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ON A POSITIVE SINE SUM
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1. Introduction. We begin with a statement of our main result.

Theorem. For any positive integer n and for 0 ≤ ϕ ≤ π/2 we have

(1.1)
1

4
+

n
∑

k=1

sin(4k + 1)ϕ

(4k + 1) sin ϕ
≥ 0.

The only case of equality in (1.1) occurs when n = 1 and ϕ = arccos(
√

6/4).

Note that the leading constant 1/4 in the above sum is best possible.
The weak version of (1.1) in which the constant 1/4 is replaced by 1 can

be obtained using some more general results on positive trigonometric sums.
In particular, Askey and Steinig have given in [2] an alternate version of the
proof of a theorem originally published by Vietoris [9], which implies

(1.2)
n

∑

k=0

αk sin(4k + 1)ϕ > 0, 0 < ϕ < π/2,

where αk = 2−2k
(

2k
k

)

, k = 0, 1, 2, . . . Since the order of magnitude of αk is

k−1/2, a summation by parts shows that (1.2) implies the inequality

(1.3)

n
∑

k=0

sin(4k + 1)ϕ

(4k + 1) sin ϕ
> 0, 0 < ϕ < π/2.

In [3], G. Brown and E. Hewitt proved, among other things, a result

stronger than (1.2), replacing αk by δk = 22k/(k+1)
(

2k+1
k

)

, k = 0, 1, 2, . . . ,

so that

(1.4)
n

∑

k=0

δk sin(4k + 1)ϕ > 0, 0 < ϕ < π/2.

The order of magnitude of δk is also k−1/2, nonetheless (1.2) can be derived
by (1.4) by a summation by parts.

1991 Mathematics Subject Classification: Primary 42A05, 42C05; Secondary 33C45.
Key words and phrases: positive trigonometric sums, ultraspherical polynomials.

[243]



244 S. KOUMANDOS

Although (1.4) is strong enough to give the sharper version of (1.3) where
the leading constant is 3/10, however, it does not imply (1.1) in which the
constant 1/4 is, as already mentioned, best possible.

Substituting π/2 − ϕ for ϕ in the above inequalities one obtains the
corresponding result for cosine sums.

It should be noted that inequalities like (1.2) and (1.4), together with
their cosine analogues, have a number of surprising applications, the most
striking being estimates for the location of zeros of trigonometric polyno-
mials whose coefficients grow in a certain manner (cf. [2] and [3]). More
importantly, these inequalities can be incoporated into the context of more
general orthogonal polynomials and this has been emphasised in [1] and [2].

In the present article, our aim is to give a direct proof of (1.1) and discuss
a more general inequality involving ultraspherical polynomials (see Section
3) suggested by it.

2. Proof of the main result. We set ϕ = θ/2 in (1.1) and we are
concerned with proving that, for 0 < θ ≤ π,

(2.1)
1

2
sin

θ

2
+

n
∑

k=1

sin
(

2k + 1
2

)

θ

2k + 1
2

> 0.

We observe, first of all, that this sum is positive when 0 < θ ≤ π/(2n + 1),
because all its terms are positive for θ in this range.

Setting u = π − θ, we see that inequality (2.1) becomes

1

2
cos

u

2
+

n
∑

k=1

cos
(

2k + 1
2

)

u

2k + 1
2

> 0.

All terms in this last sum are positive for 0 < u ≤ π
4n+2 , hence the sum in

(2.1) is positive for 4n+1
4n+2π ≤ θ ≤ π. Thus, we seek to prove inequality (2.1)

for π
2n+1 < θ < 4n+1

4n+2π.

Since

(2.2)
sin

(

2k + 1
2

)

θ

2k + 1
2

=

θ\
0

cos
(

2k + 1
2

)

t dt

and by a direct summation

n
∑

k=1

cos
(

2k + 1
2

)

t =
sin

(

2n + 3
2

)

t − sin 3
2

t

2 sin t
,

it can be easily checked that (2.1) is equivalent to
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(2.3) − 6 sin
θ

2
+ 2 ln

(

1 + sin θ
2

cos θ
2

)

+

θ\
0

sin(2n + 1)t

sin t
2

dt

+

θ\
0

cos(2n + 1)t

cos t
2

dt > 0.

