag{2.7}\\
& \geq \frac{1}{2 n+1}\left(1-\frac{2}{\cos \frac{3 \pi}{8 n+4}}\right)
\end{align*}
$$

We write

$$
A_{n}=\int_{3 \pi /(4 n+2)}^{(4 n-1) \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t=\sum_{k=1}^{n-1} \int_{(4 k-1) \pi /(4 n+2)}^{(4 k+3) \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t
$$

and observe that

$$
\begin{align*}
& (4 k+3) \pi /(4 n+2) \tag{2.8}\\
& \int_{(4 k-1) \pi /(4 n+2)}^{\cos (2 n+1) t} \\
& \quad=\frac{1}{2 n+1} \int_{(4 k-1) \pi / 2}^{(4 k+1) \pi / 2}\left\{\frac{1}{\cos \frac{t}{4 n+2}}-\frac{1}{\cos \left(\frac{t}{4 n+2}+\frac{\pi}{4 n+2}\right)}\right\} \cos t d t \\
& \quad \geq \frac{2}{2 n+1}\left\{\frac{1}{\cos \frac{4 k+1}{8 n+4} \pi}-\frac{1}{\cos \frac{4 k+3}{8 n+4} \pi}\right\} .
\end{align*}
$$

It follows from this that

$$
\begin{aligned}
A_{n} & \geq-\frac{2}{2 n+1} \sum_{k=1}^{n-1}\left(\frac{1}{\cos \frac{4 k+3}{8 n+4} \pi}-\frac{1}{\cos \frac{4 k+1}{8 n+4} \pi}\right) \\
& =-\frac{2}{2 n+1} \sum_{k=2}^{2 n-1}(-1)^{k-1} \frac{1}{\cos \frac{2 k+1}{8 n+4} \pi} \\
& =-\frac{2}{2 n+1} \sum_{k=1}^{2 n-2}(-1)^{k+1} \frac{1}{\sin \frac{2 k+1}{8 n+4} \pi} \\
& >-\frac{8}{\pi} \sum_{k=1}^{2 n-2}(-1)^{k+1} \frac{1}{2 k+1} .
\end{aligned}
$$

Since

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{2 k+1}=\frac{\pi}{4} \tag{2.9}
\end{equation*}
$$

we deduce from the above that

$$
A_{n}>2-\frac{8}{\pi} \quad \text { for all } n
$$

Hence, from this, (2.6) and (2.7) we obtain

$$
\begin{align*}
J_{n}(\theta) & >\frac{1}{2 n+1}\left(1-\frac{2}{\cos \frac{3 \pi}{8 n+4}}\right)+2-\frac{8}{\pi} \tag{2.10}\\
& \geq \frac{1}{11}\left(1-\frac{2}{\cos \frac{3 \pi}{44}}\right)+2-\frac{8}{\pi}=-0.64164 \ldots
\end{align*}
$$

Since $\frac{17 \pi}{22} \leq \frac{4 n-3}{4 n+2} \pi$ for $n \geq 5$ and the function $f(\theta)$ is strictly increasing on $\left[\frac{17 \pi}{22}, \pi\right]$ we have

$$
f(\theta) \geq f\left(\frac{17 \pi}{22}\right)=-2.19676 \ldots,
$$

which in combination with (2.5) and (2.10) yields $S_{n}(\theta)>0.134$.
The interval $\frac{4 \pi}{2 n+1}<\theta \leq \frac{4 n-3}{4 n+2} \pi, n \geq 4$. In a similar way, for any θ in this interval we have
(2.11) $\quad I_{n}(\theta) \geq \int_{0}^{4 \pi /(2 n+1)} \frac{\sin (2 n+1) t}{\sin \frac{t}{2}} d t$

$$
\geq 2\left(\sigma(0)-\sigma(1) \frac{\pi}{9 \sin \frac{\pi}{9}}+\sigma(2)-\sigma(3) \frac{2 \pi}{9 \sin \frac{2 \pi}{9}}\right)>2.935 .
$$

We also have

$$
J_{n}(\theta) \geq \int_{0}^{3 \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t+\int_{3 \pi /(4 n+2)}^{(4 n-5) \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t .
$$

Now using again (2.8) and (2.9) we get

$$
\begin{aligned}
\int_{3 \pi /(4 n+2)}^{(4 n-5) \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t & =\sum_{k=1}^{n-2} \int_{(4 k-1) \pi /(4 n+2)}^{(4 k+3) \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t \\
& \geq-\frac{2}{2 n+1} \sum_{k=1}^{n-2}\left(\frac{1}{\cos \frac{4 k+3}{8 n+4} \pi}-\frac{1}{\cos \frac{4 k+1}{8 n+4} \pi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2}{2 n+1} \sum_{k=3}^{2 n-2}(-1)^{k+1} \frac{1}{\sin \frac{2 k+1}{8 n+4} \pi} \\
& >-\frac{8}{\pi} \sum_{k=3}^{2 n-2}(-1)^{k+1} \frac{1}{2 k+1}>2-\frac{104}{15 \pi} .
\end{aligned}
$$