In what follows we shall denote

f(θ) = −6 sin
θ

2
+ 2 ln

(

1 + sin θ
2

cos θ
2

)

,

In(θ) =

θ\
0

sin(2n + 1)t

sin t
2

dt, Jn(θ) =

θ\
0

cos(2n + 1)t

cos t
2

dt,

Sn(θ) = f(θ) + In(θ) + Jn(θ).

So, in view of (2.3), it suffices to establish the positivity of Sn(θ) in
(

π
2n+1

, 4n+1
4n+2

π
)

. For this purpose, we consider the following cases:

The interval 4n−3
4n+2π ≤ θ < 4n+1

4n+2π, n ≥ 5. Let

σ(k) =

π\
0

sin t

t + kπ
dt, k = 0, 1, 2, . . . ,

and

p(x) =
x

sin x
.

We observe that for θ lying in this interval we have

(2.4) In(θ) >

6π/(2n+1)\
0

sin(2n + 1)t

sin t
2

dt = 2

6π\
0

sin t

t
p

(

t

4n + 2

)

dt

≥ 2

{

σ(0) − σ(1)p

(

π

2n + 1

)

+ σ(2) − σ(3)p

(

2π

2n + 1

)

+ σ(4) − σ(5)p

(

3π

2n + 1

)}

≥ 2

{

σ(0) − σ(1)
π

11 sin π
11

+ σ(2) − σ(3)
2π

11 sin 2π
11

+ σ(4) − σ(5)
3π

11 sin 3π
11

}

.

Numerical integration using Maple V (see [6]) gives

σ(0) = 1.851937 . . . , σ(1) = 0.433785 . . . ,

σ(2) = 0.25661 . . . , σ(3) = 0.1826 . . . ,

σ(4) = 0.1418 . . . , σ(5) = 0.11593 . . . ,
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so that in view of (2.4) above we get

(2.5) In(θ) > 2.9725.

It can be easily seen that in this case

(2.6) Jn(θ) ≥
3π/(4n+2)\

0

cos(2n + 1)t

cos t
2

dt +

(4n−1)π/(4n+2)\
3π/(4n+2)

cos(2n + 1)t

cos t
2

dt.

Clearly,

3π/(4n+2)\
0

cos(2n + 1)t

cos t
2

dt =
1

2n + 1

3π/2\
0

cos t

cos t
4n+2

dt(2.7)

≥ 1

2n + 1

(

1 − 2

cos 3π
8n+4

)

.

We write

An =

(4n−1)π/(4n+2)\
3π/(4n+2)

cos(2n + 1)t

cos t
2

dt =
n−1
∑

k=1

(4k+3)π/(4n+2)\
(4k−1)π/(4n+2)

cos(2n + 1)t

cos t
2

dt

and observe that

(2.8)

(4k+3)π/(4n+2)\
(4k−1)π/(4n+2)

cos(2n + 1)t

cos t
2

dt

=
1

2n + 1

(4k+1)π/2\
(4k−1)π/2

{

1

cos t
4n+2

− 1

cos
(

t
4n+2 + π

4n+2

)

}

cos t dt

≥ 2

2n + 1

{

1

cos 4k+1
8n+4π

− 1

cos 4k+3
8n+4π

}

.

It follows from this that

An ≥ − 2

2n + 1

n−1
∑

k=1

(

1

cos 4k+3
8n+4π

− 1

cos 4k+1
8n+4π

)

= − 2

2n + 1

2n−1
∑

k=2

(−1)k−1 1

cos 2k+1
8n+4π

= − 2

2n + 1

2n−2
∑

k=1

(−1)k+1 1

sin 2k+1
8n+4

π

> − 8

π

2n−2
∑

k=1

(−1)k+1 1

2k + 1
.
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Since

(2.9)

∞
∑

k=0

(−1)k 1

2k + 1
=

π

4
,

we deduce from the above that

An > 2 − 8

π
for all n.

Hence, from this, (2.6) and (2.7) we obtain

Jn(θ) >
1

2n + 1

(

1 − 2

cos 3π
8n+4

)

+ 2 − 8

π
(2.10)

≥ 1

11

(

1 − 2

cos 3π
44

)

+ 2 − 8

π
= −0.64164 . . .

Since 17π
22

≤ 4n−3
4n+2

π for n ≥ 5 and the function f(θ) is strictly increasing on
[

17π
22 , π

]

we have

f(θ) ≥ f

(

17π

22

)

= −2.19676 . . . ,

which in combination with (2.5) and (2.10) yields Sn(θ) > 0.134.

The interval 4π
2n+1 < θ ≤ 4n−3

4n+2π, n ≥ 4. In a similar way, for any θ in
this interval we have

In(θ) ≥
4π/(2n+1)\

0

sin(2n + 1)t

sin t
2

dt(2.11)

≥ 2

(

σ(0) − σ(1)
π

9 sin π
9

+ σ(2) − σ(3)
2π

9 sin 2π
9

)

> 2.935.

We also have

Jn(θ) ≥
3π/(4n+2)\

0

cos(2n + 1)t

cos t
2

dt +

(4n−5)π/(4n+2)\
3π/(4n+2)

cos(2n + 1)t

cos t
2

dt.

Now using again (2.8) and (2.9) we get

(4n−5)π/(4n+2)\
3π/(4n+2)

cos(2n + 1)t

cos t
2

dt =

n−2
∑

k=1

(4k+3)π/(4n+2)\
(4k−1)π/(4n+2)

cos(2n + 1)t

cos t
2

dt

≥ − 2

2n + 1

n−2
∑

k=1

(

1

cos 4k+3
8n+4π

− 1

cos 4k+1
8n+4π

)
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= − 2

2n + 1

2n−2
∑

k=3

(−1)k+1 1

sin 2k+1
8n+4π

> − 8

π

2n−2
∑

k=3

(−1)k+1 1

2k + 1
> 2 − 104

15π
.

From (2.7) and the above it follows that

Jn(θ) >
1

2n + 1

(

1 − 2

cos 3π
8n+4

)

+ 2 − 104

15π
(2.12)

≥ 1

9

(

1 − 2

cos π
12

)

+ 2 − 104

15π
= −0.325898 . . .

Now by (2.11), (2.12) and the fact that the function f(θ) attains its absolute
minimum in [0, π] at θ0 = 2arccos

(√
3/3

)

= 1.9106 . . . , so that f(θ0) =

−2
√

6 + 2 ln
(√

2 +
√

3
)

= −2.6065478 . . . , we obtain Sn(θ) > 0.0025 in the
interval under consideration.

The interval π
2n+1

< θ ≤ 4π
2n+1

, n ≥ 4. Here we follow again the same
argument as in the proof of the two previous cases. In particular, for θ in
this range we have

In(θ) ≥
2π/(2n+1)\

0

sin(2n + 1)t

sin t
2

dt(2.13)

≥ 2

(

σ(0) − σ(1)
π

9 sin π
9

)

> 2.81843.

Plainly, in this case

Jn(θ) ≥
3π/(4n+2)\

0

cos(2n + 1)t

cos t
2

dt +

7π/(4n+2)\
3π/(4n+2)

cos(2n + 1)t

cos t
2

dt.

On account of (2.8),

7π/(4n+2)\
3π/(4n+2)

cos(2n + 1)t

cos t
2

dt ≥ 2

2n + 1

(

1

cos 5π
8n+4

− 1

cos 7π
8n+4

)

.

It follows from (2.7) and the above that

Jn(θ) ≥ 1

2n + 1

(

1 − 2

cos 3π
8n+4

+
2

cos 5π
8n+4

− 2

cos 7π
8n+4

)

(2.14)

> −0.1451 for n ≥ 4.