From (2.7) and the above it follows that

$$
\begin{align*}
J_{n}(\theta) & >\frac{1}{2 n+1}\left(1-\frac{2}{\cos \frac{3 \pi}{8 n+4}}\right)+2-\frac{104}{15 \pi} \tag{2.12}\\
& \geq \frac{1}{9}\left(1-\frac{2}{\cos \frac{\pi}{12}}\right)+2-\frac{104}{15 \pi}=-0.325898 \ldots
\end{align*}
$$

Now by (2.11), (2.12) and the fact that the function $f(\theta)$ attains its absolute minimum in $[0, \pi]$ at $\theta_{0}=2 \arccos (\sqrt{3} / 3)=1.9106 \ldots$, so that $f\left(\theta_{0}\right)=$ $-2 \sqrt{6}+2 \ln (\sqrt{2}+\sqrt{3})=-2.6065478 \ldots$, we obtain $S_{n}(\theta)>0.0025$ in the interval under consideration.

The interval $\frac{\pi}{2 n+1}<\theta \leq \frac{4 \pi}{2 n+1}, n \geq 4$. Here we follow again the same argument as in the proof of the two previous cases. In particular, for θ in this range we have

$$
\begin{align*}
I_{n}(\theta) & \geq \int_{0}^{2 \pi /(2 n+1)} \frac{\sin (2 n+1) t}{\sin \frac{t}{2}} d t \tag{2.13}\\
& \geq 2\left(\sigma(0)-\sigma(1) \frac{\pi}{9 \sin \frac{\pi}{9}}\right)>2.81843 .
\end{align*}
$$

Plainly, in this case

$$
J_{n}(\theta) \geq \int_{0}^{3 \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t+\int_{3 \pi /(4 n+2)}^{7 \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t .
$$

On account of (2.8),

$$
\int_{3 \pi /(4 n+2)}^{7 \pi /(4 n+2)} \frac{\cos (2 n+1) t}{\cos \frac{t}{2}} d t \geq \frac{2}{2 n+1}\left(\frac{1}{\cos \frac{5 \pi}{8 n+4}}-\frac{1}{\cos \frac{7 \pi}{8 n+4}}\right)
$$

It follows from (2.7) and the above that

$$
\begin{align*}
J_{n}(\theta) & \geq \frac{1}{2 n+1}\left(1-\frac{2}{\cos \frac{3 \pi}{8 n+4}}+\frac{2}{\cos \frac{5 \pi}{8 n+4}}-\frac{2}{\cos \frac{7 \pi}{8 n+4}}\right) \tag{2.14}\\
& >-0.1451 \quad \text { for } n \geq 4 .
\end{align*}
$$

Observe also that in this case $\theta<4 \pi / 9$ and the function $f(\theta)$ is strictly
decreasing on $[0,4 \pi / 9]$, so that

$$
f(\theta) \geq f\left(\frac{4 \pi}{9}\right)=-2.330906 \ldots
$$

and hence by (2.13) and (2.14) we now obtain $S_{n}(\theta)>0.3424$.
In order to establish (1.1) for the remaining cases $n=1,2,3,4$, we set $x=\cos \varphi$ and recall that

$$
\frac{\sin (4 k+1) \varphi}{\sin \varphi}=U_{4 k}(x)
$$

is the Chebyshev polynomial of second kind and degree $4 k$, in x. Then we define the polynomials

$$
g_{n}(x)=\frac{1}{4}+\sum_{k=1}^{n} \frac{1}{4 k+1} U_{4 k}(x)
$$

The positivity of the polynomials $g_{n}(x), n=2,3,4$, in $[0,1]$ can be easily checked by a straightforward computation. For example, by the method of Sturmian sequences one can verify that these polynomials have no zeros in $[0,1]$ and since $g_{n}(0)>0$, it follows that $g_{n}(x)>0,0 \leq x \leq 1$. Finally, an elementary computation yields $g_{1}(x)=\frac{16}{5} x^{4}-\frac{12}{5} x^{2}+\frac{9}{20} \geq 0,0 \leq x \leq 1$.

The proof of (1.1) is now complete.
3. Ultraspherical sums. Let $C_{n}^{\lambda}(x)$ be the ultraspherical polynomial of degree n and order $\lambda, \lambda>0$, defined by the generating function

$$
\left(1-2 x r+r^{2}\right)^{-\lambda}=\sum_{n=0}^{\infty} C_{n}^{\lambda}(x) r^{n}, \quad|x|<1
$$

Recalling that

$$
\frac{C_{n}^{1}(\cos \theta)}{C_{n}^{1}(1)}=\frac{\sin (n+1) \theta}{(n+1) \sin \theta}
$$

we see that (1.3) is the special case $\lambda=1$ of the inequality

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{C_{4 k}^{\lambda}(\cos \varphi)}{C_{4 k}^{\lambda}(1)}>0, \quad 0<\varphi<\pi / 2 \tag{3.1}
\end{equation*}
$$

which holds for all $\lambda \geq \lambda_{0}$, where λ_{0} is the unique root in $(0,1)$ of the equation

$$
\int_{0}^{3 \pi / 2} \frac{\cos t}{t^{\lambda}} d t=0
$$

$\left(\lambda_{0}=0.308443 \ldots\right)$. This is obtained from our results in [4].

Inequality (1.1) suggests that a sharper version of (3.1) may be true. This is

$$
\begin{equation*}
\frac{3}{(\lambda+3)(2 \lambda+1)}+\sum_{k=1}^{n} \frac{C_{4 k}^{\lambda}(\cos \varphi)}{C_{4 k}^{\lambda}(1)} \geq 0, \quad 0<\varphi<\pi / 2 \tag{3.2}
\end{equation*}
$$

Clearly, when $\lambda=1,(3.2)$ is the inequality (1.1).
The leading constant $\frac{3}{(\lambda+3)(2 \lambda+1)}$ is best possible, because the equality in (3.2) occurs when $n=1$ and $\varphi=\arccos \left(\frac{\sqrt{6(\lambda+3)}}{2 \lambda+6}\right)$.

Numerical evidence suggests that (3.2) should be also true for the range $\lambda \geq \lambda_{0}$. The natural method to prove this is to use the integral representation of ultraspherical polynomials given by the Dirichlet-Mehler formula, see $[7,10.9,32]$, (whose (2.2) itself is the special case $\lambda=1$) and then estimate the corresponding integrals in a manner similar to that demonstrated in [4]. However, it appears to be quite laborious to achieve a proof of (3.2) in this way. The reason (3.2) is interesting is that it can be used to prove the positivity of some quadrature schemes by the method developed in [5].

Finally, we note that neither (3.1) nor (3.2) holds for $\lambda<\lambda_{0}$. Indeed, it is well known that (see, for example, [8, p. 192])

$$
\lim _{n \rightarrow \infty} \frac{C_{n}^{\lambda}\left(\cos \frac{z}{n}\right)}{C_{n}^{\lambda}(1)}=2^{\alpha} \Gamma(\alpha+1) \cdot z^{-\alpha} J_{\alpha}(z)
$$

where $\alpha=\lambda-1 / 2, J_{\alpha}$ being the Bessel function of the first kind and order α. Using this and the fact that

$$
J_{-1 / 2}(t)=\left(\frac{2}{\pi t}\right)^{1 / 2} \cos t
$$

we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{C_{4 k}^{\lambda}\left(\cos \left(\frac{\pi}{2}+\frac{\theta}{4 n}\right)\right)}{C_{4 k}^{\lambda}(1)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{2 n}{\theta}\right)^{1-\lambda} \frac{\Gamma\left(\lambda+\frac{1}{2}\right)}{2 \sqrt{\pi}} \int_{0}^{\theta} \frac{\cos t}{t^{\lambda}} d t=-\infty \quad \text { for } \lambda<\lambda_{0}, \theta=3 \pi / 2 .
\end{aligned}
$$

See also the discussion in $[10, \mathrm{~V}, 2.29]$.

REFERENCES

[1] R. Askey, Remarks on the preceding paper by Gavin Brown and Edwin Hewitt, Math. Ann. 268 (1984), 123-126.
[2] R. Askey and J. Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295-307.
[3] G. Brown and E. Hewitt, A class of positive trigonometric sums, Math. Ann. 268 (1984), 91-122.
[4] G. Brown, S. Koumandos and K.-Y. Wang, Positivity of more Jacobi polynomial sums, Math. Proc. Cambridge Philos. Soc., to appear.
[5] -, —, —, Positivity of Cotes numbers at more Jacobi abscissas, Monatsh. Math., to appear.
[6] B. W. Char, K. O. Geddes, A. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt, Maple V First Leaves. A Tutorial Introduction to Maple V and Library Reference Manual, Springer, 1992.
[7] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.
[8] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, R.I., 1975.
[9] L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen, Sitzungsber. Öster. Akad. Wiss. 167 (1958), 125-135, ibid. 168 (1959), 192-193.
[10] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, 1959.

Department of Pure Mathematics
The University of Adelaide
Australia 5005
E-mail: skoumand@maths.adelaide.edu.au
Current address:
Department of Mathematics and Statistics
University of Cyprus
P.O. Box 537

1678 Nicosia, Cyprus
E-mail: skoumand@pythagoras.mas.ucy.ac.cy