Observe also that in this case θ < 4π/9 and the function f(θ) is strictly
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decreasing on [0, 4π/9], so that

f(θ) ≥ f

(

4π

9

)

= −2.330906 . . .

and hence by (2.13) and (2.14) we now obtain Sn(θ) > 0.3424.

In order to establish (1.1) for the remaining cases n = 1, 2, 3, 4, we set
x = cos ϕ and recall that

sin(4k + 1)ϕ

sin ϕ
= U4k(x)

is the Chebyshev polynomial of second kind and degree 4k, in x. Then we
define the polynomials

gn(x) =
1

4
+

n
∑

k=1

1

4k + 1
U4k(x).

The positivity of the polynomials gn(x), n = 2, 3, 4, in [0, 1] can be easily
checked by a straightforward computation. For example, by the method of
Sturmian sequences one can verify that these polynomials have no zeros in
[0, 1] and since gn(0) > 0, it follows that gn(x) > 0, 0 ≤ x ≤ 1. Finally, an
elementary computation yields g1(x) = 16

5 x4 − 12
5 x2 + 9

20 ≥ 0, 0 ≤ x ≤ 1.

The proof of (1.1) is now complete.

3. Ultraspherical sums. Let Cλ
n(x) be the ultraspherical polynomial

of degree n and order λ, λ > 0, defined by the generating function

(1 − 2xr + r2)−λ =
∞
∑

n=0

Cλ
n(x)rn, |x| < 1.

Recalling that

C1
n(cos θ)

C1
n(1)

=
sin(n + 1)θ

(n + 1) sin θ
,

we see that (1.3) is the special case λ = 1 of the inequality

(3.1)
n

∑

k=0

Cλ
4k(cos ϕ)

Cλ
4k(1)

> 0, 0 < ϕ < π/2,

which holds for all λ ≥ λ0, where λ0 is the unique root in (0,1) of the
equation

3π/2\
0

cos t

tλ
dt = 0

(λ0 = 0.308443 . . .). This is obtained from our results in [4].
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Inequality (1.1) suggests that a sharper version of (3.1) may be true.
This is

(3.2)
3

(λ + 3)(2λ + 1)
+

n
∑

k=1

Cλ
4k(cos ϕ)

Cλ
4k(1)

≥ 0, 0 < ϕ < π/2.

Clearly, when λ = 1, (3.2) is the inequality (1.1).
The leading constant 3

(λ+3)(2λ+1) is best possible, because the equality

in (3.2) occurs when n = 1 and ϕ = arccos
(

√
6(λ+3)

2λ+6

)

.
Numerical evidence suggests that (3.2) should be also true for the range

λ ≥ λ0. The natural method to prove this is to use the integral represen-
tation of ultraspherical polynomials given by the Dirichlet–Mehler formula,
see [7, 10.9, 32], (whose (2.2) itself is the special case λ = 1) and then esti-
mate the corresponding integrals in a manner similar to that demonstrated
in [4]. However, it appears to be quite laborious to achieve a proof of (3.2)
in this way. The reason (3.2) is interesting is that it can be used to prove
the positivity of some quadrature schemes by the method developed in [5].

Finally, we note that neither (3.1) nor (3.2) holds for λ < λ0. Indeed, it
is well known that (see, for example, [8, p. 192])

lim
n→∞

Cλ
n

(

cos z
n

)

Cλ
n(1)

= 2αΓ (α + 1) · z−αJα(z),

where α = λ− 1/2, Jα being the Bessel function of the first kind and order
α. Using this and the fact that

J
−1/2(t) =

(

2

πt

)1/2

cos t,

we obtain

lim
n→∞

n
∑

k=0

Cλ
4k

(

cos
(

π
2 + θ

4n

))

Cλ
4k(1)

= lim
n→∞

(

2n

θ

)1−λ Γ
(

λ + 1
2

)

2
√

π

θ\
0

cos t

tλ
dt = −∞ for λ < λ0, θ = 3π/2.

See also the discussion in [10, V, 2.29].
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